BRANCHED COVERINGS

William L. Reddy

1. INTRODUCTION

In this paper we consider branched coverings of compact manifolds. A map f of a compact n-manifold M onto an n-manifold N is a branched covering if $f^{-1}f(B_f) = B_f$ and $f \mid (M - B_f)$ is a finite-to-one covering map. Here B_f denotes the set of points of M at which f is not a local homeomorphism. If $f \mid f^{-1}f(B_f)$ is a homeomorphism, the branched covering is a Montgomery-Samelson fibering with zero codimension, and we call it an M-S covering. If $f \mid f^{-1}f(B_f)$ is a covering map, we call it a singular covering. If $f \mid (M - B_f)$ is a regular covering, we call f a regular branched covering. In Section 2, we prove some theorems about general branched coverings. In Section 3, we construct a special homology theory and use it to investigate the structure of the branch set for M-S coverings. In Section 4 we study branched coverings by spheres, and in Section 5 we study branched coverings onto spheres. Section 6 contains some examples and remarks involving smooth branched coverings. We call f: M \rightarrow N smooth if both M and N are n-manifolds with a C^m structure and f is C^m. We call f simplicial if M and N can be triangulated so that f is simplicial with respect to the triangulations. For a survey of problems related to this paper, see [9].

2. BRANCHED COVERINGS

PROPOSITION 1. Let $f: X \to Y$ be an open map from the compact, path-connected and locally path-connected space X to the connected and locally simply connected Hausdorff space Y. Suppose that $q = \min \{ \text{card } f^{-1}(y) : y \in Y \}$ is finite. Then $f_{\#}\pi(X)$ has at most q cosets in $\pi(Y)$, where π denotes the fundamental group and $f_{\#}$ denotes the homomorphism induced by f.

Proof. Suppose that $f_\#\pi(X)$ has p cosets in $\pi(Y)$ and that p>q. Since f(X) is open and compact, hence closed, in Y, the mapping f is onto Y. Therefore Y is path-connected and locally path-connected. Let $g\colon Z\to Y$ be the covering map corresponding to $f_\#\pi(X)$, and let $h\colon X\to Z$ be the lift of f. The map h is open, because f is open and g is a local homeomorphism. It follows that h is onto Z. Since g is a p-to-1 map, we infer that, for each y in Y,

card
$$f^{-1}(y) = card h^{-1}g^{-1}(y) > card g^{-1}(y) = p > q$$
,

contrary to the choice of q.

COROLLARY 1.1. If $f: M \to N$ is a singular covering, dim $B_f \le n - 2$, and $f \mid B_f$ is p-to-1, then $f \# \pi(M)$ has at most p cosets in $\pi(N)$.

Received December 6, 1969.

This research was supported in part by Army Research Office--Durham grant ARO-D-31-124-G892, S2.

Michigan Math. J. 18 (1971).

COROLLARY 1.2. If $f: M \to N$ is an M-S covering and dim $B_f \le n-2$, then $f \ne maps \pi(M)$ onto $\pi(N)$.

Remark 1. It follows from Corollary 2 that S^n (n>1) admits M-S coverings onto simply connected spaces only, and that S^n admits singular coverings onto spaces with a finite fundamental group only. The (n-1)-fold suspension of a d-to-1 covering of S^1 by S^1 (an M-S covering of S^n by S^n) followed by a covering map onto a lens space is a singular covering of a space with cyclic fundamental group by S^n . It is easy to construct M-S coverings of one 3-dimensional lens space N by another such space M such that card $\pi(N)$ is any specified multiple of card $\pi(M)$. All these examples can be constructed so that $B_f = S^1$. One can also infer the impossibility of an M-S-covering of certain lens spaces by certain others. On the solid torus $S^1 \times D^2$, consider the map given by $g(z_1, z_2) = (z_1^3, z_2^3)$. By identifying the boundaries of two such spaces in the usual way, one obtains a singular covering of S^3 by S^3 that is 3-to-1 on B_f (a link), but such that $f_\#\pi(S^3)$ has precisely one coset in $\pi(S^3)$. We can construct another example by composing the 3-to-1 irregular covering from the surface M of genus 4 to the surface of genus 2 with the standard M-S covering from the surface of genus 2 to the torus N. The resulting map f is a singular branched covering, 3-to-1 on B_f ; but $f_\#$ maps $\pi(M)$ onto $\pi(N)$.

THEOREM 1. Let $f: M \to N$ be a singular covering, and suppose $f \mid B_f$ is a q-to-1 covering map. Then $f \not = \pi(M)$ has precisely q cosets in $\pi(N)$ if and only if $f = g \circ h$, where h is an M-S covering with $B_h = B_f$, and g is a q-to-1 covering map.

