TRANSLATION IN MEASURE ALGEBRAS AND THE CORRESPONDENCE TO FOURIER TRANSFORMS VANISHING AT INFINITY

Charles F. Dunkl and Donald E. Ramirez

Let G denote a locally compact (not necessarily abelian) group and M(G) the collection of finite regular Borel measures on G. The set M(G) is a semisimple Banach algebra with identity under convolution *. It can be identified with the dual space of $C_0(G)$, the space of continuous complex-valued functions on G that vanish at infinity, with the sup-norm. The group G has a left-invariant regular Borel measure dm(x) that is unique up to a constant and is called the left Haar measure of G. Let $C^B(G)$ denote the space of bounded continuous functions on G. For each $x \in G$, we define on $C^B(G)$ the left-translation operator by the relation

$$L(x)f(y) = f(x^{-1}y) \qquad (f \in C^{B}(G)).$$

We say that $f \in C^B(G)$ is right uniformly continuous if $L(x_\alpha)f \xrightarrow{\alpha} L(x)f$ uniformly, whenever $x_\alpha \xrightarrow{\alpha} x$. Let $C^B_{ru}(G)$ denote the subspace of $C^B(G)$ of right uniformly continuous functions. For $\mu \in M(G)$, define $L(x)\mu \in M(G)$ by the condition

$$\int_{G} f(t) dL(x) \mu(t) = \int_{G} L(x^{-1}) f(t) d\mu(t),$$

where $f \in C_0(G)$. We wish to study for which $\mu \in M(G)$ the map $x \mapsto L(x)\mu$ is continuous from G into M(G), where M(G) will be equipped with an L(x)-invariant metric topology. In particular, we shall characterize $M_0(G)$, the algebra of measures whose Fourier transform vanishes at infinity.

Let $A \subset C^B_{ru}(G)$ be a linear subspace with sufficiently many elements to separate the points of M(G); in other words, if $\mu \in M(G)$ and if

$$\int_{G} f(t) d\mu(t) = 0$$

for all $f \in A$, then $\mu = 0$. We are then able to pair A and M(G) by the relation

$$\langle f, \mu \rangle = \int_G f(t) d\mu(t)$$
 (f \in A; \mu \in M(G)).

Let $\sigma(A, M(G))$ denote the weak topology on A induced by this pairing. Suppose A can be written as $\bigcup_{k=1}^{\infty} A_k$, where each A_k is a subset of A that is L(x)-invariant for all $x \in G$ and where each A_k is $\sigma(A, M(G))$ -bounded. Note that A_k is

Received December 24, 1969.

This research was supported in part by NSF contract number GP 8981.

Michigan Math. J. 17 (1970).

 $\sigma(A, M(G))$ -bounded if and only if A_k is bounded in sup-norm. We let $\mathscr{T}(A_k)$ denote the topology on M(G) of uniform convergence on the sets A_k . Note that $\mathscr{T}(A_k)$ gives an L(x)-invariant metric topology on M(G). For $k \geq 1$, let

$$\tau_{k}(\mu) = \sup \{ |\langle f, \mu \rangle| : f \in A_{k} \}.$$

Then τ_k is an L(x)-invariant seminorm on M(G).

Definition. For $\mu \in M(G)$, we say that μ has separable orbit in $(M(G), \mathcal{F}(A_k))$ if there exists a sequence $\{x_n\}_{n=1}^{\infty} \subset G$ such that for each $x \in G$, $k \geq 1$, and $\epsilon > 0$, there exists an x_n such that $\tau_k(L(x)\mu - L(x_n)\mu) < \epsilon$.

PROPOSITION 1. Let $\mu \in M(G)$ have separable orbit in $(M(G), \mathcal{F}(A_k))$. Then $s \mapsto L(s)\mu$ is continuous from G to $(M(G), \mathcal{F}(A_k))$.

Proof. Let $s_{\alpha} \xrightarrow{\alpha} s$. Choose $k \geq 1$ and $\epsilon > 0$. We need to show there exists an α_0 such that for $\alpha \geq \alpha_0$, we have the inequality $\tau_k(L(s_{\alpha})\mu - L(s)\mu) < \epsilon$. Note that for $f \in C^B_{ru}(G)$, $L(y_{\bar{\beta}}^{-1})f \xrightarrow{\beta} L(y^{-1})f$ uniformly as $y_{\beta} \xrightarrow{\beta} y$ (and hence as $y_{\bar{\beta}}^{-1} \xrightarrow{\beta} y^{-1}$). Thus

$$\langle f, L(y_{\beta}) \mu \rangle = \langle L(y_{\beta}^{-1}) f, \mu \rangle \xrightarrow{\beta} \langle L(y^{-1}) f, \mu \rangle = \langle f, L(y) \mu \rangle.$$

