ON THE STABLE SUSPENSION HOMOMORPHISM
Max K. Agoston

1. INTRODUCTION

The suspension homomorphism s 7; X — 7,4 S9X has been studied and ex-
ploited for a long time. Many of its properties are known, such as the fact that s
is an isomorphism if X is k-connected and i < 2k. Let 1r X denote the stable
group ;g s4 X, for large values of q, and let s =s9. In th1s paper we prove a
reﬁnement of a theorem about the homomorphism s: 7; X — 7} X when we are in the
metastable range, that is, when X is k-connected and 1 < 3k. It is probably the best
possible theorem of this type. Our result should not be surprising, because there is
much that can be done in the so-called metastable range in general. The condition of
being in that range appears naturally in numerous problems. For example, the meta-
stable range plays an important role in the imbedding theorems of [5] and [10], in the
computation of the homotopy groups of S® and O, (see [2] and [11]), and in the
E-H-P sequence of G. Whitehead [17].

Throughout this paper, C; will denote the class of finite abelian groups whose
elements have orders that divide some power of the order of 75 (® -~ @ 7S, where
¥ =7} SO is the ith stable homotopy group of the sphere (C, 1s the zero class for
t <L 0) By C, we denote the class of all finite abelian groups. For simplicity, all
spaces will be finite CW-complexes with base points, which, however, will fre-

quently be ignored.
Our main theorem follows.
THEOREM 1. Let X be a (k - 1)-connected space.
(a) If 2k > n+ 3, then s: Tnik+1 SX — 7o+ X s Cp_y-onto.

(b) Let K denote the kernel of the map s: Tpik X — Tork X. If 2k > n+ 4, then
s1(K) € 74141 SX belongs to C,_y.1; in othey words, s | sl(my 1 X) is a Cp_yuq-
monomorphism,

Note. It was pointed out to the author that Theorem 1 is true without any con-
nectivity or dimension hypotheses if we replace C,_x by C. This follows from
theorems in homotopy theory and knowledge of the structure of Hopf algebras (see
[13]). However, Theorem 1 is of value for two reasons: First, we obtain more in-
formation, because we use the classes C,_x and C,_x+1; and second, differential
topologists would consider our proof elementary and much simpler than the proof
of the general result. (Our proof may seem somewhat long, but this is due to Lemma
4, which we need to overcome a technical problem. The basic idea is really con-
tained in Lemma 5.)

We also note that it is not always true in (a) that 7., X — 751 X is C-onto
(consider the Ellenberg MacLane space X = K(Z, k)), nor is the group K in (b) al-
ways finite (1r4q_1 s%9 - 7r4q 1 5%? has infinite kernel).
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Theorem 1 can be used to study properties of the Hurewicz homomorphism (see
Theorem 3). Its proof uses Theorem 2, which is interesting in its own right. All
manifolds are compact, oriented C*-manifolds.

Definition. Let C' be a class of abelian groups. A manifold V™ is said to be
C'-spherical if 7;(V, oV) € C', for 0 <i < m.

Note. This definition extends the one given in [8].

THEOREM 2. Let V™*X be a n-manifold such that H;V =0 for i >n, H,V is
torsion-free, and w10V — 7V is an isomovphism. Suppose n> 2 and 2k > n + 3.
Set @ =|[(n+k)/2]. Then V imbeds in an (a - 1)-connected C, _,-spherical 7~
manifold WK1 with 1- connected boundary and H; W =0, for i >n. If 3V is a
homotopy sphere, then we may also assume that 9V C 9 W.

2. PROOF OF THEOREM 2

Throughout this section, we shall assume that V™K is a 7-manifold such that
H; V=0 for i >n, H,V is torsion-free, and 7,0V — 7V is an isomorphism.
Furthermore, we assume that n > 2 and 2k > n + 3; hence n+k > 5. Set
a =[(n+k)/2], B=[n+k+1)/2], and Wo =V x]0, 1].

