TRANSLATION IN MEASURE ALGEBRAS AND THE
CORRESPONDENCE TO FOURIER TRANSFORMS
VANISHING AT INFINITY

Charles F. Dunkl and Donald E. Ramirez

Let G denote a locally compact (not necessarily abelian) group and M(G) the
collection of finite regular Borel measures on G. The set M(G) is a semisimple
Banach algebra with identity under convolution *. It can be identified with the dual
space of C(G), the space of continuous complex-valued functions on G that vanish
at infinity, with the sup-norm. The group G has a left-invariant regular Borel
measure dm(x) that is unique up to a constant and is called the left Haar measure of
G. Let CB(G) denote the space of bounded continuous functions on G. For each
x € G, we define on CB(G) the left-translation operator by the relation

Lx)(y) = fx~ly) (f e CB(@)).

We say that £ € CB(G) is right uniformly continuous if L(x o f &, 1.(x)f uniformly,

whenever x, % x. Let CI].?’u(G) denote the subspace of CB(G) of right uniformly con-
tinuous functions. For p € M(G), define L(x)p € M(G) by the condition

| twa@eo = | Lehiwa,
G G

where f € Cy(G). We wish to study for which y € M(G) the map x +— L(x)u is con-
tinuous from' G into M(G), where M(G) will be equipped with an L(x)-invariant
metric topology. In particular, we shall characterize M(G), the algebra of meas-
ures whose Fourier transform vanishes at infinity.

Let AC Cf’u(G) be a linear subspace with sufficiently many elements to sepa-

rate the points of M(G); in other words, if u© € M(G) and if
| twauw = o
G
for all f € A, then p = 0. We are then able to pair A and M(G) by the relation

(uy = §_ 10w @capem@).

Let o(A, M(G)) denote the weak topology on A induced by this pairing. Suppose A

! ©0
can be written as Uk=1 Ay, where each Ay is a subset of A that is L(x)-invariant
for all x € G and where each Ay is ¢(A, M(G))-bounded. Note that Ay is
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o (A, M(G))-bounded if and only if Ay is bounded in sup-norm. We let Z(Ajy) denote
the topology on M(G) of uniform convergence on the sets Ax. Note that 7 (Ax) gives
an L(x)-invariant metric topology on M(G). For k > 1, let

T () = sup{|<f, u) |:feA}.

Then 7 is an L(x)-invariant seminorm on M(G).

Definition. For p € M(G), we say that p has separable orbit in (M(G), 7 (Ay))
if there exists a sequence {x } -1 C€G such that for each x € G, k> 1, and € > 0,
there exists an x, such that 7 (L(x)u - L(x )u) <e.

PROPOSITION 1. Let i € M(G) have sepavable orbit in (M(G), 9(Ay). Then
s  L(s)u is continuous from G to (M(G), T(Ay)).

Proof. Let sy %, s. Choose k > 1 and € > 0. We need to show there exists an
ag such that for o > a, we have the inequality 7 (L(sg)p - L(s) ) <e&. Note that

for f € Cf’u(G), L(ygl)f g L(y “})f uniformly as /& A y (and hence as ygl 8 v 1.
Thus

(£, Liypu) = (Liyahs, 1) & {Leg u) = (5 Le)n).

Let Sh) = {y € G: 7, (L(y)p - L(x)p) <&/3}. We wish to show that S(n) is closed.

Let yg € S(n) be such that yg LA y. Thus

T (L(y) i - L(x,) 1) = sup {liBme, L(yB)u - L(xn)u> |: e A} <e/8.

Hence S(n) is closed.

[~
By hypothesis, G = Un 1 S(n). By the Baire category theorem for locally com-
pact groups, there exists ngy such that S(ng) has an interior. Thus there exists an
open set U about s such that tgs~!U c S(ng) for some tg € S(ng). Let @ be such
that sy € U for a > ag. We now show that for @ > @, the inequality

Ti(L(sg) e - L(s)p) < &
holds. For o > ag, we hé,ve that
Ti(L(sg) 1 - L(s)p) = 71(Lltos 1) Lisg) i - Lty s ™) L(s) )

< TilLltos ™ sg) i - Lilxng) k) + TiLxng) 1 - Lito) )

since tg, tgs !sg € tgs 1 U C S(np). m

PROPOSITION 2. Let G be o-compact, If x v— L(x)u is continuous from G
to (M(G), 7(Ay)), then p has separable orbit in (M(G), 7 (Ay)).