Let $S(n) = \{ y \in G: \tau_k(L(y)\mu - L(x_n)\mu) \le \epsilon/3 \}$. We wish to show that S(n) is closed. Let $y_\beta \in S(n)$ be such that $y_\beta \xrightarrow{\beta} y$. Thus

$$\tau_{k}(L(y)\,\mu\,-\,L(x_{n})\,\mu)\,=\,\sup\big\{\lim_{\beta}\,\big|\,\big\langle\,f,\,L(y_{\beta})\,\mu\,-\,L(x_{n})\,\mu\,\big\rangle\,\big|\colon f\in\,A_{k}\big\}\,\leq\,\epsilon/3\,.$$

Hence S(n) is closed.

By hypothesis, $G = \bigcup_{n=1}^{\infty} S(n)$. By the Baire category theorem for locally compact groups, there exists n_0 such that $S(n_0)$ has an interior. Thus there exists an open set U about s such that $t_0 s^{-1} U \subset S(n_0)$ for some $t_0 \in S(n_0)$. Let α_0 be such that $s_{\alpha} \in U$ for $\alpha \geq \alpha_0$. We now show that for $\alpha \geq \alpha_0$, the inequality

$$au_{\rm k}({\rm L}({\rm s}_{lpha})\,\mu$$
 - ${\rm L}({\rm s})\,\mu)$ $<$ ϵ

holds. For $\alpha \geq \alpha_0$, we have that

$$\begin{split} \tau_{k}(\mathbf{L}(\mathbf{s}_{\alpha})\mu - \mathbf{L}(\mathbf{s})\mu) &= \tau_{k}(\mathbf{L}(\mathbf{t}_{0}\mathbf{s}^{-1})\mathbf{L}(\mathbf{s}_{\alpha})\mu - \mathbf{L}(\mathbf{t}_{0}\mathbf{s}^{-1})\mathbf{L}(\mathbf{s})\mu) \\ &\leq \tau_{k}(\mathbf{L}(\mathbf{t}_{0}\mathbf{s}^{-1}\mathbf{s}_{\alpha})\mu - \mathbf{L}(\mathbf{x}_{\mathbf{n}_{0}})\mu) + \tau_{k}(\mathbf{L}(\mathbf{x}_{\mathbf{n}_{0}})\mu - \mathbf{L}(\mathbf{t}_{0})\mu) \\ &\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon\,, \end{split}$$

since t_0 , $t_0 s^{-1} s_{\alpha} \in t_0 s^{-1} U \subset S(n_0)$.

PROPOSITION 2. Let G be σ -compact. If $x \mapsto L(x) \mu$ is continuous from G to $(M(G), \mathcal{F}(A_k))$, then μ has separable orbit in $(M(G), \mathcal{F}(A_k))$.

Proof. Note that $(M(G), \mathcal{F}(A_k))$ is a metric space. Let $G = \bigcup_{n=1}^{\infty} K_n$, where K_n is compact. The image of K_n under $x \to L(x)\mu$ is a compact metric space and hence is separable. Thus the image of G is separable.

If G is not σ -compact and M(G) has the measure norm topology, then no non-zero measure has a separable orbit.

We now show that $\mu \in M(G)$ has the property that $x \mapsto L(x)\mu$ is continuous from G to $(M(G), \mathcal{F}(A_k))$ if and only if μ is in the $\mathcal{F}(A_k)$ -closure of $L^1(G)$, denoted by $L^1(\overline{G})^A$.

THEOREM 3. Let $\mu \in M(G)$ be such that $x \mapsto L(x)\mu$ is continuous from G to $(M(G), \mathscr{F}(A_k))$. Then $\mu \in L^1(\overline{G})^A$.

Proof. Let $\{f_{\alpha}\}$ be an approximate identity in $L^{1}(G)$, indexed over a neighborhood base of e; in other words, support $(f_{\alpha}) \subset \alpha$, $f_{\alpha} \geq 0$, and $\|f_{\alpha}\|_{1} = 1$. Choose $k_{0} \geq 1$ and $\epsilon > 0$. It suffices to show that $\tau_{k}(f_{\alpha}*\mu - \mu) \leq \epsilon$ for $\alpha \geq \alpha_{0}$, for some α_{0} . Pick U to be a symmetric neighborhood of e in G such that

$$\tau_{k}(L(x)\mu - \mu) < \varepsilon$$

for $x \in U$. Choose α_0 such that the inequality $\alpha \geq \alpha_0$ implies that support $(f_{\alpha}) \subset U$. Now for $\alpha \geq \alpha_0$,