Proof. First, suppose that $f_\#\pi(M)$ has precisely q cosets in $\pi(N)$. Let $g\colon Z\to N$ be the covering map corresponding to $f_\#\pi(M)$, and let $h\colon M\to Z$ be the lift of f. Then $f=g\circ h$; also, $B_f=B_h$, because g is a local homeomorphism; $h\mid B_h$ is one-to-one, because each point of N has q inverse images under g; and $f=g\circ h$ is q-to-1 on $B_f=B_h$. For the converse, assume that the factorization exists. Then $f_\#\pi(M)=g_\#h_\#\pi(M)\subset g_\#\pi(Z)$. Here Z is the domain of g. Therefore $f_\#\pi(M)$ has at least q cosets. It has at most q cosets, by Theorem 1, and hence it has precisely q cosets.

A similar argument proves the following result.

THEOREM 1'. Let $f: M \to N$ be a branched covering, and let

$$q = \min \{ card f^{-1}(y) : y \in N \}$$
.

Then $f_{\#}\pi(M)$ has precisely q cosets in $\pi(N)$ if and only if $f = g \circ h$, where h is a branched covering with $1 = \min \{ \text{card } h^{-1}(y) = y \in N \}$ and g is a q-to-1 covering map.

Notice that if such a factorization exists, then $h_\#$ maps $\pi(M)$ onto $\pi(Z)$, where Z denotes the range of h.

If $f \mid (M - B_f)$ is a regular covering map, then f is the orbit map of an action on M by a finite group. The restricted part of the action is B_f . This means that the study of regular branched coverings is a subset of the study of finite transformation groups with the unusual condition that the orbit space is a manifold.

THEOREM 2. If $f: M \to N$ is a singular covering, N is simply connected, fB_f is a tamely (respectively, smoothly) embedded manifold, and f is simplicial (respectively, smooth), then f is a regular branched covering.

Proof. Since N is simply connected, $\pi(N - fB_f)$ is generated by small loops around fB_f that are attached to the base-point by an arc. It follows from [5, Theorem

1.2] (respectively [4, Theorem 2.1]) that each such loop lifts to an arc, no matter what base-point is chosen in M - $B_{\rm f}$. Therefore f is regular.

3. SPECIAL HOMOLOGY, AND THE STRUCTURE OF THE BRANCH SET FOR M-S COVERINGS

PROPOSITION 2. Let $f: X \to Y$ be an open simplicial map of the complex X onto the complex Y. Suppose there exists a subcomplex X_0 of X such that $f \mid (X - X_0)$ is a d-to-1 covering map and $f \mid f^{-1}fX_0$ is a homeomorphism. Let C(A) denote the chain complex of A with integer coefficients. Then there exist homomorphisms ρ and τ of the graded group C(X) into itself with the following properties (here σ denotes ρ or τ and σ' denotes τ or ρ , respectively).

- (A) $\sigma \circ \sigma' = 0$;
- (B) $\sigma[C(X_0)] = 0;$
- (C) if $\sigma(c) = 0$, there exist chains $a \in C(X, X_0)$ and $b \in C(X_0)$ such that $c = \sigma'(a) + b$;
 - (D) for each chain $c \in C(X)$, $\partial \sigma(c) \sigma \partial(c) \in C(X_0)$;
 - (E) $\sigma[C(X)] \cap C(X_0) = 0$;
 - (F) $\partial \sigma [C(X)] \subset C(X, X_0) \oplus dC(X_0)$; and
 - (G) if q is an integer dividing d, and if $\partial \sigma(c) \in qC(X)$, then

$$\partial c \in C(X, X_0) \oplus qC(X_0)$$
.

Proof. This follows immediately from [16, Proposition 7 and Definitions 1 and 2].

Definition 1. Let K denote one of the three complexes X, X_0 , or (X, X_0) . We define the set of σ -chains of K to be the kernel of $\sigma \mid K$, and we denote this set by $C^{\sigma}(K)$.

LEMMA 1. $C^{\sigma}(K)$ is a sub-chain-group of C(K).

Proof. $C^{\sigma}(K)$ is a subgroup of C(K) because it is the kernel of a homomorphism. Let $c \in C^{\sigma}(K)$. By Proposition 2(D) and since $\sigma(c) = 0$,

$$\sigma \partial(\mathbf{c}) \in \partial \sigma(\mathbf{c}) + C(X_0) = C(X_0)$$
.

Therefore $\sigma \partial(c) \in \text{Im } \sigma \cap C(X_0) = 0$, by Proposition 2(E). This means that $\partial c \in C^{\sigma}(K)$.

Definition 2. Let G be an abelian group. The homology group of the chain group $C^{\sigma}(K) \otimes G$ is called the σ -homology group of K with coefficients in G, and it is denoted by $H^{\sigma}(K; G)$.

Remark 2. Let p be a prime dividing d. It follows from Proposition 2(F) that $H^{\sigma}(X; Z_p) = H^{\sigma}(X, X_0; Z_p) \oplus H(X; Z_p)$, where H denotes simplicial homology and Z_p denotes the integers modulo p.

Construction 1. Let $z \in H^{\sigma}_{m+1}(X, X_0; Z_p)$, and let w be a cycle in z. Pick a chain v in $C^{\sigma}(X, X_0)$ that maps onto w under the canonical homomorphism. Since $\sigma(v) = 0$, it follows from Proposition 2(C) that there exists a chain u with $v = \sigma'(u)$.

