BRANCHED COVERINGS
William L. Reddy

1. INTRODUCTION

In this paper we consider branched coverings of compact manifolds. A map f of
a compact n-manifold M onto an n-manifold N is a branched covering if
f-11{(Bs) = Bf and f | (M - By is a finite-to-one covering map. Here B denotes the
set of points of M at which f is not a local homeomorphism. If f | f-lf(Bf) is a ho-
meomorphism, the branched covering is a Montgomery-Samelson fibering with zero
codimension, and we call it an M-S covering., I f ] f-lf(Bf) is a covering map, we
call it a singular coverving., If f | (M - By) is a regular covering, we call f avegular
branched covering. In Section 2, we prove some theorems about general branched
coverings. In Section 3, we construct a special homology theory and use it to investi-
gate the structure of the branch set for M-S coverings. In Section 4 we study
branched coverings by spheres, and in Section 5 we study branched coverings onto
spheres. Section 6 contains some examples and remarks involving smooth branched
coverings. We call f: M — N smooth if both M and N are n-manifolds with a C™
structure and f is C™. We call f simplicial if M and N can be triangulated so
that f is simplicial with respect to the triangulations. For a survey of problems
related to this paper, see [9].

2. BRANCHED COVERINGS

PROPOSITION 1. Let f: X — Y be an open map from the compact, path-
connected and locally path-connected space X to the connected and locally simply
connected Hausdovff space Y. Suppose that q = min {card f 'l(y): y € Y} is finite.
Then fyu(X) has at most q cosets in 7(Y), wheve ©n denotes the fundamental gvoup
and t4 denotes the homomovphism induced by f.

Proof. Suppose that fz7(X) has p cosets in 7(Y) and that p > q. Since f(X) is
open and compact, hence closed, in Y, the mapping f is onto Y. Therefore Y is
path-connected and locally path-connected. Let g: Z — Y be the covering map cor-
responding to fgm(X), and let h: X — Z Dbe the lift of f. The map h is open, because
f is open and g is a local homeomorphism. It follows that h is onto Z. Since g is
a p-to-1 map, we infer that, for each y in Y,

card £~ 1(y) = card h-lg-1(y) > card e ly) =p>aq,

contrary to the choice of q.

COROLLARY 1.1. If f: M — N is a singular covering, dim B <n - 2, and
f| Bt is p-to-1, then f37(M) has at most p cosets in w(N).
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COROLLARY 1.2. If f: M — N is an M-S covering and dim By < n - 2, then fi
maps 7(M) onto w(N).

Remark 1. It follows from Corollary 2 that S™ (n > 1) admits M-S coverings
onto simply connected spaces only, and that S™ admits singular coverings onto spaces
with a finite fundamental group only. The (n - 1)-fold suspension of a d-to-1 cover-
ing of S! by S! (an M-S covering of S™ by S followed by a covering map onto a
lens space is a singular covering of a space with cyclic fundamental group by S™. It
is easy to construct M-S coverings of one 3-dimensional lens space N by another
such space M such that card #(N) is any sgeciﬁed multiple of card w(M). All these
examples can be constructed so that Bf = S*. One can also infer the impossibility of
an M-S-covering of certain lens spaces by certain others. On the solid torus
S! X D%, consider the map given by g(z 1, 22) = (z*;’ , zg). By identifying the bound-
aries of two such spaces in the usual way, one obtains a singular covering of s3 by
S3 that is 3-to-1 on B¢ (a link), but such that f 7r(‘83) has precisely one coset in
7(S3). We can construct another example by composing the 3-to-1 irregular cover-
ing from the surface M of genus 4 to the surface of genus 2 with the standard M-S
covering from the surface of genus 2 to the torus N. The resulting map f is a singu-
lar branched covering, 3-to-1 on Bg; but f# maps w(M) onto w(N).

THEOREM 1. Let f: M — N be a singulayv covering, and suppose f | Bfisa
q-to-1 covering map. Then tyn(M) has precisely q cosets in w(N) if and only if
f = goh, wheve h is an M-S coveving with By, = Bg, and g is a q-to-1 covering
map.