$$\begin{split} \tau_{k}(f_{\alpha}*\mu - \mu) &= \sup \big\{ \left| \left\langle \phi, f*\mu - \mu \right\rangle \right| \colon \phi \in A_{k} \big\} \\ &= \sup \left\{ \left| \left| \int_{G} \phi(x) df_{\alpha}*\mu(x) - \int_{G} \phi(y) d\mu(y) \right| \colon \phi \in A_{k} \right. \right\} \\ &= \sup \left\{ \left| \left| \int_{G} \int_{G} \phi(xy) d\mu(y) f_{\alpha}(x) dx - \int_{G} \int_{G} f_{\alpha}(x) dx \phi(y) d\mu(y) \right| \colon \phi \in A_{k} \right. \right\} \\ &= \sup \left\{ \left| \left| \int_{G} f_{\alpha}(x) dx \right| \left[\left| \int_{G} \phi(y) dL(x) \mu(y) - \int_{G} \phi(y) d\mu(y) \right| \right] \right| \colon \phi \in A_{k} \right. \right\} \\ &\leq \sup_{x \in \Pi} \tau_{k}(L(x) \mu - \mu) \leq \varepsilon. \quad \blacksquare \end{split}$$

THEOREM 4. Let $\mu \in L^1(\overline{G})^A$. Then $x \mapsto L(x)\mu$ is continuous from G to $(M(G), \mathscr{T}(A_k))$.

Proof. We note first that since A_k is $\sigma(A, M(G))$ -bounded and L(x)-invariant, A_k is a sup-norm bounded set in $C^B(G)$; in fact, for all $x \in G$, we have that

$$\sup_{f \in A_k} \left| f(x) \right| = \sup_{f \in A_k} \left| \int_G L(x^{-1}) f d\delta_e \right| = \sup_{f \in A_k} \left| \int_G f d\delta_e \right| = M < \infty ,$$

where δ_e is the unit mass at e. Now $x\mapsto L(x)\mu$ is continuous from G to M(G) in the measure norm, for $\mu\in L^1(G)$. Thus, since A_k is a sup-norm bounded set, $x\mapsto L(x)\mu$ is continuous from G to (M(G), $\mathscr{I}(A_k)$) for $\mu\in L^1(G)$. Choose $\mu\in L^1(G)^A$, and let $x_\alpha\stackrel{\alpha}{\to} x$. Let $k\geq 1$ and $\epsilon>0$. We need to find an α_0 such that if $\alpha_0\leq \alpha$, then $\tau_k(L(x_\alpha)\mu-L(x)\mu)<\epsilon$. First pick $f\in L^1(G)$ such that $\tau_k(f-\mu)<\epsilon/3$. Now choose α_0 such that for $\alpha\geq\alpha_0$, $\tau_k(L(x_\alpha)f-L(x)f)<\epsilon/3$. Thus for $\alpha\geq\alpha_0$,

$$\begin{split} \tau_k(L(x_\alpha)\mu - L(x)\mu) &\leq \tau_k(L(x_\alpha)\mu - L(x_\alpha)f) + \tau_k(L(x_\alpha)f - L(x)f) + \tau_k(L(x)f - L(x)\mu) \\ &< \tau_k(\mu - f) + \frac{\epsilon}{3} + \tau_k(f - \mu) < \epsilon \;. \end{split}$$

Remark. The two theorems above also hold if A is a space of bounded Borel functions, rather than a subspace of $C_{ru}^{B}(G)$.

For $\mu \in M(G)$, let $\|\mu\|$ denote the measure norm of μ , that is, the norm of μ as a linear functional on $C_0(G)$ with sup-norm $\|f\|_{\infty} = \sup \{|f(x)|: x \in G\}$. If we let $A_k = \{f \in C_0(G): \|f\|_{\infty} < k\}$, then $\mathscr{T}(A_k)$ is the measure norm topology. Thus we have the following corollaries.

COROLLARY 5. Let $\mu \in M(G)$. If μ has separable orbit in $(M(G), \| \cdot \|)$, then $x \mapsto L(x)\mu$ is continuous from G to $(M(G), \| \cdot \|)$.

Suppose G is σ -compact. If $x \mapsto L(x) \mu$ is continuous from G to $(M(G), \|\cdot\|)$, then μ has separable orbit in $(M(G), \|\cdot\|)$.

COROLLARY 6. Let $\mu \in M(G)$. The measure μ is absolutely continuous if and only if $x \mapsto L(x) \mu$ is continuous from G to $(M(G), \| \cdot \|)$.

Remarks. Propositions 1 and 2 are similar in spirit to a theorem of K. Shiga [8] in the compact case. Corollary 5 was obtained by R. Larsen [5] for the case where G is second countable and by K. W. Tam [9] in the general case. Corollary 6 was obtained by W. Rudin [7].

