SOME INTERPOLATION PROBLEMS IN HILBERT SPACES
Bruce L. Chalmers

INTRODUCTION

In 1961, H. S. Shapiro and A. L. Shields [9] investigated interpolation problems
in several function spaces. The present paper is an extension of the part of their
work that treats weighted interpolation (by pointwise evaluation at a sequence of
points) in several classical Hilbert spaces, especially H> . First we shall obtain re-
sults concerning interpolation by sequences of arbitrary continuous linear functionals
in an arbitrary Hilbert space, and later we shall obtain more specialized results in-
volving interpolation by evaluation of derivatives in classical Hilbert spaces.

Let {z;} denote a sequence of points in the disk D = [|z] < 1]. Then {z;} is
called a Carleson sequence if

II [(z;-20/(1-252) >6>0 (i=1,2, ).
i#]

The sequence {z;} is called an exponential sequence if
-]z )/Q-z5)) <r <1 (G=1,2, ),

and {z;} is called a radial sequence if all the z; lie on one radius. An exponential
sequence is a Carleson sequence, and a radial Carleson sequence is an exponential
sequence. Let 21, £2 --- denote a sequence of continuous linear functionals on a
Hilbert space H, let 21 denote the functional @' divided by its norm, and let

= {@if }i2; . Shapiro and Shields [9] showed that if £ is pointwise evaluation at
z; on the Hardy space H,, then T(H,) = £, if and only if {z;} is a Carleson se-
quence.

In Section 2, we generalize the notions of Carleson sequence and exponential se-
quence and define the notion of projective sequence (which includes the radial
sequences in the case of pointwise evaluation in H3) in an arbitrary Hilbert space.
We then show that if #1, 2, --- is a sequence in the dual of the Hilbert space H,
then

(i) the relation T(H) = £, implies that {#'} is a Carleson sequence;
(ii) if {21} is an exponential sequence, then T(H) C £, ;

(iii) if {2} is an exponential sequence with a certain restriction, then
TH) D £,;

(iv) a projective Carleson sequence is an exponential sequence (see Theorems
2.7, 2.8, 2.9, 2.12, and Corollary 2.13).

In Note 2.14 we indicate that in general these results cannot be improved.
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J. T. Rosenbaum [5], [6] showed that if %! is normalized pointwise evaluation of
the nth derivative at z; in H,, then T'(H,) = £, if {z;} is an exponential sequence.
He showed, in fact, that this interpolation can be done simultaneously for
n=1,2 --- N. In Sections 3 and 4, we show that these results are true if {z;} isa
Carleson sequence (Theorem 3.2) and that H, can be replaced by other classical
Hilbert spaces (see Section 4). We show further that in the case of radial sequences,
the condition that {zi} is a Carleson sequence is also necessary. We thus obtain
extensions of Theorem 4 and of the corollary to Theorem 5 in [9] to higher deriva-
tives.

The classical Hilbert spaces (besides H,) to which we shall refer are the Berg-
man space A, of square-integrable analytic functions on D (see [2]) with kernel
function K(z, w) = (1 - zw)~2, and the space Hj of functions that are derivatives of
functions in H,, have norm

1212 = 2 ({1t (2 a - [2]?) axay < =,
D

and have kernel function K(z, w) = (1 - zw)~3.

1. PRELIMINARIES

Let H denote a general Hilbert space with inner product (f, g) and norm
£} = ¢, £)1/2, where £, g € H. Let HO denote the space of all bounded linear func-
tionals on H. If £ € H® has the Riesz representation L € H, we denote this corre-
spondence by £ ~ L. I 21, #2 € HO and 21~ L; (i =1, 2), define
(21, 2%) = (L, L,).

Suppose further that H is a Hilbert space of functions f(x) defined on a base set
E and that H has a (reproducing) kernel function K(x, y). We denote such a Hilbert
space by HK or HK(E).

