THE HARDY CLASS OF SOME UNIVALENT FUNCTIONS
AND THEIR DERIVATIVES

P. J. Eenigenburg and F. R. Keogh

1. INTRODUCTION

cO
If £(z) = Eo anz™ is a function analytic for ]zl < 1, then f(z) is said to belong
to H* (A > 0) if

T
My, 1) = (;—ﬂS

1/2
|f(rei9)|7"d9) <K (0<r<1),
-7

where K is a constant depending on f(z). We denote by H* the class of analytic
functions bounded for |z| < 1.

In this section, we list some known theorems and lemmas for reference.

THEOREM A. If f(z) € H* (0 <A < 1), then

THEOREM B. If £(z) is univalent, then f(z) € H* for all A < 1/2.
THEOREM C. If £(z) is univalent, then

Ianl/n - 01|a.1|

as n— ° where 0 < a < 1.

Theorem A is in [2], Theorem C in [6, p. 104}, and Theorem B is, for example,
in [9, p. 214].

The Koebe function z(1 - z)"2 = Eolo nz” shows that there exist univalent func-
tions that are not in H1/2. We have, in fact, the following result.

THEOREM D. If 1(z) is univalent, then

T .
lim S |t(ret?)| /2 a6 10g11 = 2|a;|'/2al/?
r—1 -1
wheve o is as in Theovem C.

Theorem D is an immediate consequence of Theorems I and VI and Lemma I in

[5].

According to Theorem D, univalent functions whose coefficients satisfy the rela-
tion |an|/n + 0 are necessarily excluded from H1/2 1t is less obvious that there
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exist univalent functions not in H!/2 for which, nevertheless, a,,/n — 0. We con-
struct an example of such a function in Section 5.

In the following sections, we study the classes H* to which f(z) and f'(z) be-
long for three of the most familiar types of univalent functions, namely, convex func-
tions, starlike functions, and close-to-convex functions. Though we have confined
attention to f(z) and f'(z), it is likely that analogous results for fractional deriva-
tives of sz) could be obtained by similar methods. In the case of close-to-convex
functions, we are able to discover the properties that determine the value of
lim, o |ag|/n.

We conclude this section with some further theorems and lemmas.
THEOREM E. If '(z) € H* (0 <A < 1), then (z) € aM (1-2),

THEOREM F. If £(z) is univalent and maps Izl < 1 onto a domain D, then the
boundary of D is a closed rectifiable curve if and only if '(z) € H!.

LEMMA A. (1 -2z)"! e H if and only if A <1.

LEMMA B. If P(z) is analytic and % P(z) > 0 for |z| <1, then P(z) € HA for
all A <1.

Theorem E is a special case of [3, Theorem 12], with gA/(1-1) interpreted as
H” when X = 1; Theorem F is in [12]. The lemmas are well known.

The definition and analytic characterization of convex and starlike functions are
given in [12].
2. CONVEX FUNCTIONS

If f(z) is analytic for |z| < 1, then it is univalent and convex if and only if
£'(0) # 0, zf"(z)/f'(z) is analytic, and

) 91[1+sz':g;]>o.

We then have the representation

zf"(z) _ ‘S‘ﬂ 1+ ze-it

£'(z) S ),

(1) 1+
- 1 - Ze

where u(t) is nondecreasing, u(n) - u(-m) =1, and we can suppose [(t) to be nor-
malized so that

1 m
@) Lue+o+ue-0l = uw), § wea=o.
-7

The normalization determines w(t) uniquely; we shall call u(t) the measure asso-
ciated with f(z). Conversely, for each function p(t) satisfying the conditions above,
solution of the differential equation (1) yields a convex function f(z), uniquely deter-
mined up to translation, magnification, and rotation. From (1), we obtain the rela-
tions
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f'(z) _ . T 1 +zeit t
(3) logm = 15‘_77 ——————1 T l:u(t) - Zn:ldt
and
1 m
(4) log i,gg; = S log (1 - ze~H)-2du(t).

For 0 < o < 1, we shall denote by Kqu the class of convex functions satisfying
the inequality

(5) 9 l: 1+ fo,lés)] > a,

in other words, K, is the class of convex functions of order a. Then, for

0 <o <p <1, we have the inclusions Kg C K, C Ko (we have preferred to adopt
this definition rather than the usual one in which the supremum is taken over the «
on the right side of (5), the various classes then being disjoint). The following
lemma follows immediately from our definition.