We now study M(G) under its sup-norm $\|\cdot\|_{\infty}$. We shall give first the abelian case for motivation. We then treat the compact nonabelian case and finally the general case.

Let G be abelian, and let \hat{G} denote the character group of G. For $\mu \in M(G)$, define $\hat{\mu}(\gamma) = \int_G \overline{\gamma(x)} \, d\mu(x)$, for $\gamma \in \hat{G}$. Then $\hat{\mu}$ is the Fourier transform of μ . For $\mu \in M(G)$, let

$$\|\mu\|_{\infty} = \sup\{|\hat{\mu}(\gamma)|: \gamma \in \hat{G}\}.$$

Let $M_0(G) = \{ \mu \in M(G) : \mu \in C_0(\hat{G}) \}.$

COROLLARY 7. Let G be abelian. The map $x\mapsto L(x)\,\mu$ is continuous from G to $(M(G),\,\|\cdot\|_\infty)$ if and only if $\mu\in M_0(G)$.

Proof. Let $A_k = \{\hat{f}: f \in L^1(\hat{G}) \text{ with } \|f\|_1 < k\}$. Then $\mathcal{F}(A_k)$ is the topology of $(M(G), \|\cdot\|_{\infty})$.

Remark. Corollary 7 was obtained by R. Goldberg and A. Simon [3]. They used the following result: If U is a relatively compact neighborhood of 0 in G (where G is abelian), there exists a compact subset K of \hat{G} such that for $\gamma \in \hat{G} \setminus K$, there exists an $x \in U$ with $\Re \gamma(x) \leq 0$. To see this, let $\sqrt{2} \leq \delta < \sqrt{3}$, and define $U^0 = \left\{ \gamma \in \hat{G} : \left| \gamma(x) - 1 \right| < \delta \text{ for all } x \in U \right\}$. Note that U^0 is relatively compact in \hat{G} (K. H. Hofmann and P. S. Mostert [4, p. 284] or Pontryagin [6, p. 237]). Let K be the closure of U^0 in \hat{G} . We now prove the analogous result for the case where G is compact and nonabelian. This result is independent of the rest of this paper. We use the notation of Dunkl and Ramirez [1, Chapters 7 and 8], where proofs of unproved statements below may be found.

Let G be a compact, nonabelian group. We let \hat{G} denote the set of equivalence classes of continuous, unitary irreducible representations of G. For $\alpha \in \hat{G}$, let T_{α} be an element of α . Then T_{α} is a homomorphism of G into $U(n_{\alpha})$, the group of unitary $n_{\alpha} \times n_{\alpha}$ matrices, where n_{α} is the dimension of α . We use $T_{\alpha}(x)_{ij}$ to denote the matrix entries of $T_{\alpha}(x)$ $(1 \le i, j \le n)$ and $T_{\alpha ij}$ to denote the function $x \mapsto T_{\alpha}(x)_{ij}$. Clearly

$$T_{\alpha}(xy)_{ij} = \sum_{k=1}^{n_{\alpha}} T_{\alpha}(x)_{ik} T_{\alpha}(y)_{kj}$$
 and $T_{\alpha}(y^{-1})_{ij} = \overline{T_{\alpha}(y)_{ji}}$.

Furthermore, $T_{\alpha ij} \in C(G)$, where C(G) denotes the set of continuous functions on G. For $\alpha \in \hat{G}$, let

$$\chi_{\alpha}(x) = \operatorname{trace}(T_{\alpha}(x)) = \sum_{i=1}^{n_{\alpha}} T_{\alpha}(x)_{ii}.$$

This trace χ_{α} is called the character of α , and it is independent of the choice of T_{α} in α . Let X be an n-dimensional, complex inner-product space. Let $\mathscr{B}(X)$ denote the space of linear maps from X into X. We define the operator norm of A $\in \mathscr{B}(X)$ by

$$\|A\|_{\infty} = \sup \{ |A\xi| : \xi \in X, |\xi| < 1 \}.$$

For the trace of A, we find that $\operatorname{Tr} A = \sum_{i=1}^n (A\xi_i, \, \xi_i)$, where $\left\{\xi_i\right\}_{i=1}^n$ is some orthonormal basis for X and $(\,\cdot\,,\,\cdot\,)$ denotes the inner product in X. Let |A| denote $(A*A)^{1/2}$. The operator norm of A is $\|A\|_{\infty}$, that is, $\max\left\{\lambda_i\colon 1\leq i\leq n\right\}$, where the λ_i are the eigenvalues of |A|. For each $A\in \mathscr{B}(X)$, we have the inequality $|\operatorname{Tr} A|\leq n\,\|A\|_{\infty}$.