Proof. First, suppose that f4#7(M) has precisely q cosets in 7(N). Let
g: Z — N be the covering map corresponding to f#7(M), and let h: M — Z be the lift
of f. Then f =goh; also, Bf= By, because g is a local homeomorphism; h l By is
one-to-one, because each point of N has q inverse images under g; and f=goh is
q-to-1 on B¢ = By . For the converse, assume that the factorization exists. Then
f4m(M) = gghgm (M) C gg¢n(Z). Here Z is the domain of g. Therefore fyn(M) has at
least q cosets. It has at most q cosets, by Theorem 1, and hence it has precisely q
cosets.

A similar argument proves the following result.
THEOREM 1'. Let f: M — N be a branched covering, and let

q = min {card £-1(y): y € N}.

Then fyn(M) has precisely q cosets in 7(N) if and only if f = goh, where h is a
branched covering with 1 = min{card h-1(y) =y € N} and g is a q-to-1 covering
map.

Notice that if such a factorization exists, then hy maps 7(M) onto w(Z), where
Z denotes the range of h.

If £ | (M - By) is a regular covering map, then f is the orbit map of an action on
M by a finite group. The restricted part of the action is By. This means that the
study of regular branched coverings is a subset of the study of finite transformation
groups with the unusual condition that the orbit space is a manifold.

THEOREM 2. If f: M — N is a singular coveving, N is simply connected, fB¢
is a tamely (vespectively, smoothly) embedded manifold, and f is simplicial (ve-
spectively, smooth), then f is a vegular branched coveving.

Proof. Since N is simply connected, 7{N - fB;) is generated by small loops
around fB; that are attached to the base-point by an arc. It follows from [5, Theorem
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1.2] (respectively [4, Theorem 2.1]) that each such loop lifts to an arc, no matter
what base-point is chosen in M - B¢. Therefore f is regular.

3. SPECIAL HOMOLOGY, AND THE STRUCTURE OF THE
BRANCH SET FOR M-S COVERINGS

PROPOSITION 2. Let f: X — Y be an open simplicial map of the complex X
onto the complex Y. Suppose theve exists a subcomplex X of X such that
f | (X - Xp) is a d-to-1 covering map and £ | £-1fX, is a homeomorphism. Let C(A)
denote the chain complex of A with integer coefficients. Then theve exist homo-
movphisms p and T of the graded group C(X) into itself with the following proper-
ties (heve o denotes p ov T and o' denotes T ov p, vespectively).

(A) 0 oo’ =0;
(B) o [C(Xy)]=0;

(C) if o(c) =0, theve exist chains a e C(X, X,) and b e C(Xy) such that
c=0'a)+b;

(D) for each chain c € C(X), 9o(c) - 0d(c) € C(Xp);

(E) o [C(X)] n C(Xq) = 0;

(F) 90 [C(X)] C C(X, Xg) D AC(Xy); and

(G) if q is an integer dividing d, and if 00(c) € qC(X), then

oc € C(X, Xo) @qC(Xo) .

Proof. This follows immediately from [16, Proposition 7 and Definitions 1
and 2].

Definition 1. Let K denote one of the three complexes X, Xg, or (X, X;). We
define the set of o0-chains of K to be the kernel of o | K, and we denote this set by
CY(K).

LEMMA 1. CY(K) is a sub-chain-group of C(K).

Proof. CY(K) is a subgroup of C(K) because it is the kernel of a homomor-
phism. Let ¢ € CY9(K). By Proposition 2(D) and since o(c) = 0,

o8(c) € 30 (c) + C(Xg) = C(Xg) .

Therefore 03(c) € Im 0 N C(Xy) = 0, by Proposition 2(E). This means that
oc € CO(K).

Definition 2. Let G be an abelian group. The homology group of the chain
group CY(K) X G is called the o-homology group of K with coefficients in G, and
it is denoted by HO(K; G).

Remark 2. Let p be a prime dividing d. It follows from Proposition 2(F) that
HO(X; Zp) = HO (X, Xo; Zp) @ H(X; Zp), where H denotes simplicial homology and
Zp denotes the integers modulo p.