Since w is a cycle in $C^{\sigma}(X, X_0; Z_p)$, there exist chains a ϵ $C(X, X_0)$ and b ϵ $C(X_0)$ such that $\partial \sigma'(u) = pa + b$. Using Proposition 2(D), we see that

pa =
$$\sigma' \partial(u) - [\partial \sigma'(u) - \sigma' \partial(u)] + b$$
;

hence the equations

$$\sigma(pa) = p\sigma(a) = 0$$

follow from Proposition 2(A) and 2(B). Therefore $\sigma(a) = 0$, and by Proposition 2(C) there exists a chain a' ϵ C(X, X₀) such that $a = \sigma'(a')$. We observe that

$$\sigma'(\partial u - pa') \in \text{Im } \sigma' \cap C(X_0) = 0.$$

Furthermore, $\partial \left[\partial u - pa'\right] = p\partial a'$; hence the image of ∂u - pa' in $C^{\sigma'}(X) \bigotimes Z_p$ is a cycle x. We define $\alpha(z)$ to be the class of x in $H_n^{\sigma'}(X; Z_p)$. It is a straightforward matter to verify that $\alpha(z)$ does not depend on the choices made after w is fixed. We can use Proposition 2(G) to prove that $\alpha(z)$ does not depend on the choice of w. Obviously, α is a homomorphism. Let $\beta\colon H_m^{\sigma'}(X; Z_p) \to H_m(X; Z_p)$ be the homomorphism induced by the inclusion $C_m^{\sigma}(X) \to C_m(X)$. Let

$$\gamma$$
: $H_m(X; Z_p) \rightarrow H_m^{\sigma}(X, X_0; Z_p)$

be the homomorphism induced by the homomorphism $\sigma'\colon C_{\mathrm{m}}(X)\to C_{\mathrm{m}}^{\sigma}(X,\,X_0).$

PROPOSITION 3. Let $f: X \to Y$ be an open simplicial map of the complex X onto the complex Y. Suppose there exists a subcomplex X_0 such that $f \mid (X - X_0)$ is a d-to-1 covering map and $f \mid f^{-1}fX_0$ is a homeomorphism. Let p be a prime dividing d. Then there exist graded Z_p -modules $H^p(X)$, $H^p(X, X_0)$, $H^T(X)$, and $H^T(X, X_0)$ with the following three properties.

(a) There exist exact sequences

(1)
$$\cdots \rightarrow \operatorname{H}_{m+1}^{\rho}(X, X_0) \rightarrow \operatorname{H}_{m}^{\tau}(X) \rightarrow \operatorname{H}_{m}(X) \rightarrow \cdots$$

and

(2)
$$\cdots \rightarrow \operatorname{H}_{m+1}^{\tau}(X, X_0) \rightarrow \operatorname{H}_{m}^{\rho}(X) \rightarrow \operatorname{H}_{m}(X) \rightarrow \cdots,$$

- (b) $H^{\tau}(X) = H^{\tau}(X, X_0) \oplus H(X_0)$ and $H^{\rho}(X) = H^{\rho}(X, X_0) \oplus H(X_0)$, and
- (c) $H^{\tau}(X, X_0) = H(Y, fX_0)$, where H denotes simplicial homology with coefficients in Z_D .

Proof. The graded Z_p -modules are $H^{\sigma}(K; Z_p)$, for the allowable choices of σ and K. Part (a) follows from the fact that ker $\alpha = \text{Im } \gamma$, ker $\beta = \text{Im } \alpha$, and ker $\gamma = \text{Im } \beta$, which can be proved by the method of [6, Theorem 2.3]. Part (b) follows from Remark 2. Part (c) follows from the definitions of H and H^{τ} , Proposition 2(C), and [16, Construction 2 and Proposition 7].

PROPOSITION 4. (I) Suppose that $f: M \to N$ is an M-S covering and dim $B_f \le n-2$. Then there exists a cofinal family of coverings A_λ and fA_λ on M and N, respectively, such that the map f_λ induced by f on the nerves satisfies the hypotheses of Propositions 2 and 3.

(II) Let α_{λ} , β_{λ} , and γ_{λ} be the maps in the exact sequences obtained by applying Proposition 3 to f_{λ} . Then the projections between nerves can be chosen to commute with α_{λ} , β_{λ} , and γ_{λ} .

Proof. (I) Let the cofinal family of coverings and the projections be those constructed in [11, Theorems 1 and 2]. (II) follows from [11, Lemmas 2 and 4] and the definitions of α_{λ} , β_{λ} , and γ_{λ} .

THEOREM 3. Suppose that $f: M \to N$ is a d-to-1 M-S covering and dim $B_f \le n$ - 2. Let p be any prime dividing d. Then there exist graded Z_p -modules $H^\rho(M)$, $H^\rho(M, B_f)$, $H^\tau(M)$, and $H^\tau(M, B_f)$ with the following three properties.