PROPOSITION 8. Let G be a compact group. Suppose $0 < \delta < \sqrt{3}$, and let U be a neighborhood of e in G. Let $U^0 = \{\alpha \in \hat{G}: \|T_{\alpha}(x) - I\|_{\infty} < \delta \text{ for all } x \in U\}$. Then U^0 is finite.

Proof. We show that U^0 is an equicontinuous set of representations of G. Choose $\epsilon>0$. Let K be a positive constant such that for $0\leq\theta\leq 2\pi/3$, we have the inequality $\left|e^{i\theta}-1\right|\leq K\theta$ (for example, let $K=3\pi\sqrt{3}/2$). Define

$$V_m = \{x \in G: x, x^2, \dots, x^m \in U\}.$$

Clearly, V_m is a neighborhood of e in G. Pick m such that $K\delta/m < \epsilon$. Then for $x_1, x_2 \in G$ with $x = x_1^{-1}x_2 \in V_m$, we have that

$$\begin{aligned} \|T_{\alpha}(x_{1}) - T_{\alpha}(x_{2})\|_{\infty} &= \|I - T_{\alpha}(x_{1}^{-1}x_{2})\|_{\infty} &= \|I - T_{\alpha}(x)\|_{\infty} \\ &= \sup\{|1 - e^{i\theta_{j}}|: 1 \leq j \leq n_{\alpha}\} \quad (\alpha \in U^{0}), \end{aligned}$$

by diagonalizing $T_{\alpha}(x)$. Thus

$$\|\mathbf{I} - \mathbf{T}_{\alpha}(\mathbf{x}^{r})\|_{\infty} = \sup \{ |\mathbf{1} - e^{ir\theta j}| : 1 \leq j \leq n_{\alpha} \} < \delta$$

for $1 \le r \le m$. Therefore

$$\|\text{I-T}_{\alpha}(x)\|_{\infty} \,=\, \sup\, \{\, \big|\, \text{I-e}^{\text{i}\,\theta \text{j}}\, \big| \colon 1 \leq \text{j} \leq n_{\alpha}\, \} \,<\, \frac{K\delta}{m} <\, \epsilon \;.$$

Thus U^0 is an equicontinuous set of representation of G.

Let $\chi_{\alpha}=\mathrm{Tr}\; T_{\alpha}$. We claim that $\left\{\chi_{\alpha}/n_{\alpha}\colon \alpha\in U^{0}\right\}$ is an equicontinuous, uniformly bounded set of functions. This is the case since

$$|\operatorname{Tr}(I - T_{\alpha})| \leq n_{\alpha} ||I - T_{\alpha}||_{\infty}.$$

Further $\|\chi_{\alpha}/n_{\alpha}\|_{\infty} \leq 1$, and hence $\{\chi_{\alpha}/n_{\alpha}: \alpha \in U^{0}\}$ is relatively compact, by the Arzelà-Ascoli theorem. Since the $\{\chi_{\alpha}/n_{\alpha}\}$ are orthogonal in $L^{2}(G)$, either U^{0} is finite or $\{\chi_{\alpha}/n_{\alpha}: \alpha \in U^{0}\}$ has 0 as a uniform cluster point. This latter condition cannot happen, since $\chi_{\alpha}(e)/n_{\alpha}=1$.

Let G be as above (that is, compact and nonabelian). We shall give the analogue to Corollary 7. Let the set $\phi = \{\phi_{\alpha} \colon \alpha \in \hat{G}, \text{ where } \phi_{\alpha} \in \mathcal{B}(C^{n_{\alpha}})\}$ be such that $\sup \{\|\phi_{\alpha}\|_{\infty} \colon \alpha \in \hat{G}\} < \infty$. The set of all such ϕ is denoted by $\mathscr{L}^{\infty}(\hat{G})$. It is a Banach algebra under the norm $\|\phi\|_{\infty} = \sup \{\|\phi_{\alpha}\|_{\infty} \colon \alpha \in \hat{G}\}$ and under co-ordinatewise operations. Let

$$\mathscr{C}_0(\hat{\mathbf{G}}) = \left\{ \phi \in \mathscr{L}^{\infty}(\hat{\mathbf{G}}) : \lim_{\alpha \to \infty} \|\phi_{\alpha}\|_{\infty} = 0 \right\}.$$

For $\mu \in M(G)$, the Fourier transform $\hat{\mu}$ of μ is a matrix-valued function, defined for $\alpha \in \hat{G}$ by the relation

$$\alpha \mapsto \hat{\mu}_{\alpha} = \int_{G} T_{\alpha}(x^{-1}) d\mu(x).$$

Note that $\hat{\mu} \in \mathscr{L}^{\infty}(\hat{G})$. Thus for $\mu \in M(G)$, let $\|\mu\|_{\infty} = \sup\{\|\hat{\mu}_{\alpha}\|_{\infty} : \alpha \in \hat{G}\}$. We define $M_0(G)$ to be the set $\{\mu \in M(G) : \hat{\mu} \in \mathscr{C}_0(\hat{G})\}$.