It follows from the proof of Theorem 2.1 of [1] (by adding handles to aW, away
from V X 1) that W, imbeds in an (@ - 1)-connected 7-manifold Wtk+1l gyuch that

(a) W is 1-connected,

(b) H,W = 0 for i > n,

(c) H;W ~ H; W, for i> @, and
(d) H;dW — H; W is onto for i < 8.

One can easily see that oW is (k - 1)-connected, by considering the exact homology
sequence of the pair (W, aW) and observing that

H,(W, aW) ~ H**kFl-iw = 0 if i <k,

which is a consequence of the universal coefficient theorem and the fact that H_V is
torsion-free. We should like to kill the rest of the homology of W by continuing to
attach handles to 9W. Unfortunately, we encounter two problems: (1) we cannot
realize all homology classes of W as embedded spheres in dW, and (2) even if we
could, it is not possible to determine whether they have trivial normal bundles (they
are always stably trivial). This is why we must be satisfied with making W only
C-kx-spherical. .

LEMMA 1. Let X be an {-connected space. Then the Hurewicz map
h: ;X = H;X is a C;_y_,-isomorphism for 0 <i< 2L, and it is C;_g.1-onio for
i=20+1.

We shall prove Lemma 1 in Section 3. There are many known proofs of this
lemma if we replace C;_g_; by C.

'LEMMA 2. If j: SOq — SO is the natural inclusion, then jy: m;804 — 7180 is a
Ci-q+1-tsomovphism for  <i<2q-3. Ifi=q-1,then j3 is a Ci-isomorphism
provided i # 3 (mod 4), and j4 has an infinite kernel if i =3 (mod 4).

Proof. X we consider the fibrations SOy — SOg;; — st , we see that 7; SOy and
7; SOg,; are C;_y,i-isomorphic whenever £ <i < 2£ - 2. (The upper bound insures
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that the homotopy groups of st are stable.) This shows that m1;80q and 7;S80; are
Ci_g+1-isomorphic for q <i < 2q - 3. Thus, the first part of the lemma follows from
the well-known fact that 7;S0; — 7150 is a Cj;-isomorphism for all i (see the tables
of [6] and [14]). The second part of the lemma also follows from [6] and [14].

We shall use the following lemma frequently.

LEMMA 3. Let U™X denote a (k - 1)-connected n-manifold, where 2k > n + 3.
Let £ < n, and suppose x € 19 U can be represented by an imbedding ¢: st - U with
normal bundle v ,, which we shall considey as being an element of my_) SO 11 _¢. If
v has ovder A > 1, then d-x can be represented by an imbedding ¢" St — U with
trivial normal bundle.

Proof. This lemma is an easy consequence of [5]. Observe that we do not as-
sert that Vg is uniquely determined by x. To make that claim, we should need that
2k > n + 3. However, for each fixed ¢, one can explicitly construct an imbedding
¢': S{— U that represents d-x and has trivial normal bundle.

Definition. If C' is a class of finite abelian groups, we let II(C') denote the set
of primes that are relatively prime to the orders of every group in C'. We let I(C"')
denote the set of nonzero integers that are relatively prime to every prime in II(C').
If G is an abelian group and p is a prime, then rp(G) will denote the p-rank of G,
that is,

rp(G) = dim (Zp®(torsion subgroup of G))
(see [4]).

LEMMA 4. The manifold Wy imbeds in an (o - 1)-connected n-manifold
wotktl with 1-connected boundavy such that H,; W= H;Wg fori>p and
H;We C_ _, fori<B.

Note. Throughout the proof of this lemma and the next, we shall frequently have
need to replace the particular element under consideration at the time, say u, by
some multiple of itself, say tu, where t € I(C,_i). We do not always state explicitly
that such a replacement has been made, although it should be clear from the context.
The justification of this procedure lies in the fact that we do everything only modulo
C, .k anyway. In the special case where the order of u belongs to (C, .1), we
choose t such that tu =u.