(a) There exist exact sequences

(1)
$$\cdots \rightarrow H_{m+1}^{\rho}(M, B_f) \rightarrow H_m^{\tau}(M) \rightarrow H_m(M) \rightarrow \cdots$$

and

(2)
$$\cdots \rightarrow H_{m+1}^{T}(M, B_{f}) \rightarrow H_{m}^{\rho}(M) \rightarrow H_{m}(M) \rightarrow \cdots,$$

(b)
$$H^{\tau}(M) = H^{\tau}(M, B_f) \oplus H(B_f)$$
 and $H^{\rho}(M) = H^{\rho}(M, B_f) \oplus H(B_f)$, and

(c) $H^{\tau}(M, B_f) = H(N, fB_f)$, where H denotes Čech homology with coefficients in Z_p .

Proof. This theorem follows from Propositions 3 and 4 and known properties of inverse limits.

THEOREM 4. Suppose that $f: M \to N$ is a d-to-1 singular covering such that $f \mid B_f$ is q-to-1, and that dim $B_f \le n$ - 2. Suppose $f \notin \pi(M)$ has q cosets in $\pi(N)$. Then, for each positive integer m and each prime p dividing d,

$$\sum_{m}^{\infty} \dim H_{j}(B_{f}; Z_{p}) \leq \sum_{m}^{\infty} \dim H_{j}(M; Z_{p}).$$

Proof. Factor f as $g \circ h$, where $B_h = B_f$ and h is an M-S covering, by Theorem 1. Now apply [11, Theorem 4] to h.

THEOREM 5. Suppose that $f: M \to N$ is a d-to-1 M-S covering and dim $B_f \le n$ - 2. Then, for each prime p dividing d and for each pair of integers (m, k) with m < k,

$$\sum_{m}^{k-1} \dim H_{j}(B_{f}; Z_{p}) \leq \dim H_{k+1}(N; Z_{p}) + \sum_{m}^{k} \dim H_{j}(M; Z_{p}).$$

Proof. We use the fact that if $A \to B \to C$ is an exact sequence of vector spaces, then dim $B \le \dim A + \dim C$; also, we use the properties (a), (b), and (c) of Theorem 3, and the usual exact sequence for a pair. Write $b_j^{\sigma}(X)$ for dim $H_j^{\sigma}(X; Z_p)$. Choose any integer k. Let $\sigma = \rho$ or τ and $\sigma' = \tau$ or ρ , respectively.

The inequalities

$$\begin{split} b_k(B_f) &\leq b_{k+1}^{\tau}(M, B_f) + b_k(M) - b_k^{\rho}(M, B_f) \\ &\leq b_{k+1}(N, B_f) + b_k(M) - \left[b_{k-1}^{\tau}(M) - b_{k-1}(M)\right] \\ &\leq b_{k+1}(N) + b_k(B_f) + b_k(M) + b_{k-1}(M) - b_{k-1}^{\tau}(M) \\ &\leq b_{k+1}(N) + b_k(B_f) + b_k(M) + b_{k-1}(M) - b_{k-1}^{\tau}(M, B_f) - b_{k-1}(B_f) \end{split}$$

imply that

$$b_{k-1}(B_f) \le b_{k+1}(N) + b_k(M) + b_{k-1}(M) - b_{k-1}^T(M, B_f).$$

Suppose it has been shown that

$$\sum_{m+1}^{k-1} b_j(B_f) \le b_{k+1}(N) + \sum_{m+1}^{k} b_j(M) - b_{m+1}^{\sigma}(M, B_f).$$

Then

$$\begin{split} \sum_{m+1}^{k-1} b_{j}(B_{f}) &\leq b_{k+1}(N) + \sum_{m+1}^{k} b_{j}(M) - [b_{m}^{\sigma'}(M) - b_{m}(M)] \\ &\leq b_{k+1}(N) + \sum_{m}^{k} b_{j}(M) - b_{m}^{\sigma'}(M) \\ &\leq b_{k+1}(N) + \sum_{m}^{k} b_{j}(M) - b_{m}^{\sigma'}(M, B_{f}) - b_{m}(B_{f}); \end{split}$$

that is,

$$\sum_{m}^{k-1} b_{j}(B_{f}) \leq b_{k+1}(N) + \sum_{m}^{k} b_{j}(M) - b_{m}^{\sigma'}(M, B_{f}),$$

for all m < k, where $\sigma' = \tau$ if and only if k - m is odd. Since $b_m^{\sigma'}(M, B_f) \ge 0$ for each m, the theorem is proved.