Let $A \in \mathcal{B}(X)$, where X is a finite-dimensional, complex inner-product space. We define the dual norm to $\|\cdot\|_{\infty}$ by $\|A\|_1 = \sup\{|\operatorname{Tr}(AB)|: \|B\|_{\infty} \leq 1\}$. This norm can also be characterized by the condition $\|A\|_1 = \operatorname{Tr}(|A|)$. For $\phi \in \mathscr{L}^{\infty}(G)$, we put

$$\|\phi\|_1 = \sum_{\alpha \in \widehat{G}} n_{\alpha} \|\phi_{\alpha}\|_1.$$

Let $\mathscr{Q}^1(\hat{\mathsf{G}}) = \{ \phi \in \mathscr{Q}^\infty(\hat{\mathsf{G}}) \colon \|\phi\|_1 < \infty \}$. Then $\mathscr{Q}^1(\hat{\mathsf{G}})$ is a Banach space under $\|\cdot\|_1$. For $\phi \in \mathscr{Q}^1(\hat{\mathsf{G}})$, let $\operatorname{Tr}(\phi) = \sum_{\alpha \in \hat{\mathsf{G}}} n_\alpha \operatorname{Tr}(\phi_\alpha)$. For $\psi \in \mathscr{Q}^1(\mathsf{G})$ and $\phi \in \mathscr{Q}^\infty(\mathsf{G})$, we obtain the inequality $|\operatorname{Tr}(\phi\psi)| \leq \|\phi\|_\infty \|\psi\|_1$.

We now define A(G), the Fourier algebra of G, and we pair A(G) and M(G) to get the compact analogue of Corollary 7. Let A(G) be the set of $f \in C(G)$ for which $\hat{f} \in \mathcal{L}^1(\hat{G})$. We define a norm on A(G) by

$$\|\mathbf{f}\|_{A} = \|\mathbf{\hat{f}}\|_{1} = \sum_{\alpha \in \widehat{G}} n_{\alpha} \|\mathbf{\hat{f}}_{\alpha}\|_{1} < \infty.$$

Note that A(G) is isomorphic to $\mathscr{L}^1(\hat{G})$, because for each $\phi \in \mathscr{L}^1(\hat{G})$, the function $f(x) = \sum_{\alpha \in \hat{G}} n_\alpha \operatorname{Tr} (\phi_\alpha T_\alpha(x))$ is in A(G); further,

$$\|\mathbf{f}\|_{\infty} = \sup_{\mathbf{x} \in G} \left| \sum_{\alpha \in \hat{G}} \mathbf{n}_{\alpha} \operatorname{Tr} \left(\phi_{\alpha} \mathbf{T}_{\alpha}(\mathbf{x}) \right) \right| \leq \sum_{\alpha \in \hat{G}} \mathbf{n}_{\alpha} \|\phi_{\alpha}\|_{1} = \|\phi\|_{1}.$$

We note that for $f \in A(G)$, $||L(x)f||_A = ||f||_A$.

THEOREM 9. Let G be a compact (nonabelian) group, and let $\mu \in M(G)$. Then $x \mapsto L(x) \mu$ is continuous from G to $(M(G), \| \cdot \|_{\infty})$ if and only if $\mu \in M_0(G)$.

Proof. For $\mu \in M(G)$ and $f \in A(G)$, we define

$$\langle f, \mu \rangle = \int_G f(t) d\mu(t) = Tr(\hat{\mu}\hat{h}),$$

where $h(t) = f(t^{-1})$. If \check{f} is defined by $\check{f}(t) = f(t^{-1})$, then $\|\check{f}\|_A = \|f\|_A$. Thus $\langle \check{f}, \mu \rangle = Tr(\hat{\mu}\hat{f})$. Let $A_k = \{f \in A(G): \|f\|_A < k\}$, and let $\mathscr{T}(A_k)$ be the topology on M(G) of uniform convergence on the sets A_k . Since

$$|\operatorname{Tr}(\hat{\mu}\hat{\mathbf{f}})| \leq \|\hat{\mu}\|_{\infty} \|\hat{\mathbf{f}}\|_{1} = \|\hat{\mu}\|_{\infty} \|\mathbf{f}\|_{A} = \|\mu\|_{\infty} \|\mathbf{f}\|_{A},$$