LEMMA 1. f(z) € Ky if and only if £'(z) = [g'(z)]l'a, for some g(z) € Ky .
We also need the following lemma.

LEMMA 2. If f(z) € Ko and u(t) is the measure associated with £(z), then 1(z)
is unbounded if and only if theve exists 8¢ such that pu(6g +0) - u(6g - 0) > 1/2.

For a proof, see [10].

LEMMA 3. If £(z) € Kg, then f'(z) € H* for all A < 1/2.

Proof. By (4), £'(z)/f'(0) is subordinate to (1 - z)~%, and hence [9, p. 165] we
have the inequality

My(f', r) < |£'(0)] Ma((1 - 2)72, 1) .

By Lemma A, the right-hand side is bounded for all A < 1/2.

Taking imaginary parts in (3) and letting r — 1, we find {13, p. 97, (6.11)] that,
for all 6, lim, _,; arg f'(z) = V(0) exists and that
(6) V(8) = 27u(6) - 8 +arg £'(0).

Equation (6) provides an expression for p(6) intrinsically in terms of £(z).

Now suppose that f(z) € Ky, so that by Lemma 1,
] t 1 -
(7) f'(z) = [g'(=)] ™

for some g(z) € Kp, and let v(t) be the measure associated with g(z). Then
arg f'(z) = (1 - a)arg g'(z). Hence, by (6), we have the following result.

THEOREM 1. If £(z) € K, and u(t) is the measurve associated with 1(z), then
af

(8) B(0) = (1 - @) w(0) + 5o,
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where v(t) is the measure associated with some function in Kg. Conversely, a
measure |L(t) of the form (8), where v(t) is the measure associated with a function
in Ko, is the measure associated with a function in K.

If f(z) is unbounded, then, by Lemma 2, there exists 6y such that
p(6g+0)- p(6p-0)>1/2. I, in addition, f(z) € K;/2, then, by (8),
p(6y+0)- (8- 0)<1/2. It now follows from (8) that v(6¢+0) - v(6¢ - 0) = 1;
hence v(t) is a step-function with exactly one jump (at 6 ). By (7) and (4), we there-
fore have the relations

t . T ' .
log £76) = 719 §0) - 2 S_ﬂ log (1 - ze™ )2 du(t) = log (1 - ze” 70)L.

Straightforward computations now yield the following result.
COROLLARY. If f(z) € K/, is unbounded, then

f(z).= a +blog (1l - zelT)

Sfor some complex constants a, b and some veal constant 7.
This corollary is also a special case of part (ii) of Theorem 4 below.

Though we require only its corollary, we have included the next theorem for the
sake of completeness. The conclusion of the theorem is perhaps geometrically ob-
vious, but the proof is entirely analytic.

THEOREM 2. Let u(t) be the measure associated with f(z) € Ko, and suppose
that 0 < B < a <7 and p(a)- p(-a) <1/2. Then

8 0 f
S |f'(re!?)| d6 = O(1) (r—1).
-8B

COROLLARY. If p(t) is continuous at t =0, then there exists 1 > 0 such that

n ,
S |t'(retf)|d6 = 01) (r—1).
-1

Remarks. (i) Since ‘zf‘(z)| is an increasing function of r for f(z) € Ky [8, p.
483] (reference to [8] here and elsewhere is to a property of starlike functions in Sy

B .
equivalent by (14)), the theorem implies that S lf’(e‘e)l do is finite. In other
-B

words, the part of the boundary of the convex domain given by w = f(et?)
(-8 < 6 < B) is rectifiable. The corollary likewise implies a property of local
rectifiability.

(ii) The theorem becomes false if either the number 1/2 is increased or the
inequality 8 < @ is replaced by B8 < @, as consideration of maps onto strip domains
shows.