Proof. Let W be as in the second paragraph of this section, so that
H.oW—-H;W is C _,-onto (in fact, onto) for i < B. We consider two cases.

Case 1. n+k isodd, thatis, n+k=2a+1 and 8 =a + 1.

Let r = rank (Hy, W). We show first that we may assume H, W is finite, by in-
duction on r. If r = 0, we are done. Therefore, let r > 0, and let u € Hy, W be an
element of infinite order.

Consider the exact sequence:
) iy
By assumption, ix is C,_jr-onto, and thus there exists an m € I(C,_i) and a
u; € H, aW such that i,(u;) = mu. Next, Poincaré duality implies that there exists

ave Hy2(W,3W) with mu-v =1 (-denotes the intersection pairing). Thus

1 =mu-v=i(u)ves= (-l)aul ca(v) .
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Let v] = o(v).

Now, since 8W is (k - 1)-connected, we may assume by Lemma 1 that u; can
be represented by an imbedding ¢: S¥ x D%*! — 3w, Let W; = W U D®*l x DOF1
where we identify x € S® x D21 with ¢(x) € 9W, and let

N = aW - (interior of &(S% x D@*1)),

If necessary, modify ¢ in the standard way by an element of 7, _;SOq4; such that
W, is a m-manifold (see [7]).

Consider Diagram I, which has exact horizontal and vertical sequences (see [7 ,
Lemma 5.6] for some of the details).

H N

a+l
ig
i, Y
Hy 1 Wi < Hy10W,
i/
Y

Hy 1 W Hy+10W, N) =2

12]‘
i i d Yoo

3 4 3
0 — Hoz+1N _—> Ha+16W > Ha+l(aw, N) =7 —> HgN —> HaaW —> 0

i |

Hy (W, 3W) "HgdW; HyW
j\ li
9 \ 8
Hawl
0

Diagram I

By construction, ig(mu) = 0, and therefore we find that i, is an isomorphism by
looking at the homology sequence of the pair (W;, W). Furthermore,

igfvy) = vy u; = =1

(see [7]), and i,(v;) =i0(v) = 0. Hence ijiziz is C,_k-onto, since by assumption
iy is C,_x-onto. This shows that i7ig is C,.k-onto, that is, i7 is Cn_x-onto.
Similarly, i is C,_j-onto, because igi,is is C,_yx-onto (i5 is an isomorphism, i,
is C,_x-onto by hypothesis, and clearly ig is onto). By construction,

rank (H, W) =r - 1.
Also, W; is (o - 1)-connected and H; W, = H;W for i > o. We can now apply our

inductive hypothésis, and we have proved that we may suppose H, W is finite and
H,0W — H,W is C_ _;-onto for i <B.
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Next, let us reduce Hp 4} W to a finite group. The proof is similar to the one
above. We again use induction on rank (Hy4+; W). Let u € Hyy1; W be an element of
infinite order. Then, using Lemma 1 and the fact that Hy4) oW — Hp 1 W is Cp_k-
onto, we may assume as above that some multiple mu can be represented by an im-
bedding (see [5]) ¢: S%*l — 3W. The normal bundle of ¢ may not be trivial; how-
ever, a multiple of [¢] € @y, dW will have a trivial normal bundle, by Lemmas 2
and 3. Thus we may assume that ¢ extends to an imbedding