~ For fixed y, the kernel function K(x, y) is the function providing the Riesz
representation in HK of the bounded linear functional %€ HK9 defined by Z(f) = £(y)
for f € HK. The following theorem (see for example [4, p. 318]) shows that not only
pointwise evaluation but every bounded linear functional on HK has a simple repre-
sentation in HK in terms of the kernel function K(x, y). In fact, the representation
is obtained simply by applying such a functional to K(x, y) itself.

THEOREM 1.1. If L € HKO , then & ~ L(x) = QY(K(y, x)). (Here the subscript
y emphasizes that £ operates on K(y, x) in HK as a function of y.)

Proof. L(x) = (L(y), K(y, x)) = (K(y, %), L(y)) = Z,(K(y, x)). =

Notation. ¥ 2!, 2, --- € HO define T: H — * by Tf= {@if}.,, where
#” denotes the space of all complex sequences.

The following theorem was proved by N. Bari in [1].

THEOREM 1.2. Let #* € H® and @1~ L; (i=1, 2, --). If A is the matrix
whose (i, j)-entry is [A]i,j =(2*, 29) = (L;, L), then

a) the following conditions are equivalent:
i) A is bounded above by M,
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ii) 27 |21t|2 < M |£||2 for each € H,
iii) T(H) C 2,5
b) the following conditions are equivalent:

i) A is bounded below by m,

ii) for each ¢ =(c1, c2, ***) € L2, there exists an £ € H such that wif= c;
and m [£% < |c]?,
iii) T(H) D £ .
We shall need the following two results of I. Schur (see [7]).

THEOREM 1.3. Let (aij) be an infinite matvix. If Eilaijl <M for every j
and Ej|aij| <N for every i, thenr IEi,j aijxiij‘ < (MN)1/225 |in2.

THEOREM 1.4. Let A = (ajj) and B = (byj) be two Hevrmitian, positive definite
(n X n)-matrices of complex numbers., Let o) and e be the smallest and largest
eigenvalues of A, and let By =inf bj;, B2 =supby; (i=1, 2, ---, n). Then
C= (aij bij) is positive definite, and all eigenvalues of C lie between o, B, and
az BZ .

Finally, we note the following well-known interpretation of the modulus of a
Blaschke product.

THEOREM 1.5. Consider points z,, z,, ***, 2, in the unit disk D. Then, for
Zg € D,
n 2
Zg - Zy
II 152 = l@is-ol/|@yis-il,
k=1

where ag;= (1 - |z;|2)1/2(1 - |25]H)1/2 /(1 - 2325).

Proof. The theorem follows if we compare formulas (2) and (3) of [8, p. 451,
using K(z, £) = 1/(1 - z{), the Szegd reproducing kernel function for H ,, and the
identity

2k - 7] 2 _ (1- IZjlz)(l - |22
1-ZjZk |1—ijk]2

Note 1.6. If ( , ) denotes the inner product in H;, then the relation
(1 _ IZjIZ)llz (1 _ IZiIZ)l/Z
a.ij =

1—Z§j ’ l-ZZi

shows that (aij) is a Gram matrix of normal vectors in H,, and hence

n
Zo ~- Zxc
II 1- szO
k=1
. . (1- |zo|?)!/2
is the distance of the function 1= 254 from the subspace spanned by the func-

(1 - [z]H!/
1-2zz;

tions i=1,2, -, n).
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2. INTERPOLATION IN ARBITRARY HILBERT SPACES

Definition 2.1. ¥ Ze€ H0 let £ =2/ ||£Z’|| We say & is Z-novmalized. If
%~ L, then & ~ L/|L| =

Definition 2.2. A sequence 21, @2, -+ ¢ HO will be called a Carleson o-
sequence if the distance of #' to the subspace spanned by {27} j#i is at least 0 >0
for all i.

Definition 2.3. A sequence 56’1 Qz -+ € HO will be called an exponential

(r, ¢)- sequence if "Qk"/ngk“" <r<1 and |(2k, #2)| < c|.2k|2 for some
constant ¢ (k, £ =1, 2, --

Example 2.4. In the case of H, if 2t is pointwise evaluation at z;
(i=1,2, ), then P~ Ly(z) = T——lz_i— Therefore

1

okl (-l
[ty I M O M
and
l(gk’gﬂ)l = 1 < 1 < 2 =2"°‘(ek"2 (k"Q:l’ 2’ "').