Proof. Note that (M(G), 7 (Ay)) is a metric space. Let G = U::1 K, , where
K, is compact. The image of K, under x — L(x)u is a compact metric space and
hence is separable. Thus the image of G is separable. ®
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If G is not 0-compact and M(G) has the measure norm topology, then no non-
zero measure has a separable orbit.

We now show that p € M(G) has the property that x — L(x)u is contlnuous
from G to (M(G), 7 (A1) if and only if g is inthe 7 (Ay)-closure of L!(G), denoted
by L(G)*

THEOREM 3. Let u € M(G) be such that x +— L(x)u is continuous from G to
(M(G), 7 (Ax)). Then p e LH{G)A.

Proof. Let {fy} be an approximate identity in L!(G), indexed over a neighbor-
hood base of e; in other words, support (fa) C @, fo > 0, and || fo ||1 = 1. Choose

ko> 1 and & > 0. It suffices to show that Tk(fa*p. p)<e for @ > o, for some
ag. Pick U to be a symmetric neighborhood of e in G such that

TrLE)w - 1) <e

for x € U. Choose a( such that the inequality @ > @y implies that
support (fy) € U. Now for o > ayp,

Tia*u - p)=sup {|{ ¢, tp - p)|: ¢ € AL}

7

= sup{ Sth(X)dfa*u(X) - SGfb(y)du(y)‘: ¢ € Ak§

sup { SG SG Plxy)dp(y)y (x)dx - SG EGfa (x)dx ¢(y)du(y)’: € Ay }

- sup{ ija(x)dx[ §_snareoum - § ¢(y)du(y):| o Ak}

<sup T (LE)p-p)<Le m
x €U

THEOREM 4. Let i € Ll(——G)A. Then x v+ L(x)u is continuous from G to
(M(G), 7(Ay)).

Proof. We note first that since Ay is 0(A, M(G))-bounded and L(x)-invariant,
Ay is a sup-norm bounded set in CB(G); in fact, for all x € G, we have that

S‘Gfd(ie

where 0. is the unit mass at e Now x — L(x)u is continuous from G to M(G) in
the measure norm, for p € L La). Thus, since Ay is a sup- norm bounded set,
x — L{x)u is contmuous from G to (M(G) F(Ay)) for p e L (G) Choose

T3 Ll(G)A and let xq % x. Let k>1 and € > 0. We need to find an @ such that
if @p < o, then 7Ti(L(xg) i - L(x)p) <e. First pick f € L1(G) such that

TR(E - 1) < €/3. Now choose &g such that for a > ag, Tr(L(xg)f - L{x)f) <g/3.
Thus for o > ag,

sup If(x)l sup =M < o,

fGAk f€A

= Ssup
fe Ak

L(x~1)fds,
S
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Ti(Llxg e - Lx)p) < 1 (Lxglu - Lixg) ) + 7 (Lixg) f - L(x)f) + 73 (L(x)f - L(x)u)
< Ty lw - f)+%+ T E-p)<e. m

Remavk. The two theorems above also hold if A is a space of bounded Borel
functions, rather than a subspace of Cf’u(G).

For p € M(G), let ”u ” denote the measure norm of u, that is, the norm of u
as a linear functional on Co(G) with sup-norm |f| e = sup {|f(x)|: x € G}. If we
let Ay={fe Cy(G): |||, <kl, then 7(A;) is the measure norm topology. Thus
we have the following corollaries.

COROLLARY 5. Let y € M(G). If p has separable orbit in (M(G), | - ||), then
x > L(x)p is continuous from G to (M(G), |] . ”)

Suppose G is o-compact. If x — L(x)u is continuous from G to (M(G), || . ]] ),
then p has separable orbit in (M(G), H . || ).

COROLLARY 6. Let p € M(G). The measuve . is absolutely continuous if and
only if x — L(x)u is continuous from G to (M(G), || .

Remarks. Propositions 1 and 2 are similar in spirit to-a theorem of K. Shiga
[8] in the compact case. Corollary 5 was obtained by R. Larsen [5] for the case
where G is second countable and by K. W. Tam [9] in the general case. Corollary 6
was obtained by W. Rudin [7].