the topology $\mathscr{T}(A_k)$ is weaker than the $\|\cdot\|_{\infty}$ -topology on M(G). However, since $\mathscr{L}^{\infty}(\hat{G})$ is identified with the dual space of $\mathscr{L}^1(\hat{G})$ by $\psi \to \operatorname{Tr}(\phi \psi)$ for $\phi \in \mathscr{L}^{\infty}(\hat{G})$ and $\psi \in \mathscr{L}^1(\hat{G})$, $\mathscr{T}(A_k)$ is the same as the $\|\cdot\|_{\infty}$ -topology on M(G). Furthermore, A_k is L(x)-invariant, since $\|L(x)f\|_A = \|f\|_A$ for $f \in A(G)$. We now apply Theorems 3 and 4.

We conclude now with the general case. We shall use the machinery developed by P. Eymard [2], and we shall follow his conventions in the use of x in various formulae, where we used x^{-1} in the compact and abelian cases discussed above.

Let G be a locally compact group. Let Σ denote the equivalence classes of the continuous unitary representations on G. For $\pi \in \Sigma$, let \mathscr{H}_{π} denote the representation space. We define $\hat{\mu}$ to be a function on Σ by $\pi \mapsto \hat{\mu}(\pi) = \int_G \pi(x) d\mu(x)$. For $\mathscr{G} \subset \Sigma$, let

$$\|\mu\|_{\mathscr{S}} = \sup \{\|\hat{\mu}(\pi)\|_{\infty} : \pi \in \mathscr{S} \},$$

where $\|\hat{\mu}(\pi)\|_{\infty}$ denotes the operator norm on \mathscr{H}_{π} . We define $C^*(G)$ to be the completion of $L^1(G)$ in $\|\cdot\|_{\Sigma}$ (see [2, Section 1.14]). Let $\{\rho\}$ denote the subset of Σ containing just the left regular representation of G on $L^2(G)$. Let $C^*_{\rho}(G)$ denote the completion of $L^1(G)$ in $\|\cdot\|_{\rho}$ (see [2, Section 1.16]).

For $\mu \in M(G)$, we let $\rho(\mu)$ denote the bounded operator on $L^2(G)$, defined by $h \mapsto \mu * h$ ($h \in L^2(G)$), with operator norm $\|\rho(\mu)\|_{\rho}$. Let $\mathcal{B}(L^2(G))$ denote the set of bounded operators on $L^2(G)$. Then $C_{\rho}^*(G)$ can be identified with the closure of $\rho(L^1(G)) = \{\rho(f): f \in L^1(G)\}$ in $\mathcal{B}(L^2(G))$. If G is abelian, then $C_{\rho}^*(G) = C_0(G)$. If G is compact, then $C^*(G) = \mathscr{C}_0(\widehat{G})$.

Let VN(G) denote the von Neumann subalgebra of $\mathcal{B}(L^2(G))$ generated by the left translation operators (see [2, Section 3.9]). For $\mu \in M(G)$, we have that $\rho(\mu) \in VN(G)$. Further, $C^*_{\rho}(G) \subset VN(G)$. If G is abelian, then $VN(G) = L^{\infty}(\hat{G})$. If G is compact, then $VN(G) = \mathcal{L}^{\infty}(\hat{G})$.

Definition. $M_0(G) = \{ \mu \in M(G) : \rho(\mu) \in C_{\rho}^*(G) \}.$

Let B(G) denote the linear subspace of $C^B(G)$ generated by the continuous positive-definite functions. Then B(G) can be identified with the dual space of $C^*(G)$ (see $[2, Section\ 2.2]$). For $f \in B(G)$, let $\|f\|_B$ denote the norm of f as a linear functional on $C^*(G)$. Finally, let A(G) be the closed subalgebra of B(G) generated by the continuous positive-definite functions with compact support (see $[2, Section\ 3.4]$). If G is abelian, then $A(G) = L^1(\widehat{G})$. If G is compact, then our previous definitions and those of Eymard are consistent. We have the inclusion $A(G) \subset C_{ru}^B(G)$, since $A(G) \subset C_0(G)$. We let $A_k = \{f \in A(G): \|f\|_B < k\}$. Now for $f \in A(G)$, $\|L(x)f\|_B = \|f\|_B$; hence each A_k is L(x)-invariant. We pair A(G) and M(G) by the relation

$$\langle f, \mu \rangle = \int_G f(t) d\mu(t)$$
 (f \(A(G)\) and $\mu \in M(G)$).