[1-zgz = 1=zl = 1- 22

Thus Definitions 2.2 and 2.3 are proper extensions of the notions of Carleson se-
quence and exponential sequence.

THEOREM 2.5. A sequence %1, 2, - ¢ H® isa Carleson 6- sequence if and
only if theve exist functions f, ¢ H (k= 1, 2, ***) such that £*f, = 65 (i=1, 2, --+)
and "fk" <1/6.

Proof. To see the necessity, we take fy = ex /@k ex, where ey is the Riesz

representation in H of the component of gk orthogonal to the span of {Qi}i;&k .
For the sufficiency, observe that

Llgk- T o> |(25- Z cigfi)(fk)l =25 =1,
o i#k i#k

where 2 denotes some finite sum. B

Definition 2.6. ¥ @1, #2, ... € HO, define T: H— @™ by Tt = {21}, .
(For example, if £t in Hg is pomtw1se evaluatmn at z;, then

= {f(z;) (1 - IZ-IZ)”Z} )

¥ T(H) = £,, call {#'} an interpolating sequence. I T(H) D £, , we say that
normalized interpolation (or weighted interpolation, in [9], [5], and [6]) is possible.

THEOREM 2.7. A necessary condition on 2!, 2%, --- € H® for normalized
interpolation (T(H) D £,) is that {Q } bea Ca'rleson sequence

Proof Let N = {f € H; ff = 0} Then T induces a one-to-one linear transfor-

mation T from H/N onto a subset of € containing ¢, . Now an application of the
closed—graph theorem to T' l £, shows the existence of a constant M such that



SOME INTERPOLATION PROBLEMS IN HILBERT SPACES 45

|£/N|| < M| Tf|| for all f € H, where ||f/N|| denotes the quotient norm of f/N.
Using Theorem 2.5, we see that #'} is a Carleson 1/M-sequence. B

THEOREM 2.8. A sufficient condition for the inclusion 'i‘(H) C £, (with bound
M =c(1 +r)/(1 - 1)) is that {Z'} be an exponential (r, c)-sequence.

Proof. As in the proof of [9, p. 526], consider the infinite matrix (a;;) with
aj; = (£, £%). Then las 0] <cl 24| /| 21| < crk. Hence, for each i,

M3

i co i o0
layl = Z? lag;| + 27 Ja] < e 213 ri-itc 27 ri-i

1 i+l i+l

<.
1

<c(1 " r)=c1+r.

1-r 1-r
The conclusion now follows from Theorems 1.3 and 1.2. =

THEOREM 2.9. A sufficient condition for the inclusion T(H) D 02 (with bound
m=(1-(1+2¢)r)/(1 - 1)) is that {£'} be an exponential (r, c)-sequence, wheve
r <1/(1 +2c).

Proof. Let a;;= (2%, 2J). Then, if {x;} is in the unit ball of ¢,
o0 [+ ]

>1-22 2 la; i |x:] | %i45]
k=1 i=1

Z} a::X: X

1217
i,

1-(1+2c)r
l1-r ’

0 o0
>1-2 27 erk 25 |xi| |xi+k| >
k=1 i=1

since |ai(i+k)l < cerk. The conclusion follows from Theorem 1.2. W

Definition 2.10. A sequence %1, 2, --- € HO is a projective c- sequence if
|2t < |(2i, 2it1)| and |(21, 2J)| < c || £i]|2 for some constant c
i,i=1,2, ).
Example 2.11. In the case of pointwise evaluation in H, {zi} is a radial se-
quence if z;,%; >0 and |z;,;]| > |z;|. Hence
1 1

2i||2 =
” || 1"|Zi|2$1-z

- (Qi, gi+l) .

i+171

Also, (%, £i) < 2 Ilglﬂ 2. Thus a radial sequence in H, is an example of a pro-
jective c-sequence.