We now study M(G) under its sup-norm " . || w - We shall give first the abelian
case for motivation. We then treat the compact nonabelian case and finally the gen-
eral case.

Let G be abelian, and let G denote the character group of G. For u € M(G),

define f(y) = S y(x)du(x), for y € G. Then [ is the Fourier transform of . For
G
u € M(G), let

el = swp {|i@)|: v e G}.

Let My(G) = {p € M(G): p € Cy(G)}.

COROLLARY 7. Let G be abelian. The map x — L(x)u is continuous from G
to (M(G), | - ”00) if and only if p € Mg(G).

Proof. Let Ay = {f: f e LYG) with [f]], <k}. Then 7 (Ay) is the topology of
(M(G), ” : Iloo)". ‘

Remark. Corollary 7 was obtained by R. Goldberg and A. Simon [3]. They used
the following result: If U is a relatively compact neighborhood of 0 in G (where G
is abelian), there exists a compact subset K of G such that for y € G\K, there
exists an x € U with % y(x) < 0. To see this, let V2 < 6 < v 3, and define
U%=1{y e G: |v(x) - 1| < 6 for all x € U}. Note that U is relatively compact in
G (K. H. Hofmann and P. S. Mostert [4, p. 284] or Pontryagin [6, p. 237]). Lef K be

the closure of U® in G. We now prove the analogous result for the case where G is
compact and nonabelian. This result is independent of the rest of this paper. We
use the notation of Dunkl and Ramirez [1, Chapters 7 and 8], where proofs of un-
proved statements below may be found.
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Let G be a compact, nonabelian group. We let G denote the set of equivalence
classes of continuous, unitary irreducible representations of G. For @ € G, let Ty
be an element of @. Then Ty is a homomorphism of G into U(ny), the group of
unitary ny X ng matrices, where ny is the dimension of a@. We use Tq(x);ij to de-
note the matrix entries of Ty(x) (1 <1i, j <n) and Tqi; to denote the function
x — Tg(x);;. Clearly

Ny
Toxy)j; = kEl Ta(x)ixkTe(V); and Toly 1ij = Ta®)ji-

Furthermgre, Tq;; € C(G), where C(G) denotes the set of continuous functions on G.
For a € G, let
Ny
Xa(x) = trace(Ty(x)) = 2 T (%) -

i=1

This trace X is called the character of @, and it is independent of the choice of
Ty in @. Let X be an n-dimensional, complex inner-product space. Let %B(X) de-
note the space of linear maps from X into X. We define the operator norm of

A € 2(X) by

Al = swt]ag]: & e %, |&] < 1}.

For the trace of A, we find that Tr A = E:—::l (A%, &;), where {ii}?zl is some
orthonormal basis for X and (-, -) denotes the inner product in X. Let |A| denote
(A*A)!/2_ The operator norm of A is ||Al|,,, that is, max {3 1 <i <n}, where
the A; are the eigenvalues of |A|. For each A € #(X), we have the inequality

|Tr Al <n Al

PROPOSITION 8. Let G be a compact group. Suppose 0 < 6 < V3, and let U
be « neighborhood of e in G. Let U0={a € G: ||Ty(x) - I|| <6 for all x € U}.
Then UY is finite.

Proof. We show that U? is an equicontinuous set of representations of G.
Choose £ > 0. Let K be a positive constant such that for 0 < 6 < 27/3, we have the
inequality |eif - 1| < K6 (for example, let K = 37V 3/2). Define

V_ = {xe G x x?% -, x™e U}.

m

Clearly, V., is a neighborhood of e in G. Pick m such that K6/m < ¢. Then for
X1, X2 € G with x= xilxz € V.., we have that

ITate) - TabDl, = I1- Tatxi'xoll, = I1- o0,

sup{ll—eigjlzlgjgna} (anO),

by diagonalizing T, (x). Thus

I1- TG, = sw{[1- e :1<i<ng} <o

for 1 <r < m. Therefore
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- oo = sup {|1- €] 1 <5 <ng} <P <e.

Thus U° is an equicontinuous set of representation of G.