Let $\mathscr{T}(A_k)$ be the topology on M(G) of uniform convergence on the sets A_k . We wish to apply Theorems 3 and 4 as we did in Theorem 9. To do this, it remains only to observe that VN(G) can be identified as the dual space of A(G) (see [2, Section 3.10]), and for $\mu \in M(G)$, the identification is given by the relation

$$f \mapsto \int_G f(x) d\mu(x) = \langle f, \mu \rangle,$$

where $f \in A(G)$. It follows now by Theorems 3 and 4 that $x \mapsto L(x)\mu$ is continuous from G to $(M(G), \|\cdot\|_{\rho})$ if and only if $\rho(\mu) \in \rho(L^1(\overline{G}))$ (the closure in $\mathcal{B}(L^2(G))$). Hence we have the following result.

THEOREM 10. Let G be a locally compact group. Let $\mu \in M(G)$. Then $x \mapsto L(x) \mu$ is continuous from G to $(M(G), \|\cdot\|_{\rho})$ if and only if $\mu \in M_0(G)$.

THEOREM 11. Suppose $A \subset C_{ru}^B(G)$ has the further property that A is dense in $L^1(|\mu|)$ for each $\mu \in M(G)$, and that for each $f \in A$ we have inclusions $fA_k \subset CA_{k'}$ ($k = 1, 2, \cdots$), where the constants C and k' depend on f and on f. Then $L^1(\overline{G})^A$ is a band; in other words, if $\mu \in L^1(\overline{G})^A$ and $\nu \ll \mu$, then $\nu \in L^1(\overline{G})^A$.

Proof. Let $\mu \in L^1(\overline{G})^A$ and $\nu \ll \mu$; then $d\nu = gd\mu$, for some Borel function $g \in L^1(|\mu|)$. Now there exist functions $f_m \in A$ $(m = 1, 2, \cdots)$ such that

$$\int_{G} |f_{m} - g| d|\mu| < 1/m ,$$

that is, $\|f_m d\mu - d\nu\|_{M(G)} \to 0$ as $m \to \infty$. We claim that each $f_m d\mu$ belongs to $L^1(\overline{G})^A$. For if $\{g_n\} \subset L^1(G)$ and $g_n \xrightarrow{n} \mu$ in $\mathscr{T}(A_k)$, then $f_m g_n \xrightarrow{n} f_m d\mu$ (note that $f_m g_n \in L^1(G)$). In fact, for each k, we have the relations

$$\begin{split} \tau_{k}(f_{m}g_{n}-f_{m}d\mu) &= \sup\left\{\left|\int_{G}\phi(x)f_{m}(x)[g_{n}(x)dx-d\mu(x)]\right|:\phi\in A_{k}\right\} \\ &\leq C\sup\left\{\left|\int_{G}\phi(x)[g_{n}(x)dx-d\mu(x)]\right|:\phi\in A_{k'}\right\} = C\tau_{k'}(g_{n}-d\mu), \end{split}$$

where C and k' depend on k and f_m . Thus $\tau_k(f_mg_n - f_md\mu) \xrightarrow{n} 0$, and $f_md\mu \in L^1(\overline{G})^A$.

Since $\mathscr{T}(A_k)$ -closed sets are closed in the measure norm topology (sup $\{\|\phi\|_{\infty}: \phi \in A_k\} < \infty$), we have that $\nu \in L^1(\overline{G})^A$.

COROLLARY 12. For every locally compact group G, M₀(G) is a band.

Proof. Let A = A(G) as before, and recall that A(G) is a dense subalgebra of $C_0(G)$ (for the locally compact case, see [2, Section 3.4]).

REFERENCES

- 1. C. Dunkl and D. Ramirez, Topics in harmonic analysis (to appear).
- 2. P. Eymard, L'algèbre de Fourier d'un groupe localement compact. Bull. Soc. Math. France 92 (1964), 181-236.
- 3. R. R. Goldberg and A. B. Simon, *Characterization of some classes of measures*. Acta Sci. Math. (Szeged) 27 (1966), 157-161.
- 4. K. H. Hofmann and P. S. Mostert, *Elements of compact semigroups*. Charles E. Merrill Books, Columbus, Ohio, 1966.
- 5. R. Larsen, Measures with separable orbits. Proc. Amer. Math. Soc. 19 (1968), 569-572.
- 6. L. S. Pontryagin, Topological groups. Gordon and Breach, New York, 1966.
- 7. W. Rudin, Measure algebras on abelian groups. Bull. Amer. Math. Soc. 65 (1959), 227-247.
- 8. K. Shiga, Representations of a compact group on a Banach space. J. Math. Soc. Japan 7 (1955), 224-248.
- 9. K. W. Tam, On measures with separable orbit. Proc. Amer. Math. Soc. 23 (1969), 409-411.

University of Virginia Charlottesville, Virginia 22901