¢: s%* x D% — aw.
Define N and W) as before. Since 7, SO, — 7, SO is onto, we can again assume

that W, is a m-manifold. Consider Diagram II, which is a commutative diagram
whose row and columns are exact.
la

l i1 M T3 Jg

0 = Hgye N —> Hgy10W —> 0 — Hog N —> Hy W —> H,(0W, N) = Z —> -

l iz 137
4 Y

0 Hy (W, 9W)

Hy+19W) Ho+1 W Hy oW, HyW
l J'4\ i3 ]'5\ l]'8
X Y Y \{
Diagram II

The map j4 is C,_y~onto because j; is an isomorphism, j, is C,_y-onto by
hypothesis, and j3 is C,_j-onto by construction. Assume that j,(u;) = mu for
u) € Hyp4+10W and that ¢ represents u;. Use Poincaré duality to obtain a
v € Hy+ (W, 9W) with mu-+v = 1. Then jo(3(v))=3(v) u; =%1 and j7(a(v)) = 0.
Therefore, j7j¢ is C,_x-onto, since j; was C,_r-onto by hypothesis. But jg is an
isomorphism, and hence it follows that j5 is C,_j-onto. This shows that we can in-
ductively reduce Hpyy) W to a finite group (Hy W is left undisturbed). Thus, since
all other desired properties have been preserved by this construction, we have shown
that we may assume initially in Case 1 that Hy, W and H,,; W are finite.

To kill the unwanted torsion in H, W and Hy,; W, we must make some changes
in the proofs given above. Let

r= 2 (H,W).
pEH(Cn_k)

Suppose r > 0, and let u € Hy W be a nonzero element of order p™, for some

p € II(C,_). We shall use the notation of diagram I. Since iy is C,_j-onto, there
exists a u) € HydW such that ix(u,) = u. Furthermore, we can assume that u; can
be represented by an imbedding ¢: S x D"l — 3W. If z € Hy, | 0W, then

ig(z) =z -u; =0 (the fact that i4 can be interpreted as an intersection pairing is ex-
plained in [7, Lemma 5.6]); and therefore i3 is an isomorphism. Consider the se-
quence
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i 8
. Ho1(Wy, W) = Z — HyW —>

) Ha+l w 1 ’
and let ¢ be a generator of Hy,1(W;, W). Now 9; (¢) = u, by construction. It follows
that there exists an x € Hy,{ W, such that i;;(x) = p™e. But i;(Hg,; W) and x
generate Hy Wi, and i, is C, _y-onto by hypothesis. Thus, to prove that i; is
C,.i-onto, it is clearly sufficient to show that x € i;(Hy, 9W).

Let Y = W, - (interior of W), and think of the handle D%*1 x D%*! a5 heing con-
tained in Y. Diagram III is a commutative diagram with exact row (a Mayer-Vietoris
sequence) and column.

i15
H,, (Y, 9W,) <—— H,, ,@W, N)
A
1, 93
Hy+1 N A : Ho N
113 o o 114
—_ @ —> Hy . Y —> H,8Yxs* — @ —_— ..
Ha+1(Da+l XDa+1,) A Ha(DaH XDGH—].)

i1 137

Hy10Wy ———> Ho1 Wy
A

Diagram III

Since i;5 is an isomorphism, since 93 is one-to-one (because i, = 0), and since
i,4i,3 =0, it follows that i;, = 0. Hence, i, is an isomorphism, and we only need
to show that x € i,7(Hg,; Y). Now, Hy, (W, 9W) ~ H¥'1W and

rank (HOH!

W) = rank (Hp+ W) = 0.

Therefore, if we look at the exact sequence for the pair (W, 9W), we see that H, oW
is finite. This allows us to assume that u; is also finite and of order p™. Consider
Diagram IV, a commutative diagram, where the row is an exact Mayer-Vietoris se-
quence. A little inspection shows that we may choose x such that ijg(x) = p™e; for
some €; € Hyy (W, 9W) with the property that ijg(e;) =€ and 9,(e;) =u; . Then

93(x) = 9i18(x) = 92(p™€;) = pPu; = 0.