THEOREM 6. If f: $M \to N$ is a d-to-1 M-S covering and dim $B_f \le n$ - 2, then, for each prime p dividing d and for each integer k,

$$\label{eq:dim Hk} \text{dim } H_k(N;\, Z_p) \, \leq \, \sum\limits_k^\infty \, \text{dim } H_j(M;\, Z_p) \, - \, \sum\limits_{k+1}^\infty \, \text{dim } H_j(B_f\,;\, Z_p) \, .$$

Proof. Adopt the notation and the technique in the proof of Theorem 5. For each integer k,

$$\begin{split} b_k(N) &\leq b_k(N, B_f) + b_k(B_f) = b_k^T(M) \\ &\leq b_{k+1}^{\rho}(M, B_f) + b_k(M) = b_{k+1}^{\rho}(M) + b_k(M) - b_{k+1}(B_f) \; . \end{split}$$

Suppose that

$$b_k(N) \leq b_m^{\sigma}(M) + \sum_{k=0}^{m-1} b_j(M) - \sum_{k+1}^{m} b_j(B_j).$$

Then

$$\begin{split} b_k(N) &\leq b_{m+1}^{\sigma'}(M, B_f) + b_m(M) + \sum_{k}^{m-1} b_j(M) - \sum_{k+1}^{m} b_j(B_f) \\ &\leq b_{m+1}^{\sigma'}(M) + \sum_{k}^{m} b_j(M) - \sum_{k+1}^{m+1} b_j(B_f). \end{split}$$

Since $b_{m+1}^{\sigma'}(M) = 0$ for all sufficiently large m, the theorem is proved.

Remark 3. The results of this section are valid for M-S coverings $f: X \to Y$ of n-dimensional compact metric spaces. If W is any compact n-dimensional metric space, M is the surface of genus 4, N is the surface of genus 2, $g: M \to N$ is an irregular covering, and \circ denotes join, then $f = (id \circ g): W \circ M \to W \circ N$ is an irregular M-S covering with $B_f = W$. Therefore the results of this section do not follow from the results of Smith Theory.

4. SINGULAR COVERINGS OF MANIFOLDS BY SPHERES

From now on, Sn denotes the n-sphere.

LEMMA 2. Let g: $S^n \to N$ be a map of degree d onto the orientable manifold N. Then $d \circ H_i(N; \mathbb{Z}) = 0$ for 0 < i < n.

Proof. Let u be the generator of $H_n(S^n; Z)$, and v the generator of $H_n(N; Z)$. Let x be an element of $H_i(N; Z)$ for 0 < i < n. There exists an element y of $H^{n-i}(N; Z)$ with $v \cap y = x$. The relations

$$f_{\star}[f^{*}(y) \cap u] = y \cap f_{\star}(u) = y \cap dv = dz$$

imply that

$$d \circ H_{i}(N; Z) \subset f_{*}[H_{i}(S^{n}; Z)] = 0 \qquad (0 < i < n).$$

THEOREM 7. Let $f: S^n \to N$ be a d-to-1 M-S covering. Suppose that B_f is a tamely (respectively, smoothly) embedded manifold and an integral homology (n-2)-sphere, and that f is simplicial (respectively, smooth). Then N is a homotopy n-sphere, hence a topological n-sphere if $n \neq 3$, 4.

Proof. We infer from Theorem 1 that N is simply connected, hence orientable. It follows from Lemma 2 that N has the Betti numbers of an n-sphere, and that its torsion numbers are divisors of d. By Theorem 2, f is the orbit map of a semifree action of a finite group G on Sⁿ with fixed-point set B_f, and B_f is an integral (n - 2)-dimensional homology sphere; hence $G = Z_d$ [17, Corollary on p. 408]. Therefore, for each prime p dividing d, there is a Z_p -action on Sⁿ with fixed-point set B_f. It follows ([1, Theorem 6.1 on p. 63]) that $H^i(N; Z_p) = 0$, for each such prime, and for 0 < i < n. Therefore, all torsion numbers of N are zero, and it follows that N is a homotopy n-sphere.

LEMMA 3. Let $f: S^n \to N$ be a singular covering. Suppose that B_f is a tamely (respectively, smoothly) embedded connected manifold and that f is simplicial (respectively, smooth). If N is simply connected, then f is an M-S covering.

Proof. Theorem 2 implies that f is regular. Therefore f is the orbit map for the action of a finite group G on S^n . Since f is singular and B_f is connected, the stability group at a point is constant on B_f . Call it H. We write $f = g \circ h$; here h is the orbit map $S^n \to S^n/H = M$, and hence is an M-S covering, and g is the orbit

map $M \to M/(G/H) = N$, and hence is a covering map. Since N is simply connected, g is a homeomorphism, and hence f is an M-S covering.

THEOREM 8. If $f: S^n \to N$ is a singular covering and fB_f is tamely (respectively, smoothly) embedded and f is simplicial (respectively, smooth) and f is then the universal covering space of f is f is the composition of an f is covering followed by the covering map.

Proof. It is clearly possible to lift f to a map g from S^n onto the universal covering space of N. By Lemma 3, g is an M-S covering, and by Theorem 7, its image is S^n .

5. M-S COVERINGS OF SPHERES BY MANIFOLDS

Consider a tame embedding ϕ : $B \to S^n$ of an orientable (n-2)-manifold in S^n . By Alexander duality, $H_1[S^n - \phi(B)] = Z$. It follows from the Hurewicz theorem that

$$0 \rightarrow \left[\pi\left\{M-\phi(B)\right\},\,\pi\left\{M-\phi(B)\right\}\right] \rightarrow \pi\left[M-\phi(B)\right] \rightarrow Z \rightarrow 0$$

is exact, and since Z is free, this sequence is split. By Fox's theorem [7, Uniqueness Theorem], the covering of S^n - $\phi(B)$ corresponding to

$$dZ + [\pi \{M - \phi(B)\}, \pi \{M - \phi(B)\}]$$

can be extended in a unique way to a branched covering $f: X \to S^n$ of S^n by the topological space X with $fB_f = \phi(B)$. We call this the d-fold cyclic covering of S^n branched over $\phi(B)$.