Constyuction 1. Let z € HY , (X, Xo; Z,), and let w be a cycle in z. Picka
chain v in CY9(X, X,) that maps onto w under the canonical homomorphism. Since
a(v) = 0, it follows from Proposition 2(C) that there exists a chain u with v = o '(u).
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Since w is a cycle in CI9(X, X, ; Zp), there exist chains a € C(X, Xy) and b € C(Xp)
such that 90'(u) = pa +b. Using Proposition 2(D), we see that

pa = 0'3(u) - [00'(u) - 0'3(u)] +b;

hence the equations

o(pa) = po(a) =

follow from Proposition 2(A) and 2(B). Therefore o(a) = 0, and by Proposition 2(C)
there exists a chain a' € C(X, X)) such that a = 0'(a’). We observe that

c'du-pa) e Imo'NC(Xy = 0.

Furthermore, o [du - pa'] = poa'; hence the image of 3u - pa' in CG(X) ® Zp isa
cycle x. We defme a(z) to be the class of x in HU(X Zp). It is a straightforward
matter to verify that «(z) does not depend on the choices made after w is fixed. We
can use Proposition 2(G) to prove that o(z)  does not depend on the choice of w. Ob-
viously, @ is a homomorphism. Let 8: HY (X; Zp) — Hy(X; Zp) be the homomor-

phism induced by the inclusion CZ(X) — C,,(X). Let
. o .
v Hy (X5 Z,) — Hp (X, Xo; Zy)

be the homomorphism induced by the homomorphism ¢': C,,(X) — CZ (X, Xp).

PROPOSITION 3. Let f: X — Y be an open simplicial map of the complex X
onto the complex Y. Suppose there exists a subcomplex Xg such that I (X -Xp is
a d-to-1 covering map and f ] £-1fXq is a homeomorphism. Let p be a prime
dividing d. Then theve exist graded Zy-modules HP(X), HP(X, Xo), HT(X), and
H7(X, Xo) with the following thvee propeﬁzes

(a) Theve exist exact sequences

(1) - — HP (X, Xp) - HI(X) - H_(X) —
and
(2) o = HE (X, Xg) - B (X) - H_(X) — -,

(b) HT(X) = HT(X, Xo) @ H(X,) and HP(X) = H(X, X() @ H(X,), and

(c) HT(X, Xy = H(Y, fX), where H denotes simplicial homology with coeffi-
cients in Zp

Proof. The graded Z,-modules are HG(K Zp) for the allowable choices of ¢
and K. Part (a) follows from the fact that ker o = Im 7y, ker 8 = Im «, and
ker ¥ = Im 8, which can be proved by the method of [6 Theorem 2.3]. Part (b) fol-
lows from Remark 2. Part (c) follows from the definitions of H and H” , Proposi-
tion 2(C), and [16, Construction 2 and Proposition 7].

PROPOSITION 4. (I) Suppose that f: M — N is an M-S coveving and
dim B¢ <n - 2. Then theve exists a cofinal family of coverings A, and fA) on M
and N, respectively, such that the map f) induced by f on the nevves satisfies the
hypotheses of Propositions 2 and 3.

() Let o), By, and vy be the maps in the exact sequences obtained by applying
Proposition 3 to f) . Then the projections between nevves can be chosen to comi-
mule with ay , By, and y, .
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Proof. (I) Let the cofinal family of coverings and the projections be those con-
structed in [11, Theorems 1 and 2]. (II) follows from [11, Lemmas 2 and 4] and the
definitions of a), B), and ¥) .

THEOREM 3. Suppose that f: M — N is a d-to-1 M-S covering and
dim Bf < n - 2. Lef p be any prime dividing d. Then theve exist graded Zy-
modules HP(M), HP(M, By), HT(M), and HT(M, B;) with the following three pafoper—
ties.

(a) Theve exist exact sequences

(1) - HP (M, B) — HT (M) - H_(M) —
and
(2) - = HT . (M, B) —» HP (M) - H, (M) — -,

(b) HT(M) = HT(M, B;) @ H(Bg) and HP(M) = HP(M, B;) D H(By), and

(c) HT(M, B;) = H(N, fBy), wheve H denotes Cech homology with coefficients in
p-

Proof. This theorem follows from Propositions 3 and 4 and known properties of
inverse limits.

THEOREM 4. Suppose that f: M — N is a d-to-1 singular covering such that
f | B is q-to-1, and that dim Bs <n - 2. Suppose f#7(M) has q cosets in w(N).
Then, for each positive integer m and each prime p dividing d,

Z

0 [e]
2) dim Hj(Bg; Zp) < 27 dim Hy(M; Z,).
m m

Proof. Factor f as goh, where By, = By and h is an M-S covering, by Theo-
rem 1. Now apply [11, Theorem 4] to h.