By exactness, there exist a y; € Hy4 ) W anda y, € Hy,; Y such that

io(y; +¥2)=x. But i;4i;51,¢(y;)=0. Thus we may replace x by 1,0(y,) =1;.(y,),
and we have shown that i; is C,_y-onto. The map ig is C, _,-onto, because iz and
ig are onto and iy, is C,_,-onto by hypothesis. Unfortunately, Hy, , W, is no longer
finite. In fact, rank (Hy,; W) = 1. However, we already have described a procedure
whereby elements of infinite order in Hy,; W; can be killed without disturbing
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Hyy (X, 8W)

Y
Hyp1 (W, 0W) o> Hgyy (W, W)

i1g 02 91
Y
Hou1 W ; H, W
> @ > Hen W) —> HgdW > @ —> -
Hyi1 Y Hy X
Diagram IV

H, W, . This shows that by induction we can successively kill all torsion elements of
HyW until H, W € Cp i .

Finally, assume that Hy W € C,_x and Hyt+1 oW — Hp W is Cp_y-onto. Let
r= EPGH(Cn-k) rp(Hgt1 W), and suppose r > 0. Let u € Hyy) W be a nonzero ele-

ment of order p™, for some p € II(C__;). As before, we add a handle to kill u. It
follows easily from diagram II that Hy,y1 0W); — Hpy ) Wy is Cp_i-onto. Also,
H,W;~H,We C, ;. Byinduction, we can assume that H,,; W € C,_; , and Case
1 is proved, since all other desired properties have been preserved by our construc-
tions.

Case 2. n+Xk is even, that is, n+k = 2a and a = 8.

This case is also proved by induction. Let r = rank (Hy, W), and suppose that
r > 0. It is convenient to separate the discussion into two subcases.

(a) Assume @ is odd. Let u € Hy W be an element of infinite order, and con-
sider the exact sequence

ix
> Hy1 (W, 0W) —> Hp oW —> HgW —> -

Since i, is C,_yx-onto, there exist an m € I(C,._x) and a u; € H,3dW such that
i, (u;) = mu. By Poincaré duality, we can find a v € Hg, (W, oW) with mu-v =1,
Then

1 =mu-v=igfu)v= (-l)aul -o(v) .

Let v =9(v) € HypoW.

By Lemma 1, we may assume that u; can be represented by an imbedding
¢: S% — aW. Since « is odd, we can use Lemmas 2 and 3 to assume further that the
normal bundle of ¢ is trivial, in other words, that ¢ extends to an imbedding
¢: S® x D% — 3W. Let
N = W - interior (¢(S%* x D%)) and W; = Wu D%"! x D%,
where we identify x € S% x D® with ¢(x) € 9W. We have the commutative diagram
(see [7, Lemma 7.1} for more details):
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HOH‘].(an ’ N) = 4

n

ip
0 —> H,N —> H,W ——> Hy(dW,N)» Z2 —> -

l EN
H, oW, H
ix /
H, W,

Note that i, is C,_y-onto by hypothesis, and i; is onto by construction. Since i, is
just -u;, it follows that i;i i3 is C,,_x-onto, because v, -u; =+1 and

i (vy) =i, 0(v) = 0. Therefore iy is C,_p-onto. But 74 _; SOy — 7y _1 SO is onto,
and hence we may assume that W, is a 7-manifold, by modifying ¢ if necessary.
Clearly, rank (H, W;) = r - 1, and we have given an inductive procedure for making
H, W finite.

(b) Assume « is even. The proof of (a) does not apply here, because now the
kernel of my_; SOy — Ty .1 SO is not always finite (see Lemma 2), and we cannot
assert that the normal bundle of a sphere representing some multiple of u; will be
trivial. However, 3W is a boundary, and thus the signature of 8W is zero. There-
fore we can find x;, "', X5, V1, ", ¥s € Hy 0W such that

0

XXy = 0=Y1'Yj; Xi'¥; = 51j§

and if G is the subgroup of H, oW generated by x;, -**, X5, V1, ***, ¥g, then

H, dW/G is finite (see [12, Lemma 9]). Since i, is Cn i-onto, either i,(xy) or
i,(yt) € H, W will be an element of infinite order for some t, 1f rank (Ha W) > 0.
But if Y. Sa — oW represents z € Hy, oW, then the normal bundle of Y is trivial if
and only if z-z =0 (see [12, Lemma 7]) This shows that if rank (H, W) > 0, then
we can always find an element u; € Hy dW that can be represented by an 1mbedd1ng
¢: S% — 3W with trivial normal bundle such that u = i,u; has infinite order. The
proof of (b) then proceeds as in (a).