Proof of the theovem. Taking real parts of (4), we obtain the equation
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Ui .
[f'(z)l = If'(O)I exp S logll - ze'ltl'2 du(t),
-7
and for z = rel? (-8 < 8 < B), we have

T ) o )
S log |1 - ze 1|2 aut) = S log |1 - ze~it|-2 du(t) + O(1),
-7 -o

where the term O(1) is uniform with respect to 6. Hence

B B o )
S |£'(reif)] do = 0(1)- S de expS log |1 - rel(0-t)|-2 au(t).
-B -3 -Q

Let p(a) - p(-a)=v. I y =0, then on the right-hand side, the inner integral
vanishes, and the proof is complete. If ¥ # 0, we define v(t) = u(t)/y. By the in-
equality between the geometric and arithmetic mean in weighted integral form [4,
p. 156], we have the inequality

a , a ‘
exp5 log |1 - ze 1t|-2 du(t) = expS log |1 - ze it|-27dy(t)
-o -

a .
< S |1 - ze | 2Vdy(t);
-
thus

SB |£'(z)] d6 < O(1)- Sﬂ ae Sa |1-ze™%7ana).
_ﬁ -1 -0

Interchanging the order of integration and using Lemma A, together with the fact that
2y <1, we find that the right-hand side is bounded as r — 1.

THEOREM 3. If £(z) € K is not of the form a +bz(l - zelT)-1 for some com-
plex a, b and real T, then there exists 6 = 6(f) > 0 such that £'(z) € Hl/2+06

Proof. Let p(t) be the measure associated with f(z). If f(z) is bounded, then,
since the boundary of a bounded convex domain is a closed rectifiable curve, Theo-
rem F implies that f(z) € H! . We may therefore suppose that f(z) is unbounded so
that, by Lemma 2, the maximum jump @ of p(t) satisfies the inequality a > 1/2. If
f(z) is not of the form stated in the theorem, then we also have @ < 1. We may sup-
pose without loss of generality that this maximum jump occurs at t = 0. Let s(t)
denote the step function

-~a/2 (-7 <t <0),
S(t) = 0 (t=0);

a/2 o<t<m),
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and define v(t) by p(t)=s(t)+ (1 - ¢)v(t). Then v(t) is a nondecreasing function,
v(r) - v(-m) = 1, and the normalization conditions (2) are satisfied. Therefore v(t)
is the measure associated with a convex function g(z), say, and v(t) is continuous at
t = 0. By (4), we obtain the decomposition

1 il .
logi—,((-(z)—; = S_ﬂ log (1 - ze~it)-2du(t)

= a log (1 - z)"% + (1-a) Sﬂ log (1 - ze'it)"zdu(t),
-7

or
9) '(z) = c(1 - 2)%%[g'(2)]* @,

where ¢ is a constant. We now choose 7 such that the conclusion of the corollary
to Theorem 2 applies to g(z), that is, such that

n
(10) {7 le@) a0 = o),
-7
and we further choose
11-«o
6 < 21400’

Then, with g = (1 - @)~ (1/2 + 6)-! and p = q/(q - 1), H6lder’s inequality applied to
(9) yields the relations

Sn |£'(z)|*/ 2+9 ap

1/p 1/q
n n
< |c|1/2+6 (S ll _ Zl-Zpoz(1/2+6)d9) (S |g.(z)| dﬁ) - 0(1).
-n

-1

(11)

Finally, by (9), we find that

-7 T
S |£'(z)|1 /272 qo + S [£'(z)|}/2+0 a6
- ,

(12)

. T
<le|- max |1-relf|-2a(l/zt0) S‘ lg'(z)l(l‘a)(1/2+5)d6 = o(1)
n<|o]|<a -7

(the last equation follows by Lemma 3, since
1-a)1/2+06)< (1-a)/1+a)<1/2).

Addition of (11) and (12) now yields the desired result.
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Application of Lemma 1 and Theorem E gives the following extension of both
Theorem 3 and the corollary of Theorem 1.

THEOREM 4. If f(z) € Ky is not of the form
f(z) = a +b(l - zelT)22-1 (@ #1/2),
f(z) = a+blog(l - zelT) (@ =1/2),

Jor some complex a, b and veal T, then the following two statements hold.

1

___+
(i) There exists 6= 6(f) > 0 such that £'(z) € g2l-a)

)

1
2o

te
(ii) If

0 < a < 1/2, then theve exists € = e(f) > 0 such that {(z) € -
(f(z) € H® if a =

1/2). If a > 1/2, then (z) € H® without exception.
3. STARLIKE FUNCTIONS

If f(z) is analytic for ]zl < 1 with £(0) = 0, then it is univalent and starlike if
and only if £'(0) # 0, zf'(z)/f(z) is analytic, and

(13) € [Zﬁéz)) > 0.