THEOREM 5. Suppose that f: M — N is a d-to-1 M-S covering and
dim Bf< n - 2. Then, for each prime p dividing 4 and for each paiv of integers
(m, k) with m <Kk,

k-1 k
?n dim Hy(Bs; Zp) < dim Hiy (N; Zp) + IZn) dim H;(M; Z) .

Proof. We use the fact that if A — B — C is an exact sequence of vector spaces,
then dim B < dim A +dim C; also, we use the properties (a), (b), and (c) of Theorem
3, and the usual exact sequence for a pair. Write b}’ (X) for dim H?(X; Zp). Choose

any integer k. Let c=p or 7 and ¢'= 7 or p, respectively.

The inequalities
b, (By) < b, (M, By + by (M) - (M, By
< bry1(N, B +by(M) - [by_ (M) - by _,(M)]
< by 1 (N) + by (Bg + by(M) + by _1(M) - by_ (M)

< bt 1(N) + bi(Bg) + bie(M) + bi_1(M) - bi_;(M, By - bi_1(By)
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imply that
by _1(B) < by | (N) + Dby (M) +b, (M) - b (M, B).

Suppose it has been shown that

k-1 k
Z)l bi(BY < by, (N) + 27 by(M) - b, (M, By).
m+ m+]1
Then
k-1 k
mEH by(By) < by (N) +mE+l by (M) - [b, (M) - b,(M)]
k
< D () + 20 by (M) - BT, (M)
k t
< Biey 1 (N) + 22 b5(M) - by (M, By) - by, (By);
that is,

k-1 k
20 by(Bg) < By () + 20 by(M) - b, (M, By),

for all m <k, where o' = 7 if and only if k - m is odd. Since bf.’n'(M, Bs) > 0 for
each m, the theorem is proved.

THEOREM 6. If f: M— N is a d-to-1 M-S covering and dim By < n - 2, then,
Jor each prime p dividing d and for each integer Kk,

o0 o0
dim H(N; Z,) < E) dim H;(M; Z_) - El dim H;(B¢; Z) .

Proof. Adopt the notation and the technique in the proof of Theorem 5. For each
integer Kk,

b (N) < (N, By) + by(Bg) = by (M)
<BP M, B) +b,M) = bl (M) +b (M) - b, ,(B) .

Suppose that

m-1

bi(N) < b(M) + 27 by(M) - 27 by(B;).
k kt1

Then
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m-1

b (N) < b, (M, B) +b_ (M) + % b;(M) - kZ+>1 b;(B,)

m m+l
< b7 (M) + 27 by(M) - 21 by(By).
k k+1

Since b?nl+ 1(M) = 0 for all sufficiently large m, the theorem is proved.

Remark 3. The results of this section are valid for M-S coverings f: X — Y of
n-dimensional compact metric spaces. If W is any compact n-dimensional metric
space, M is the surface of genus 4, N is the surface of genus 2, gt M — N is an
irregular covering, and © denotes join, then f = (id°g): WoM — WOoN is an irregu-
lar M-S covering with B;= W. Therefore the results of this section do not follow
from the results of Smith Theory.

4. SINGULAR COVERINGS OF MANIFOLDS BY SPHERES

From now on, S" denotes the n-sphere.

LEMMA 2. Let g: S™ - N be a map of degvee d onto the orientable manifold
N. Then d°H;(N; Z) =0 for 0 <i<n.

Proof. Let u be the generator of H,(S"; Z), and v the generator of H,(N; Z).
Let x be an element of H;(N; Z) for 0 <i <n. There exists an element y of
H""X(N; Z) with v Ny =x. The relations

5 nul =y Nt =y ndv = da
imply that
doHy(N; Z) c £, [H(S";2)]=0 (0<i<n).

THEOREM 7. Let f: S® - N be a d-to-1 M-S covering. Suppose that B¢ is a
tamely (vespectively, smoothly) embedded manifold and an integral homology (n - 2)-
spheve, and that £ is simplicial (vespectively, smooth). Then N is a homotopy n-
spheve, hence a topological n-sphere if n # 3, 4.