Now assume that Hy W is finite and Hy oW — Ho W is C,_k-onto. Let
r= Z}peH(C o) r (Hy,W)> 0, and let u € Hy W be a nonzero element of order

pm, for some p € l'I(Cn ). Since
Hye1 (W, 0W) ~ H*W  and  rank (H*W) = rank (H, W) = 0,

we see from the exact sequence of the pair (W, 9W) that H, oW is finite. Choose
u; € H,daW such that i (u;) =u. We may assume that u, can be represented by an
1mbedd1ng ¢: S¢ — W w1th trivial normal bundle. This is also possible if a is
even, since u; has finite order and hence uj -u; = 0. Define W; as before. Con-
sider the diagram in (a). The map i3 is now an isomorphism, because i can be
interpreted as -uj, which is zero since uj is finite. Therefore, i4 is C,_k-onto.
This shows that by induction we can arrange to have H, W € C__,.. The proof of



ON THE STABLE SUSPENSION HOMOMORPHISM 37
Case 2 is now complete, since all other desired properties are again preserved.
Lemma 4 is established.

Remark. The proof of Lemma 4 given above is technically complicated. It
would be nice if it were possible to simplify it.

LEMMA 5. W imbeds in an (@ - 1)-connected Cy_x- sphevical - manifold
WKt with 1-connected boundary such that H;W = 0 for i > n.

Proof. Let W be as in Lemma 4, and set

n n
r= 2 rank (H; W) + 2 ro(H; W) .
j=B+1 j=B+1
peIll(Cp _k)

We shall prove Lemma 5 by induction on r.

If r =0, then clearly Hi{(W, 9W) € C,_x for 0 <i <n +k + 1. Therefore, by
the generalized Hurewicz theorem (see [16, page 511]), the Hurewicz homomorphism
h: 74k 1{W, @W) — Hpyk+1(W, 9W) is a Cp-k-isomorphism; in other words, W is
C,-k-spherical (compare [8]).

Assume that r > 0 and Lemma 5 is true for r - 1. Let s denote the smallest
positive integer such that H4W ¢ C,,_x. Then 8+1<s<n. Let u € HW be an
element whose order is either infinite or a power of some p € II{(C,_x). Consider
the exact sequence

1x
. —> H oW —> H,W ——> H (W, W) —> -+

Note that Hg(W, 0W) = grtktl “SW, which belongs to C,.x by Lemma 4 and the uni-
versal coefficient theorem, since n+k +1 - s < a. Therefore i, is C,_x-onto, and
we may assume that there exist an m € I(C,_y) anda u; € HgoW such that

i (u;) = mu. But 9W is (k - 1)-connectedand 2(k - 1) +1=2k-1>m+3)-1>s.
Hence, by Lemma 1, may assume that u; can be represented by a map ¢: S5 — W,
which, by [6], we can take to be an imbedding (we need 2k > n + 3 for this, although
2k > n + 2 would suffice for the rest). Lemmas 2 and 3 and the fact that 2k >n+3
imply that we may further suppose that the normal bundle of ¢ is trivial, that is, ¢
extends to an imbedding ¢: S5 X D*K-S — 5W. Let W, = WU DS+l x Dntk-s where
we identify x € S5 x D*k-S with ¢(x) € 3W. Since 2k > n + 3, it follows from [2]
that 75_180n4x.s — 75 .1 SO is onto (actually only the case n+k - s > 13 is handled
in [2], but the other low-dimensional cases are also known). Hence, as usual, we can
assume that W; is a m-manifold by changing the imbedding ¢ via an element of
Tg_1SOp4k-5, if necessary. Now W; has all the properties of W except that

n n
E rank(HJ-Wl)+ E rp(Hle) =r-1<r.
j=p+1 j=p+1
Pen(cn_k)

This proves Lemma 5, by the induction hypothesis.