THEOREM 2.12. If {Q’i} is a projective c-sequence and a Carleson 6 -se-
quence, it is an exponential (V1 - 62 , C)-sequence.

Proof. If {Qi} is a projective Carleson 6-sequence, then

i i+1 i
VIT% > (@, gy = 122D 2]
= e et = [l

and we have an exponential sequence. B
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COROLLARY 2.13. A necessary and sufficient condition that a projective c-
sequence 2!, 2, -+ € HO be an interpolating sequence (T(H) = £,) is that {2}
be a Carleson 5-sequence, provided that, in the case of sufficiency,

J1-62< (1+2¢)1.

Note 2.14. Theorem 2.8 cannot in general be extended to Carleson sequences
(as in the case of pointwise evaluation in H). For example, consider the sequence

I;=(1A~2,0,---,0,1/¥2,0, ++) (i=2, 3, -+) in £ = H, where the second 1/ 2
occurs in the ith position. The distance of I; to the subspace spanned by the other
L;j is equal to 1/V2. To see this, examine the matrix (a;j), where

ajj = (Ly, Ly) =
12 (i#)).
5
We have the relation
a.-
I( 1J)n+1| = lim n2+1 -1/2 .
n— 0o |(a1J)n| n-—co n

Thus {I;} is a Carleson sequence, but the matrix (a;;) is clearly not bounded
above (not even finite) on £z, and hence T(H) & £, , by Theorem 1.2.

That Theorem 2.9 cannot be extended to exponential sequences for arbitrary
r <1 can be seen by the example in £2 of Lo =€] and Li=rtg; i=1, 2, -+-),
where &; is the ith standard-basis element. This is an exponential sequence with
¢ = 1/r, but the matrix (aj;), where a;j = (ii, f..j), has no positive lower bound, since
the elements of {Li} are linearly dependent. Thus 'i‘(H) ? 25, by Theorem 1.2.

It would be interesting to know whether, in general, the restriction on the suffi-
ciency in Corollary 2.13 can be dropped.

Finally, whenever normalized interpolation is possible in the previous theorems
(that is, whenever for each c € £, there exists an f € H such that Tf = ¢), the in-
terpolating function of minimum norm is given explicitly by Theorem 2.1 in [3, p.
624].

3. INTERPOLATING HIGHER DERIVATIVES IN H,

If z;, 23, - € D, then, for a nonnegative integer n, let £™%f = £(n) (z;)
(i=1,2, ), where f € Hy. By Theorem 1.1,

n,i i o
@ ~ Ln,i(z) = o 'K(w, z) = ﬁK(W, z) —

where K(w, z) = 1/(1 - wz).

Iy . n -
LEMMA 3.1. (2™, ™) = 22, ¢ ay zi‘iﬁ‘/(l - zizj)szrl , where all ay are
positive,
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1

Proof. The proof is by induction. If n =0, then (£0.J, 9.1 = T o5 As-
19
sume the statement is true for n. Then
n+1 n
2 ksk
1,j . n+l,i k_-k - \2n+3 0 Ar2i %y
(2™ J @™l = 20 bezizs /(1 - 273) = -
0 j 3 92z 92 o (1 - ZiZj)2n+1
. n n
=4 2 Kazr e+ 2 [2n+ 1) @k + 1) - 2kPlay 735
k=0 k=0

n
+ 22 [(2n+1)@2n+1 - 2k) +k2]akz]f+12§.{+l /(1 - zizj)2n+3 .
k=0 .

From this formula, it is evident that if each a;, is positive, then each b, is posi-
tive. B

THEOREM 3.2. Let ™% be the normalized nth derivative at z;, that is, let
~~ s 92n 1/2
Gmif = f(n)(Zi)/ [:gz_lﬁ_g—ilﬁ (R(z;, 2;)) :l
iffeHy,. If {zi} is a Carleson b6-sequence, then 'i‘(HZ) = £, (with lower bound
m = 6%4/(2 - 41og 6) and upper bound M = (2 - 4log 6)/64).