Let X4 =Tr T, . We claim that {xa/na: a € UO} is an equicontinuous, uni-
formly bounded set of functions. This is the case since

|Tr (1- Ty)| < ng [|1- Tole-

Further X gq/mallew < 1, and hence {X 4 /ng: @ € U} is relatively compact, by the
Arzela-Ascoli theorem. Since the {Xa/ na} are orthogonal in LZ(G), either U0 is
finite or { Xo/Ng: @ € UO} has 0 as a uniform cluster point. This latter condition
cannot happen, since X y(e)/n, =1. m

Let G be as above (that is, compact and nonabelian). We shall give the analogue

-~ n
to Corollary 7. Let the set ¢ = {q5a: a € G, where ¢4 € &B(C a)} be such that
sup { || ¢a|lo: @ € G} <. The set of all such ¢ is denoted by £ (G). It isa

Banach algebra under the norm [ ¢|, = sup {| ¢4 |lc: @ € G} and under co-ordi-
natewise operations. Let

©o(G) = {¢ €e2®@G): lim [¢,]. = 0}.

o — 0

For p € M(G), the Fourier transform i of u is a matrix-valued function, defined
for @ € G by the relation

@ o iy = SG T, (x"1)dp(x) .

Note that I € £°(G). Thus for p € M(G), let ||u|, = sup {||ig|.: @ € G}. We
define Mg(G) to be the set {u € M(G): & € %O(G)}'.

Let A € #(X), where X is a finite-dimensional, complex inner-product space.
We define the dual norm to || - ||« by JAll; = sup {|Tr(AB)|: || B]|w < 1}. This

norm can also be characterized by the condition |A|; = Tr(]A]). For ¢ € £°(G),
we put

Il , = E,\ ng || ¢l -
aeG

Let 21(G)= {¢ € 2°(G): | ¢|; <=~}. Then 2!(6) is a Banach space under | - || 1 -
For ¢ € 21(G), let Tr(¢) = Lige &ng Tr (¢y). For ¥ € £(G) and ¢ € 2°(G), we
obtain the inequality |Tr (s¢)| < | ¢)lo |¥ll; -

We now define A(G), the Fourier algebra of G, and we pair A(G) and M(G) to
get the compact analogue of Corollary 7. Let A(G) be the set of f € C(G) for which
f e #1(G). We define a norm on A(G) by

"f”A = "flll = Z;A Ny "fanl < o,
aeG
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Note that A(G) is isomorphic to gel(é), because for each ¢ € QI(G), the function
£(x) = 24 ¢ & Ng Tr (60 To(x)) is in A(G); further,

l£lleo = sup | 22 ngTr(eqTa@®)| < 20 nglidally = sl -
x€G laeG adeE G

We note that for f € A(G), [[L&)f[ 5= [£]4-

THEOREM 9. Let G be a compact (nonabelian) group, and let p € M(G). Then
x  L(x)p is continuous from G to (M(G), || . ||°°) if and only if 1 € Mg(G).

Proof. For p € M(G) and f € A(G), we define .
(tw) = | 10w = = i),

where h(t) = f(t-1). If f is defined by f(t) = £(t™!), then [[f|| o = |£]| o. Thus
<f, u> = Tr (uf). Let Ay = {f € A(G): ||f]| o <k}, and let 7(Ay) be the topology on
M(G) of uniform convergence on the sets Ay . Since

|Tr (D] < il 1E11 = TEle ltha = Hello 1] A,

the topology 7 (Ay) is weaker than the || + || o-topology on M(G). However, since
2*(G) is identified with the dual space of Z1(G) by ¢ — Tr (¢y) for ¢ € 2°(G) and
¥ € 21(G), 7 (Ay) is the same as the || - ||,,-topology on M(G). Furthermore, A is
L(x)-invariant, since [|L(x)f[, = [[f| , for f € A(G). We now apply Theorems 3
and4. =

We conclude now with the general case. We shall use the machinery developed
by P. Eymard [2], and we shall follow his conventions in the use of x in various
formulae, where we used x-! in the compact and abelian cases discussed above.

Let G be a locally compact group. Let Z denote the equivalence classes of the
continuous unitary representations on G. For 7 € Z, let #'; denote the represen-

tation space. We define [ to be a function on Z by 7 +— [ir) = S 7(x)du(x). For
G
Fcz, let
lullg = swi{lli@|o:7e 2},

where | (7|, denotes the operator norm on #;. We define C*(G) to be the com-
pletion of L1(G) in || - |5 (see [2, Section 1.14]). Let {p} denote the subset of =
containing just the left regular representation of G on L2(G). Let CH(G) denote the
completion of L}(G) in | - ||, (see [2, Section 1.16]).