‘For 0 < a <1, we denote by Sy the class of starlike functions with the property that

zf'(z)
E)El:—f-(-g' > .

It follows from the definitions that
(14) g(z) € Ky <= 1(z) = zg'(z) € Sy -
In view of (14), the first part of the following theorem is the direct analogue of the

first part of Theorem 4.
THEOREM 5. If i(z) € S, is not of the form

f(z) = az(l - zeiT)Za'?‘,

then

2(11 )H3
(i) theve exists 6 = 6(f) > 0 such that f(z)/z € H e :
1
20

+€
(ii) there exists & = e(f) > 0 such that £'(z) € H3'

Proof of (ii). By (13), we have the relation

r'@) = X2 p(y),
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1
. S
where 9 P(z) > 0, and by part (i), f(z)/z € g2it-o)

Writing

for an appropriate & > 0.

3_2a+8=?\

(where ¢ < & is to be chosen later) and using Holder’s inequality with conjugate in-
dices p and q, where p is defined by the condition

_ 1
ph—————z(l_a)+6

(note that p > 1), we obtain the inequality
A A f A
M}\(f', 1‘) _<_ N[pl (_Z—’ r) Mq}t(P’ I') .

On the right-hand side, the first expression is bounded because of the choice of p.
By Lemma B, the second expression is bounded, provided gx < 1. A calculation
shows that with ¢ < 6, we have the relations

gr = 1-4(1 - @)?6+ (3 - 2a)e +0(6%) < 1,

provided that first & and then &€ are chosen sufficiently small.

4. CLOSE-TO-CONVEX FUNCTIONS

A function f(z) analytic for |z| <1 is called close-to-convex [7] if
(15) r'@) = £2) i),

where g(z) is starlike and % P(z) > 0. Close-to-convex functions are univalent, and
the class of close-to-convex functions contains the class of starlike functions. There
is no loss of generality in assuming P(0) = el®, where a is real and cos @ > 0.
Defining

Q(z)= P(z)sec o -itan o,

we then have the relations % Q(z) > 0, Q(0) =1, and
f'(z) = %Z—) [Q(z)cos @ +1i sin a] .

THEOREM 6. If f(z) is close-to-convex and f'(z) is not of the form
a(l - zeiT)-2 P(z), wherve RP(z) > 0, then

(i) there exists 6= 6(f) > 0 such that £'(z) € H/3+0,
(ii) there exists € = e(f) > 0 such that 1(z) € Hl/2t€

Proof. Statement (ii) follows from (i) by Theorem E. To prove (i), we use a
technique essentially the same as that used in the proof of part (ii) of the previous
theorem. By (15), we have that £'(z) is of the form
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(z) = B2 pgy),

where g(z)/z € H1/2%€ for g suitable & > 0, by Theorem 5. Applying Holder’s in-
equality with conjugate indices p and q, where p = (1/2 +¢)/(1/3 + 8) and 6 < ¢, we
find that

l
-7
The first expression on the right-hand side is bounded, by the choice of p. By Lem-

ma B, the second expression is bounded provided q(1/3 + 6) < 1, that is, provided
we further choose 6 such that 6 < 4¢e/9 + 6¢).

5. THE VALUE OF lim |a |/n
If f(z) is close-to-convex but is now of the form
(16) £'(z) = a(l - zeiT)-2P(z),

then, again using Holder’s inequality and Lemmas A and B, we find that f'(z) € H*
for all A < 1/3. The fact that f(z) ¢ H1/2 (and a fortiori f'(z) d H1/3) in general,
is illustrated not only by the Koebe function f(z) = az(l - zeiT)-2 put, for example,
by an f(z) defined by £'(z) = (1 - z)~2(1 +z2)(1 - z2)~! . In these and other obvious
cases, however, a, /n 4 0, and thus it seems natural to consider close-to-convex
functions f(z) of the type defined by (16) and ask

a) is there an f(z) such that a,/n — 0 but i(z) ¢ Hl/29
b) what property of P(z) characterizes the value of lim |a,nl /n?