Proof. We infer from Theorem 1 that N is simply connected, hence orientable.
It follows from Lemma 2 that N has the Betti numbers of an n-sphere, and that its
torsion numbers are divisors of d. By Theorem 2, f is the orbit map of a semifree
action of a finite group G on S™ with fixed-point set By, and Bs is an integral
(n - 2)-dimensional homology sphere; hence G = Z4 [17, Corollary on p. 408].
Therefore, for each prime p dividing d, there is a Zy-action on S™ with fixed-point
set By. It follows ([1, Theorem 6.1 on p. 63]) that Hi(N; Z,) =0, for each such
prime, and for 0 <i <n. Therefore, all torsion numbers of N are zero, and it fol-
lows that N is a homotopy n-sphere.

LEMMA 3. Let f: S®™ — N be a singular covering. Suppose that Bg is a tamely
(respectively, smoothly) embedded connected manifold and that £ is simplicial (ve-
spectively, smooth). If N is simply connected, then f is an M-S covering.

Proof. Theorem 2 implies that f is regular. Therefore f is the orbit map for
the action of a finite group G on S™. Since f is singular and B¢ is connected, the
stability group at a point is constant on B¢. Call it H. We write f = goh; here h is
the orbit map S™ — S™/H =M, and hence is an M-S covering, and g is the orbit
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map M — M/(G/H) = N, and hence is a covering map. Since N is simply connected,
g is a homeomorphism, and hence f is an M-S covering.

THEOREM 8. If f: 8" — N is a singular coveving and £Bg is tamely (respec-
tively, smoothly) embedded and f is simplicial (vespectively, smooth) and n + 3, 4,
then the universal covering space of N is S™, and £ is the composition of an M-S
covering followed by the covering map.

Proof. 1t is clearly possible to lift £ to a map g from S™ onto the universal
covering space of N. By Lemma 3, g is an M-S covering, and by Theorem 7, its
image is S™.

5. M-S COVERINGS OF SPHERES BY MANIFOLDS

Consider a tame embedding ¢: B — S™ of an orientable (n - 2)-manifold in S™.
By Alexander duality, H; [S™ - ¢(B)] = Z. It follows from the Hurewicz theorem that

0 —>[a{M-¢B)}, 71{M - ¢(B)}] - n[M - ¢(B)] - Z — 0

is exact, and since Z is free, this sequence is split. By Fox’s theorem [7, Unique-
ness Theorem], the covering of S™ - ¢(B) corresponding to

Az @ [r{M - ¢(B)}, 7{M - ¢(B)}]

can be extended in a unique way to a branched covering f: X — S™ of S™ by the
topological space X with fBs= ¢(B). We call this the d-fold cyclic covering of S™
branched over ¢(B).

THEOREM 9. Let f: X — S™ be a d-to-1 branched covering of S™, with
fBf = ¢(B). Then £ is an M-S covering if and only if it is the d-fold cyclic covering
of 8™ branched over ¢(B).

Proof. Suppose that f is an M-S covering. Choose a point p in fBf and a
neighborhood U about p such that (U, U N £B;) is homeomorphic to (R®, R"~2) and
such that a generator of the free part of 7[S™ - ¢(B)] is represented by a small loop
around fB;. Now f-1(U) is a connected neighborhood of f-Y(p). The map
f | [£-1(U) - B¢] is a d-to-1 covering map onto U - iBf, and U - fBys is homotopically
equivalent to S1. The image of (X - Bg) in n(S" - fBy) is therefore dZ ® G, where
G is a subgroup of the commutator of 7 [S™ - {B¢]. Since f|(X - By is d-to-1,
f4m(X - By must have d cosets in #(S™ - fBg). This means that G is all of the com-
mutator, and therefore f is the d-fold cyclic covering of S® branched over ¢(B).
Suppose that f is the d-fold cyclic covering of S™ branched over ¢(B). Choose a
point p in ¢(B) = fB; and a point q in £-1(p) C £-1fB;. Choose a neighborhood U of
p such that V, the component of £-1(U) containing q, contains no other elements of
f1(p). Choose a base-point in U and a small loop @ around fB; in U that repre-
sents a generator of the free part of 7(S™ - fBy) = Z ®[n, 7]. The loop « lifts to a
loop B in V - £-1fB;. Since f is a d-fold cyclic covering of S™ branched over fBg,
f maps B d-to-1 onto «, hence V d-to-1 onto U; therefore V =f-1(U) and q is all
of £-1(p). Therefore, f is an M-S covering.