THEOREM 9. Let $f: X \to S^n$ be a d-to-1 branched covering of S^n , with $fB_f = \phi(B)$. Then f is an M-S covering if and only if it is the d-fold cyclic covering of S^n branched over $\phi(B)$.

Proof. Suppose that f is an M-S covering. Choose a point p in fBf and a neighborhood U about p such that (U, U \cap fB_f) is homeomorphic to (Rⁿ, Rⁿ⁻²) and such that a generator of the free part of $\pi[S^{n} - \phi(B)]$ is represented by a small loop around fB_f . Now $f^{-1}(U)$ is a connected neighborhood of $f^{-1}(p)$. The map $f \mid [f^{-1}(U) - B_f]$ is a d-to-1 covering map onto $U - fB_f$, and $U - fB_f$ is homotopically equivalent to S^1 . The image of $\pi(X - B_f)$ in $\pi(S^n - fB_f)$ is therefore $dZ \oplus G$, where G is a subgroup of the commutator of $\pi[S^n - fB_f]$. Since $f \mid (X - B_f)$ is d-to-1, $f_{\#}\pi(X - B_f)$ must have d cosets in $\pi(S^n - fB_f)$. This means that G is all of the commutator, and therefore f is the d-fold cyclic covering of S^n branched over $\phi(B)$. Suppose that f is the d-fold cyclic covering of Sⁿ branched over $\phi(B)$. Choose a point p in $\phi(B) = fB_f$ and a point q in $f^{-1}(p) \subset f^{-1}fB_f$. Choose a neighborhood U of p such that V, the component of $f^{-1}(U)$ containing q, contains no other elements of $f^{-1}(p)$. Choose a base-point in U and a small loop α around fB_f in U that represents a generator of the free part of $\pi(S^n - fB_f) = Z \oplus [\pi, \pi]$. The loop α lifts to a loop β in V - f⁻¹fB_f. Since f is a d-fold cyclic covering of Sⁿ branched over fB_f, f maps β d-to-1 onto α , hence V d-to-1 onto U; therefore V = f⁻¹(U) and q is all of $f^{-1}(p)$. Therefore, f is an M-S covering.

COROLLARY 9.1. Let $f: M \to S^n$ be an M-S covering such that fB_f is a trivially knotted S^p . Then p=n-2, and f is the (n-1)-fold suspension of a d-to-1 covering map of S^1 on S^1 .

Proof. S^n - fB_f is homotopically equivalent to S^{n-p+1} , and it admits a non-trivial covering. Therefore p = n - 2. By Theorem 9 and Fox's theorem, the map f

is the only d-to-1 M-S covering branched over a trivially knotted S^{n-2} . Since the (n-1)-fold suspension of a d-to-1 covering map g of S^1 onto S^1 is such a map, f is topologically equivalent to g. For a constructive proof of this theorem, see [16, Theorem 2].

Remark 4. Write $R^n = R^{n-2} \times C$, and define $f_d \colon R^{n-2} \times C \to R^{n-2} \times C$ by the equation $f_d(x, z) = (x, z^d)$. Since $\pi(R^n - R^{n-2}) = Z$, it follows from Fox's uniqueness theorem that f_d is the unique d-fold branched covering of R^n branched over R^{n-2} .

COROLLARY 9.2. Let $f: X \to S^n$ be the d-fold cyclic branched covering of S^n branched over $\phi(B)$. Then the space X is an n-manifold.

Proof. Since $f \mid (X - f^{-1}fB_f)$ is a covering map onto $S^n - \phi(B)$, points in $X - B_f$ have Euclidean neighborhoods. Consider a point q in B_f , and let p = f(q). Choose a neighborhood U of p such that $(U, U \cap fB_f)$ is homeomorphic to (R^n, R^{n-2}) . Let $V = f^{-1}(U)$. Since $f \mid V$ is the d-fold cyclic covering of R^n branched over R^{n-2} , it follows from Remark 4 that V is homeomorphic to R^n , hence V is a Euclidean neighborhood of q.

6. COVERINGS OF CERTAIN SMOOTH KNOTS

Let ϕ be a smooth embedding of a Brieskorn (n - 2)-sphere Σ^{n-2} in a Brieskorn n-sphere Σ^n (see [2] and [12]).

PROPOSITION 5. There exist a unique differentiable manifold M and a smooth M-S covering $f: M \to \Sigma^n$ with $fB_f = \phi(\Sigma^{n-2})$.