Since V C Wo, Lemma 5 also proves the first part of Theorem 2. Assume next
that 2V is a homotopy sphere. In Lemma 4, we may still suppose that V X 1 C aW.
This follows from the construction in [1]. If we could do the surgery, which is nec-
essary in Lemma 5, away from 9V X 1 C 8W, then the second part of Theorem 2
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would be proved. In fact, we shall show that we can do the surgery away, from

U = closure(dW - V X 1). The composition H;(V X 1) — H; Wg — H; W is an iso-
morphism for i > B, and VX 1 is (k - 1)-connected. Therefore we can start the
surgery in Lemma 5 on V X 1, and it is easy to check that we can continue to stay
away from U. This completes the proof of Theorem 2.

3. PROOF OF THEOREM 1

We begin with some generalities.

Recall that X/A denotes the space obtained from X by collapsing A to a point,
the base point of X/A. We denote the union of X and a base point by X/@. If X, Y
are spaces with base points x, yg, respectively, then

XAY = XXY/(XXygUzxgXY).

Let S;lX = 8% A X denote the qth iterated (reduced) suspension of X. We write SX
for S*X.

Following [18], one can define a generalized homology theory h, by setting

hj(X, A) = lim 7;,4(S%(X/A)) .
q

The reduced group Hi X = h;{(X, xq) is then just the ith stable homotopy group ﬂis X
of X. In fact, imitating [3], one can characterize h;(X, A) as the set of framed co-
bordism classes of maps f: (Vi, 3Vi) — (X, A), where V is an oriented m-manifold.
(For example, if [g] € h; X, where g: Si*9 — S4(X/(), then V is essentially g~1(X).
One can justify this using techniques of [9, page 6] and observing that S4(X/®) is
homeomorphic to the Thom space of the trivial g-plane bundle over X.) There is
also a natural map h: h;(X, A) — H;(X, A) that sends the element [f, V] € hi(X, A)
determined by (f, V) into f,(uvy) € Hy(X, A), where uy € H;(V, 3V) is the orienta-
tion class of V. The map h induces a homomorphism h: h; X — H; X (H;X is the
reduced homology group of X).

LEMMA 6. Suppose that X is L-connected. Then, for all i, h: HiX — ﬁiX isa
C;_p_1-tsomorphism.

Proof. Let XJ denote the j-skeleton of X. Let t > £ + 1. Then the triple
(xt+1 xt xX2+1) induces the diagram

. —— h(Xt, XI*]) —— px x4) —— pxt XY —

R

. ———> H(Xt, x+ly — » Hi(XtH, x+ly — 5 Hi(Xt+l, Xt) —> ..,

where the ¢; are induced by h. If t = ¢ + 1, then ¢; is clearly an isomorphism for
all i. Assume that for some t > ¢ +1, ¢; is a C;j_g_2-isomorphism for all i.
Since Xt*1 /Xt is just a wedge of (t + 1)-spheres, the map ¢3 isa C;_y_,-mono-
morphism and is onto. (Observe that h;(X'*!, X!) is a sum of n¥_,_;.) A slight
generalization of the Five Lemma then proves that, for all i, ¢, isa C;_g_p-iso-
morphism. It follows by induction on t that the map ¢: h;(X, X£+1) — H;(X, X£+1)
induced by h also is a Cj_g_p-isomorphism for all i.
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Next, consider the diagram

o —— &M, x0) —> WX, x0) = X —> hy(X, X)) ——

l¢4 lﬂ lqs
. —— H (XU x)) — Hy(X, x¢) = H;X —> Hy(X, XIt]) —> -

induced by the triple (X, xt+1 , Xg). Since X is f-connected, it is easy to show that
X£2+1 has the homotopy type of a Wedge of (¢ + 1)-spheres; hence ¢gisa C;_y -
isomorphism. Therefore, another application of the Five Lemma, together with the
facts obtained above about ¢, establishes Lemma 6.