COROLLARY 9.1. Let f: M — S™ be an M-S covering such that B¢ is a
trivially knotted S®. Then p=n- 2, and f is the (n - 1)-fold suspension of a d-to-1
coveving map of st on st.

Proof. S™ - B¢ is homotopically equivalent to S*"P*! and it admits a non-
trivial covering. Therefore p=n - 2. By Theorem 9 and Fox’s theorem, the map f
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is the only d-to-1 M-S covering branched over a trivially knotted S™- -2 | Since the
(n - 1)-fold suspension of a d-to-1 covering map g of S! onto S! is such a map, f
is topologically equivalent to g. For a constructive proof of this theorem, see [186,
Theorem 2].

Remark 4. Write R® = R"-2 X C, and define f R™Z2xC — R" 2 x C by the
equation f4(x, z) = (x, z9). Since 11(Rn R-2) = 7, 1t follows from Fox’s un1queness
theorem that fy is the unique d-fold branched covering of R™ branched over Rn-2

COROLLARY 9.2. Let f: X — S™ be the d-fold cyclic branched coveving of S™
branched over ¢(B). Then the space X is an n-manifold.

Proof. Since f i (X - £-1£By) is a covering map onto S™ - ¢(B), points in X - By
have Euclidean neighborhoods. Consider a point q in B¢, and let p = f(g). Choose a
nelghborhood U of p such that (U, U N fBy) is homeomorphic to (R?, R"-2), Let

=£-1(U). Since f|V is the d-fold cyclic covering of R™ branched over R™-2 it
follows from Remark 4 that V is homeomorphic to R", hence V is a Euchdean
neighborhood of q.

6. COVERINGS OF CERTAIN SMOOTH KNOTS

Let ¢ be a smooth embedding of a Brieskorn (n - 2)-sphere "2 in a Bries-
korn n-sphere Z™ (see [2] and [12]).

PROPOSITION 5. Theve exist a umque diffeventiable manifold M and a smooth
M-S covering f: M — =™ with B¢ = ¢(Z7"2).

Proof. The normal bundle to the embedding qb is trivial; hence there exists a
smooth embedding ¥: Z7-2x D2 — Z% where D? is the 2-disk. Let f: M — Z” be
the topological d-fold cyclic branched covermg of ¢(="-2). The manifold

- £-1[y(Zn-2 x D2)] has a unique differentiable structure that makes

£]{M - £ [y(z"-2 x D?)]}

a smooth covering map. Since f|f-1[y(Z7-2 x D2)] is the d-fold cyclic branched
covering of the embedding

-2 -2 2
¢: TV — Y(="° x DY),
it follows that £-![y(Z™-2 x D2)] is homeomorphic to S*~2 x D?, and f is topologi-
cally the map
(id x 29: s"2 xD? — P2 x D2,

There is precisely one differentiable structure on Sn-2 x D2 that makes this map
smooth, namely that of Zn-2 X DZ2. Appropriate identification on the boundaries of

30-2x D2 = £ Yy(=?2%xD?¥)] and M- i [Y=""2xD?)]

produces a smooth M-S covering f: M — =™ with fBf = ¢(Z"~ 2) f is the unique
such map by construction.

Example 1. Let Z(2, -, 2, 3) be a (4m + 1)-Brieskorn sphere [2, Theorem 2}.-
The d-fold cyclic covering space of the nontrivial knot [2] Z(2, -, 2, 3) in §4m+t3 jg
the Brieskorn variety 2(2, -, 2, 3, d), where the covering map f 1s tha_t given by [14,
Section 5]. This variety is a sphere if and only if d =+1 (6). Each Brieskorn
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sphere of dimension 4m + 3 appears as a branched covering space. In fact, if
d=6j+1 and Z; is the generator of bP4,+4, then the covering space is jZ; .
Furthermore, since 7} (S*™*l - 5(2, - 2, 3)) =Z [2, Lemma 6], the branched
covering is regular, and therefore f is the orbit map of a semifree Z  action. The
action is clearly smooth, away from £-1[2(2, -, 2, 8)]. Near £-1[=(2, -, 2, 3)], the
action is given by

f = [id X exp (27id8)]: Z*"2 xD? — =*"2 x D2,

and hence it is smooth. The fixed-point set is clearly f-1(Zn-2), These examples
show that an M-S covering f of S® by S™ can have an exotic S*~2 for By, and that
the hypothesis of unknottedness of B¢ in Corollary 9.1 is necessary. The orbit maps

of tlzle actions in [8] are also M-S coverings of S by S® for which B; is a knotted
sn-<,