Proof. The normal bundle to the embedding ϕ is trivial; hence there exists a smooth embedding $\psi\colon \Sigma^{n-2}\times D^2\to \Sigma^n$, where D^2 is the 2-disk. Let $f\colon M\to \Sigma^n$ be the topological d-fold cyclic branched covering of $\phi(\Sigma^{n-2})$. The manifold $M-f^{-1}[\psi(\Sigma^{n-2}\times D^2)]$ has a unique differentiable structure that makes

$$f | \{ M - f^{-1} [\psi(\Sigma^{n-2} \times D^2)] \}$$

a smooth covering map. Since $f \mid f^{-1} [\psi(\Sigma^{n-2} \times D^2)]$ is the d-fold cyclic branched covering of the embedding

$$\phi \colon \Sigma^{n-2} \to \psi(\Sigma^{n-2} \times D^2),$$

it follows that $f^{-1}[\psi(\Sigma^{n-2}\times D^2)]$ is homeomorphic to $S^{n-2}\times D^2$, and f is topologically the map

(id
$$\times$$
 Z^d): Sⁿ⁻² \times D² \rightarrow Σ ⁿ⁻² \times D².

There is precisely one differentiable structure on $S^{n-2} \times D^2$ that makes this map smooth, namely that of $\Sigma^{n-2} \times D^2$. Appropriate identification on the boundaries of

$$\Sigma^{n-2} \times D^2 = f^{-1} [\psi(\Sigma^{n-2} \times D^2)]$$
 and $M - f^{-1} [\psi(\Sigma^{n-2} \times D^2)]$

produces a smooth M-S covering $f: M \to \Sigma^n$ with $fB_f = \phi(\Sigma^{n-2})$; f is the unique such map by construction.

Example 1. Let $\Sigma(2, -, 2, 3)$ be a (4m+1)-Brieskorn sphere [2, Theorem 2]. The d-fold cyclic covering space of the nontrivial knot [2] $\Sigma(2, -, 2, 3)$ in S^{4m+3} is the Brieskorn variety $\Sigma(2, -, 2, 3, d)$, where the covering map f is that given by [14, Section 5]. This variety is a sphere if and only if $d = \pm 1$ (6). Each Brieskorn

sphere of dimension 4m+3 appears as a branched covering space. In fact, if $d=6j\pm 1$ and Σ_1 is the generator of bP_{4m+4} , then the covering space is $j\Sigma_1$. Furthermore, since $\pi_1(S^{4m+1}-\Sigma(2,-,2,3))=Z$ [2, Lemma 6], the branched covering is regular, and therefore f is the orbit map of a semifree Z_d action. The action is clearly smooth, away from $f^{-1}[\Sigma(2,-,2,3)]$. Near $f^{-1}[\Sigma(2,-,2,3)]$, the action is given by

$$f = [id \times exp(2\pi id\theta)]: \Sigma^{n-2} \times D^2 \rightarrow \Sigma^{n-2} \times D^2,$$

and hence it is smooth. The fixed-point set is clearly $f^{-1}(\Sigma^{n-2})$. These examples show that an M-S covering f of S^n by S^n can have an exotic S^{n-2} for B_f , and that the hypothesis of unknottedness of B_f in Corollary 9.1 is necessary. The orbit maps of the actions in [8] are also M-S coverings of S^n by S^n for which B_f is a knotted S^{n-2} .

Example 2. The Brieskorn variety $\Sigma(2,\,2,\,3,\,5)$ is a homotopy 5-sphere by [2, Theorem 1], hence a 5-sphere. There exists a 2-to-1 M-S covering f: $\Sigma(2,\,2,\,3,\,5) \to S^5$ with $B_f = \Sigma(2,\,3,\,5)$ [14, Section 5]. Now $\Sigma(2,\,3,\,5)$ is a Poincaré space. It follows that the suspension of f is an M-S covering of S^6 by S^6 that can be taken to be simplicial, while B_f is not a manifold. That this cannot happen in lower dimensions was proved in [10, Theorem 1] and [15, Corollary 2]. Repeated suspension produces examples of simplicial M-S coverings f: $S^n \to S^n$, where B_f is not a manifold for any $n \geq 6$.

Example 3. Consider the standard embedding i_1 : $\Sigma(2, -, 2, 35) \subset S^{4m+3}$ and its smooth, cyclic, d-fold branched covering h: $\Sigma(2, -, 2, 35, d) \to S^{4m+3}$. Let $(-1)^{m+1} \Sigma_1$ be a generator of bP_{4m+4} . We denote by i_2 the embedding

$$\Sigma$$
(2, -, 2, 35) \subset S^{4m+3} # 16 Σ ₁

obtained by forming the connected sum away from $i_1(\Sigma)$. Its smooth, cyclic, d-fold branched covering is the connected sum $\Sigma(2, -, 2, 35, d) \# 16d \Sigma_1$ formed equivariantly with respect to the action of which h is the orbit map. Let i_3 denote the inclusion

