A CHARACTERIZATION OF TWO-DIMENSIONAL
RIEMANNIAN MANIFOLDS OF CONSTANT CURVATURE

R. A. Holzsager and H. Wu

Let M be a Riemannian manifold, and let M be a compact hypersurface, that
is, a compact orientable submanifold of codimension 1 of M, possibly with boundary.
(Everything is assumed to be C*.) For sufficiently small s, let M s denote the set
of points lying on geodesics normal to M (and on a fixed side of M) at distance s
from M. Denoting the volume of Mg by (s), we call the real-valued function .«
(defined in a neighborhood of zero) the growth function of M. In [1], it is shown that
~+f is a polynomial of degree at most 1, for each compact hypersurface in ﬁ, if and
only if M is locally isometric to IRZ2. The purpose of the present note is to point
out that the technique employed in [1] actually allows us to prove the following theo-~
rem, which is more general and more satisfactory.

THEOREM. A Riemannian manifold has the property that the growth function
of each one of its compact hypersurfaces satisfies the linear diffevential equation

(1) A" +c =0

(where c is a fixed constant) if and only if it is a two-dimensional Riemannian mani-
fold of constant cuvvature equal to c.

Using the known facts about the solutions of equation (1), we may rephrase the
theorem in an equivalent way: the two-dimensional Riemannian manifolds of con-
stant zero curvature are characterized by the fact that their growth functions are
polynomials of degree at most 1; the two-dimensional Riemannian manifolds of con-
stant positive curvature ¢ are characterized by the fact that their growth functions
are expressible as linear combinations of cos v ¢s and sin v ¢ s; and the two-
dimensional Riemannian manifolds of constant negative curvature are characterized
by the fact that their growth functions are expressible as linear combinations of
cosh ¥-cs and sinh v -cs.

Before giving the proof of the theorem, we must recall the results proved in [1].
We let M be a compact hypersurface of M, and we let M4 be as above. Denoting by
Q5 the volume form of M, we have by definition the relation

) 2= | a,

Mg

To state the formula for #"(s), we separate our discussion into two cases.

Case 1: dim M = 2. In this case, each Mg is simply a finite C®-curve. Let K
denote the curvature function of the surface M. Then
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(3) A (s) = - § KQ,q .
Mg

Case 2: dim M > 3. Let % denote the Ricci tensor of M (22: My, — My,), and
let hg: (Mg),, & (Mg),, —» IR denote the second fundamental form of Mg. Then hg

admits an extension to

((Mg)m A\ (Mg )m)® (Mg)mm N Mg}y, — R ’

which we also denote by hg. Let dim M = d, and let {e;, **-, eq-1 } be some

orthonormal basis of (Mg),,. It is easy to see that Eij hs(e; Aej, e; Nejy) isa
globally defined function on Mg, independent of the particular choice of

{e} , ", €d-1 }. Finally, let ns denote the unit normal vector field to Mg in the
direction of increasing s. The second variation formula pertaining to this situation
is

0 e (Bniene ane)-Camn))a,
M 1)

S

Eventually, we shall also need the following lemma, proved at the end of [1].

LEMMA. Sufficiently small geodesic spheves of any Riemannian manifold of
dimension at least 3 have a positive definite second fundamental form.

We can now give the simple proof of the theorem. Suppose M is a Riemannian
manifold of dimension 2 whose curvature equals a constant c¢; then (2) and (3) imply
that (1) holds. Conversely, suppose M has the property that its growth function
always satisfies (1). If M is of dimension 2, then (2) and (3) imply that for every
finite curve M,

S K-¢)2 =0,

M

where we have denoted the volume form of M by 2. Since this is true for every
finite curve, it is obvious that K= c¢ and M has constant curvature c. It remains to
show that if dim M > 3, the growth function  does not satisfy (1). If it does, then
by (2) and (4),

S {Z)h(ei/\e., ei/\ej)+c-<gz(n),n>}g =0
M 1}

for every compact hypersurface M, where h denotes the second fundamental form
of M, n is a unit normal field to M, and © is the volume form of M. As usual, the
fact that this identity holds for every compact hypersurface M simply means that

Z_? h(ei/\ej,e-l/\ej)-!—c—(.%’(n),n) =0
ij

on every hypersurface M (compact or not). Now pick an arbitrary point m of ﬁ,
and let {xl, RN xd} be a system of geodesic (normal) coordinates around m satis-
fying the condition
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< 0Xj ax; (™) 5 0Xj (m)>

Let M be the hypersurface defined by xg = 0. It is well known that in this case the
second fundamental form h of M at m vanishes. It follows that

h(ei/\ej,ei/\ej) =0

for all e;, ej € My, and (5) implies that

e~ (oL - (m)), 72 (m>>

provided we choose the unit normal field n to coincide with %— (m) at m. Now m
d
is arbitrary, and 5?(—-— (m) can be any unit vector in ill_m; therefore M has constant
d
Ricci curvature equal to ¢. Hence (5) implies that

|
o

27 hie; N ej, ej A\ ej) =
ij
on every hypersurface M of M. This contradicts the lemma quoted above, and the
theorem is proved.
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