An affirmative answer to the first question is contained in the following theorem.
-1 1 -1
THEOREM 7. Let P(z) =(1 - z) log 2 + log - ,

takes its principal value. Then R P(z) >0 for |z| < 1 and, for a close-to-convex

Sunction f(z) = 22 a,z"” defined by the velation

wheve the logarithm

f'(z) = (1 - 2)"% P(z),

we have that £(z) ¢ gl/2 although a,/n — 0.
Proof. With z = elf (-7 < 0 <), we have the equation

9N [1/P(e19)] = (1 - cos 0)log |cosec 9/2, - sin 0-arg(l - eif).

The first term on the right is nonnegative. Since sin 6 and arg(1 - eie) have op-
posite sign, the second term is also nonnegative. It follows from the minimum prin-
ciple for harmonic functions that % [1/P(z)] > 0, and hence % P(z) > 0. Next, con-
sider f(x), where x is real and positive. Integrating by parts, we find that
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-1
f(x) = -;:(1 - x)'z[log 2 + log 1 } x] - %(Iog 2)"1

-2
1
S 1-x)" l:log2+log1_x:| dx

1 2 I 11 2 '
_>_§(1—x) [:log2+10g1—x] —E(logZ) ~§(1—x) [logl_x:l

Tr
as x — 1. Thus S |£(x)|!/%2 dx — @ as r— 1. The Fejér-Riesz inequality [1]
-r
r T .
5 l[tx)[1/2ax < A S |t(re 10)[1/2 qo
—r -1T

(where A is a constant) now implies that f(z) ¢ Hl/z,
Finally, denoting by P(r, 6‘) the Poisson kernel (1 - r2)(1 - 2rcos 6 +1r2)™1,

writing |log 2+log1/(1 - z)| -* = w(z), and applying the Cauchy integral formula
with r =1 - 1/n, we find that
an 1 S f'(z) r- S i6
- P I | i nzzndz < P(r, 0)w(rel?)do .
7| =

Since r % = O(1), it now remains to prove only that the latter integral tends to zero
as r — 1. Defining w(l) = 0, we find that w(z) is continuous for I < 1; hence
w(reif) — w(eif) uniformly. By familiar properties of P(r, 6), we have

lim S P(r, 6)w(rei®)ds = lim S P(r, 0)w(eif)do = w(1) =
r —1 - r—1 Y-

The answer to question (b) is the following.

THEOREM 8. If the close-to-convex function f(z) = 27 a,z" is given by the
condition that

£(z) = a(l - ze'7) 2 P(z),

where a is complex, T is veal, and

m -it
P(z) = Q(z)cos @ +isine, Qz) = S i—EL—‘Z—E—_—i—tdu(t),

then
lan]/n — |a| cos @ [u(7 +0) - p(T - 0)].

In particular, |a,|/n — 0 if and only if p(t) is continuous at 7.
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> e] .
Proof. Let Q(z) = Eo bz (bg=1), £ =2ze ', and define s, = EO by ekl'r
n = EB S . Then

£(elT &) = a(l - £)~2P(£elT) = a(l - £)"?[Q(teiT)cos o +i sin a]

0

acosa (1-£)' 2 s M +aisina(l-£)2
- 0

0

acos a 2J t t" +aisina 27 (n+1)&"
0 0

Comparing coefficients of £", we find that

an

n

(17) = |a| cos @ +0(1) .

But s,/n— 2[p(x+0) - p(x - 0)] [13, p. 107, (9.3)], or
= 2n[p(A +0) - p(x - 0)] +ne,,,

where £, — 0. Summing this equation over n and dividing by n2 | we obtain the
relation
n

(18) t—n?: = (1+1/n)[pr+0)- p(r - 0)] +n~2 27 ke .
n 0

The last term tends to zero as n — «, and the combination of (17) and (18) gives the
desired result.

Added in proof (July 30, 1970). W. E. Kirwan has pointed out to the authors that
if f(z) € Sp, if B> 0 is the ma.x1mum discontinuity of the measure pu(t) associated
with £(z), and if M(r) = maxg |f(re1 )| then an application of the order relation

M(r) = O[(1 - r)~28-€]

(see [11, Theorem 1]) and of the inequality
A R |
My ®) <2 § e MNe ap

(see [9], for example) immediately shows that (z) € H7t for each A < 1/28. An
application of Holder’s inequality then shows that f'(z) € H* for each x < 1/(1 + 2B).
This remark permits the formulation of more precise forms of Theorems 4 and 5.
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