Proof of Lemma 1. It is well known that if X is ¢-connected, then
s: m;X — 7§ X = h; X is an isomorphism for 0 <i < 2¢, and s is onto for i =2¢+1
(see [16, page 458]). Lemma 1 is thus an immediate consequence of Lemma 6.

Proof of Theorem 1. (a); Let x € TS +kX hn +1kX. Then there ex1st an oriented
7-manifold VX and a map f: (V, 8V) — (X, Xg) such that fu(uvy) = h(x) By taking
the double of V and deleting an (n +k)-disk, we may assume that 3V = Sntk-1_  De-
fine

F: Untkt = [0, 1]x v - X

by F(t, v) = p(t, £(v)), where p: [0, 1] x X — 8! x X — SX is the natural projection.
Since X is (k - 1)-connected, we may assume that V has the same property (other-
wise, do surgery on V to make it (k - 1)-connected). Therefore it follows from
Poincaré duality and the universal coefficient theorem that H;V =0 for i > n and
that H_V is torsion-free. Clearly, 3V is 1-connected, because n+k - 1> 2.

Since the case n =1 is trivial, assume n > 2. The proof of Theorem 2 shows
that U imbeds in a C,_x-spherical 7-manifold Wotk+l — Define g: W — 8X by
g|U="F and g(W-U) = x. It is easy to see that [g, W] = [F, U] € hip1141(SX). But
W is C, _x-spherical, and we may assume that W and 9W are 1-connected. Hence,
by the generalized Hurewicz and Whitehead theorem (see [16 pages 508—512]) there
exists a map ¢: (Dntktl gntk) _, (W 3W) that induces a C,,_y-isomorphism

611 hpypip (DL 8™ n (W, e W)

Let g2 hpy4 (W, 3W) — h, 1.+ 1(SX, %) be the homomorphism induced by g. Then

s( [g‘l)]) [gqb, Dn+k+1] = g ¢1([identity, Dn+k+1 ])

g1 (m[identity, W]) = m[g, W],

for some m € I(C,_y). This proves (a).

(b): Let g: S®"k — X pe a map such that s([g]) = 0. Then there exist a 7-
manifold V™Kl and a map G: V — X such that 3V = 8°*kK and G|aV = g. Since X
is (k - 1)~connected, we may assume that V is (k - 1)-connected. By Poincaré
duality and the universal coefficient theorem, we have that H;V =0 for i >n+ 1 and
that H,;,V is torsion-free. Again, the proof of Theorem 2 shows that [0, 1]x V
imbeds in a 1-connected C,_y;]-spherical m-manifold Wntk+2 with 1-connected
boundary in such a way that [0 1] X3V C 9W. Therefore there exists a map
¢: (Dntkt2  gntktl) — (W aw) such that ¢.(11) = muy , for some nonzero integer
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m as above. Let ¥ = ¢|S™*¥*+]l  Extend G toa map G': W — SX asin (a). It is
easy to check that 0 = [G' ] = ms! ([g]) € Tnii+1 SX. This proves (b) and completes

the

proof of Theorem 1.

Finally, we state an easy corollary of Theorem 1 and Lemma 6 about the Hure—'

wicz homomorphism.

THEOREM 3. Let X be a (k - 1)-connected space (k > 1).
(a) If 2k > n + 3, then the Hurewicz homomoyphism h': w1 SX — Hp 1141 SX

is C,-onto.

(b) Let K denote the kevnel of the Hurewicz homomovphism

h': 1Tn+kX — Hn+kX .

If 2k > n +4, then s1(K) C myy 11 SX belongs to C, .

1.

10.

11.

12.

13.
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