For p € M(G), we let p(i) denote the bounded operator on L2(G), defined by
h p*h (h € L%(G)), with operator norm ”p(u)"p . Let ®#(L%(G)) denote the set of
bounded operators on L2(G). Then C;';(G) can be identified with the closure of
p(LY(@) = {p(®): £ € L@} in B(LA(G)). If G is abelian, then Cj(G) = Co(G). If G
is compact, then C*(G) = ‘4'9”0(@).
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Let VN(G) denote the von Neumann subalgebra of #(L2(G)) generated by the
left translation operators (see [2, Section 3.9]). For p € M(G), we have that
p(¢) € VN(G). Further, C;’;(G) C VN(G). If G is abelian, then VN(G) = L™(G). If G
is compact, then VN(G) = £*(G).

Definition. My(G) = {p € M(G): p(u) € CE(G)}.

Let B(G) denote the linear subspace of CB(G) generated by the continuous
positive-definite functions. Then B(G) can be identified with the dual space of C*(G)

(see [2, Section 2.2]). For f € B(G), let ||f| 5 denote the norm of f as a linear
functional on C*(G). Finally, let A(G) be the closed subalgebra of B(G) generated
by the continuous positive-definite functions with compact support (see [2, Section
3.4]). If G is abelian, then A(G)=LY(G)". If G is compact, then our previous
definitions and those of Eymard are consistent. We have the inclusion

A(G) c CB,(G), since A(G) C Cy(G). We let Ay = {f € A(G): |||z <k}. Now for
f € AG), |Lx)f]g = ||f||g ; hence each Ay is L(x)-invariant. We pair A(G) and
M(G) by the relation

{(f, p) = SG f(t)dut) (f € A(G) and p € M(G)).

Let 7 (A;) be the topology on M(G) of uniform convergence on the sets Ap. We
wish to apply Theorems 3 and 4 as we did in Theorem 9. To do this, it remains only
to observe that VN(G) can be identified as the dual space of A(G) (see [2, Section
3.10]), and for g € M(G), the identification is given by the relation

f - SG fx)du(x) = <f, u>,

where f € A(G). It follows now by Theorems 3 and 4 that x — L(x) . is continuous
from G to (M(G), ” . ”p) if and only if p(i) € p(LY{G)) (the closure in B(L%(G))).
Hence we have the following result.
THEOREM 10. Let G be a locally compact group, Let u € M(G). Then
x b L(x)p is continuous from G to (M(G), || . "p) if and only if p € My(G).
THEOREM 11. Suppose A C Cf’u(G) has the further property that A is dense in
Li(|i|) for each p € M(G), and that for each f € A we have inclusions fAy C CAy
(k =1, 2, ---), wheve the constants C and k' depend on f and on k. Then LI@G)A
is a band; in other words, if p € LY(G)A and v < u, then v € LI(G)A.
Proof. Let pu € Ll(_(f'r_)A and v < u; then dv = gdu, for some Borel function
g € L1(|]). Now there exist functions f,, € A (m =1, 2, ---) such that

jG It - gl du] < 1/m,

that is, |f,,du - dv ”M(G) — 0 as m — «©., We claim that each f _ dy belongs to
LY(G)A. For if {g,} € LI(G) and g, ™ p in Ji(Ay), then £, g, > fi,dp (note that
fngn € Li((})). In fact, for each k, we have the relations
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{40910t - aul]: ¢ ¢ Ak§
G

< Csup{

ot gatmax - ap(]
G

19 € Ak.} = C’Tkl(gn - dp),

where C and k' depend on k and f,,,. Thus T(f;8n - fmdu) 2,0, and

fm

dp € LYG)A.

Since 7 (Ay)-closed sets are closed in the measure norm topology

(sup { ]| ¢||o: ¢ € A} <), we have that v € LI{G)A. =

COROLLARY 12. For every locally compact group G, Mg(G) is a band.
Proof. Let A = A(G) as before, and recall that A(G) is a dense subalgebra of

Co(G) (for the locally compact case, see [2, Section 3.4]). m

—
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