Example 2. The Brieskorn variety (2, 2, 3, 5) is a homotopy 5-sphere by [2,
Theorem 1}, hence a 5-sphere. There exists a 2-to-1 M-S covering
f: (2, 2, 3,5) — S® with B = (2, 3, 5) [14, Section 5]. Now Z(2, 3, 5) is a
Poincaré space. It follows that the suspension of f is an M-S covering of s6 by sé
that can be taken to be simplicial, while Bys is not a manifold. That this cannot hap-
pen in lower dimensions was proved in [10, Theorem 1] and [15, Corollary 2]. Re-
peated suspension produces examples of simplicial M-S coverings f: S™ — S™,
where By is not a manifold for any n > 6.

Example 3. Consider the standard embedding i;: Z(2, -, 2, 35) c 84™*3 and its
smooth, cyclic, d-fold branched covering h: Z(2, -, 2, 35, d) — S4m+3 | Let
(-1)m+li 21 be a generator of bP4,+4. We denote by ip the embedding

=(2, -, 2, 35) c s*™t3 4162,

obtained by forming the connected sum away from i;(Z). Its smooth, cyclic, d-fold
branched covering is the connected sum Z(2, -, 2, 35, d) # 16dZ | formed equivari-
antly with respect to the action of which h is the orbit map. Let i3 denote the
inclusion

=2, -,2,5) = 2(2,-,2,57 =162,

where the equality follows from [2, Theorem 3 and subsequent remarks]. Notice that
z(2, -, 2, 5) is diffeomorphic to =(2, -, 2, 35), by [2, Theorem 2(ii)]. The domain of
the 7-to-1 smooth cyeclic branched covering of i3(Z) is 2(2, -, 2, 5, 49) =116 2, .
The domain of the 7-to-1 smooth cyclic branched covering of i,(Z) is

(2, -, 2, 35, 7) # 1122, and this is not a sphere [2, Theorem 1]. A fortiori, these
spaces are not diffeomorphic, and therefore the embeddings are not equivalent. Let
i, be the natural embedding (2, -, 2, 5) € §4m+3  We know that

m[s*mt3 - i,{2(2, -, 2, 5)}] = g,

so that its covering spaces are topologically determined by the degree of the cover-
ing map. The 7-to-1 smooth cyclic branched covering of i4[Z(2, -, 2, 5)] is the
map f: (2, -, 2, 5, ) — S4™*3 and Bf=1i3[Z(2, -, 2, 5)]. Therefore the restric-
tion of f produces a 7-to-1 covering map from =(2, -, 2, 5, 7) - i3[=(2, -, 2, 5)]
onto S4m+3 - §,[%(2, -, 2, 5)]. Also, the map g defined on

g4mt3 _ 4 [=(2, -, 2, 35)]
by
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1
g(z1, -, Z2m+2) = '“z_"(zl, ——, Z2mils Zome2)

is a T-to-1 covering map onto S§4m*3 _ ig[2(2, -, 2, 5)]. Therefore

2(2, T 23 5’ 7) - i3[2(2, Ty 2: 5)]

is homeomorphic to s4™*3 - i,[Z(2, -, 2, 35)], and hence to

{s4m*3 _j [2(@, -, 2, 35)]} #16=, = =(2, -, 2, 5, T) - i5[=(2, -, 2, 35)].

It follows that 7 {Z(2, -, 2, 5, 7) - i2[=(2, -, 2, 35)]} = Z. In this situation, the
techniques of [13, Theorem 2.1} show that the complements of the inequivalent knots
i, and i; are diffeomorphic. It is known that a smooth knot of standard spheres has
a complement diffeomorphic with the complement of at most one inequivalent smooth
knot [3].

10.

11.

12.

13.
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