Conversely, if {zi} is a vadial sequence, then the inclusion 'T(HZ) D L, implies
that it is a Carleson sequence.

Proof. Consider the matrix (c;;), where
cij = (@™1, 2™J)

((1 - |zj|z)1/2(1 - |Zi|z)1/2)2n+1 EE:O akzi‘ié‘
-mw (Tico o e ) 72 (D 2y 2) 72

— o2ntl
R ¥

(here (aij) is the normalized Gram matrix corresponding to the case n = 0 investi-
gated in [9] and found to be bounded above and below by M and m, respectively).

Further, (b;;) is a normalized Gram matrix of vectors (1, zc, zZ, -+, zp) € Pl
(k =1, 2, ---) with respect to the inner product (x, y) = EE axXKyk in €l by
Lemma 3.1. The conclusion for the first part of the theorem then follows by 2n + 1
applications of Theorems 1.4 and 1.2.

For the converse, we have, by Theorem 2.7, Definition 2.2, and Lemma 3.1, the
inequalities

(E aklzi|2k)1/2 y ((1 _ Izi+1|2) (2nt+1)/2

1>r> l(:gn,i, @n,i-&-l)l Z
( 27 ay |24 Zk)l/z (- 252
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if {z;} is a radial sequence. But

lim (Z) 3»1<|Zi|'2k)/(Z> aklziﬂIZk) =1.

i—)OO k:O

Hence, there exists an r' <1 such that (1 - ]zi+1|2)/(1 - lzi[Z) <r' (i=1,2, ),
and thus {z;} is an exponential sequence. m

Note. If n> 1, we can take M =1 - 21log 6, by Lemma 2 of [9] and Schur’s
Theorem 1.3. :

As a corollary, we can extend the result concerning simultaneous interpolation
in [5] and [6] by combining the proof in Theorem 2 of [6] with Theorem 3.2.

COROLLARY 3.3. If {z,} is a Carleson sequence and M is some nonnegative
integer, then, corvesponding to each choice of M + 1 sequences w(0) -.. w(M) in
{5, there exists an f in Hy for which

aZm

mao,m
an azn

(m) (m) Lz
f (Zn) = Wp l: (K(Zn) Zn))] (0L m < M; n=1, 2, '") .

Note 3.4. Since simultaneous interpolation, as defined by Rosenbaum, is inter-
polation using the sequence of functionals £9,!, ---, gM1 0,2 ... M2 ... jp
the sense of Section 2, the function of minimum norm in solving the simultaneous
interpolation problem can be determined explicitly by Corollary 2.2 in [3, p. 625].

4. INTERPOLATING HIGHER DERIVATIVES IN A, AND H,

The results of Section 3 carry over to analogous results in any Hilbert space of
analytic functions on D whose kernel function has the form K(w, z) = (1 - wz) P for
some positive integer p (p =2 in the case of A, and p = 3 in the case of H}). We
maintain the same notation as in Section 3, except that now K(w, z) = (1 - wz)P.
Then a proof similar to that for Lemma 3.1 yields the following result.

. . n
LEMMA 4.1. (2™, @™ =27, akz{(i%{/(l - ziij)sz’P, wheve all a, are
positive.

Note 4.2. With this lemma, one sees that Theorem 3.2 extends to the case
where K(z, w) = (1 - wz)"P, and in particular, we obtain extensions of Theorem 4
and the corollary of Theorem 5 in [9] to higher derivatives.

Also, as we can easily see by making the obvious modifications to Theorem 2 of
[6] and using the above-mentioned extension of Theorem 3.2, Corollary 3.3 (simul-
taneous interpolation) extends to any HK(D) with K(w, z) = (1 - wz)"P and with the
property that if f € HK(D), then Bf € HK(D), where B is a Blaschke product. Thus,
in particular, Corollary 3.3 extends to A,.
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