$$\Sigma(2, -, 2, 5) \rightarrow \Sigma(2, -, 2, 5, 7) = 16 \Sigma_1$$

where the equality follows from [2, Theorem 3 and subsequent remarks]. Notice that $\Sigma(2, -, 2, 5)$ is diffeomorphic to $\Sigma(2, -, 2, 35)$, by [2, Theorem 2(ii)]. The domain of the 7-to-1 smooth cyclic branched covering of $i_3(\Sigma)$ is $\Sigma(2, -, 2, 5, 49) = 116 \Sigma_1$. The domain of the 7-to-1 smooth cyclic branched covering of $i_2(\Sigma)$ is $\Sigma(2, -, 2, 35, 7) \# 112 \Sigma_1$, and this is not a sphere [2, Theorem 1]. A fortiori, these spaces are not diffeomorphic, and therefore the embeddings are not equivalent. Let i_4 be the natural embedding $\Sigma(2, -, 2, 5) \subset S^{4m+3}$. We know that

$$\pi[S^{4m+3} - i_4\{\Sigma(2, -, 2, 5)\}] = Z,$$

so that its covering spaces are topologically determined by the degree of the covering map. The 7-to-1 smooth cyclic branched covering of $i_4[\Sigma(2, -, 2, 5)]$ is the map $f: \Sigma(2, -, 2, 5, 7) \to S^{4m+3}$, and $B_f = i_3[\Sigma(2, -, 2, 5)]$. Therefore the restriction of f produces a 7-to-1 covering map from $\Sigma(2, -, 2, 5, 7) - i_3[\Sigma(2, -, 2, 5)]$ onto $S^{4m+3} - i_4[\Sigma(2, -, 2, 5)]$. Also, the map g defined on

$$S^{4m+3} - i_1[\Sigma(2, -, 2, 35)]$$

$$g(z_1, -, z_{2m+2}) = \frac{1}{\|z\|} (z_1, ---, z_{2m+1}, z_{2m+2}^7)$$

is a 7-to-1 covering map onto S^{4m+3} - $i_4[\Sigma(2, -, 2, 5)]$. Therefore

$$\Sigma(2, -, 2, 5, 7) - i_3[\Sigma(2, -, 2, 5)]$$

is homeomorphic to S^{4m+3} - $i_1[\Sigma(2, -, 2, 35)]$, and hence to

$$\{S^{4m+3} - i_1[\Sigma(2, -, 2, 35)]\} # 16 \Sigma_1 = \Sigma(2, -, 2, 5, 7) - i_2[\Sigma(2, -, 2, 35)].$$

It follows that $\pi\{\Sigma(2, -, 2, 5, 7) - i_2[\Sigma(2, -, 2, 35)]\} = Z$. In this situation, the techniques of [13, Theorem 2.1] show that the complements of the inequivalent knots i_2 and i_3 are diffeomorphic. It is known that a smooth knot of standard spheres has a complement diffeomorphic with the complement of at most one inequivalent smooth knot [3].

REFERENCES

- 1. A. Borel, Seminar on transformation groups. Princeton University Press, Princeton, N.J., 1960.
- 2. E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten. Invent. Math. 2 (1966), 1-14.
- 3. W. Browder, Diffeomorphisms of 1-connected manifolds. Trans. Amer. Math. Soc. 128 (1967), 155-163.
- 4. P. T. Church, Differentiable open maps on manifolds. Trans. Amer. Math. Soc. 109 (1963), 87-100.
- 5. P. T. Church and E. Hemmingsen, Light open maps on n-manifolds. II. Duke Math. J. 28 (1961), 607-623.
- 6. E. E. Floyd, On periodic maps and the Euler characteristics of associated spaces. Trans. Amer. Math. Soc. 72 (1952), 138-147.
- 7. R. H. Fox, Covering spaces with singularities. Algebraic geometry and topology. A symposium in honor of S. Lefschetz, pp. 243-257. Princeton University Press, Princeton, N. J., 1957.
- 8. C. H. Giffen, The generalized Smith conjecture. Amer. J. Math. 88 (1966), 187-198.
- 9. H. Hopf, Über den Defekt stetiger Abbildungen von Mannigfaltigkeiten. Rend. Mat. e Appl. (5) 21 (1962), 273-285.
- 10. E. Hemmingsen, *Open simplicial mappings of manifolds on manifolds*. Duke Math. J. 32 (1965), 325-331.
- 11. E. Hemmingsen and W. Reddy, *Montgomery-Samelson coverings on manifolds*. Duke Math. J. (to appear).
- 12. M. Kervaire and J. Milnor, Groups of homotopy spheres. I. Ann. of Math. (2) 77 (1963), 504-537.
- 13. R. K. Lashof and J. L. Shaneson, Classification of knots in codimension two. Bull. Amer. Math. Soc. 75 (1969), 171-175.

- 14. P. Orlik, Smooth homotopy lens spaces. Michigan Math. J. 16 (1969), 245-255.
- 15. W. L. Reddy, Montgomery-Samelson coverings on spheres. Michigan Math. J. 17 (1970), 65-67.
- 16. ——, Open simplicial maps of spheres on manifolds. Duke Math. J. (to appear).
- 17. P. A. Smith, New results and old problems in finite transformation groups. Bull. Amer. Math. Soc. 66 (1960), 401-415.

Wesleyan University, Middletown, Connecticut 06457 and The Institute for Advanced Study, Princeton, New Jersey 08540