A CHARACTERIZATION OF TWO-DIMENSIONAL RIEMANNIAN MANIFOLDS OF CONSTANT CURVATURE

R. A. Holzsager and H. Wu

Let \overline{M} be a Riemannian manifold, and let M be a compact hypersurface, that is, a compact orientable submanifold of codimension 1 of \overline{M} , possibly with boundary. (Everything is assumed to be C^{∞} .) For sufficiently small s, let M_s denote the set of points lying on geodesics normal to M (and on a fixed side of M) at distance s from M. Denoting the volume of M_s by $\mathscr{A}(s)$, we call the real-valued function \mathscr{A} (defined in a neighborhood of zero) the growth function of M. In [1], it is shown that \mathscr{A} is a polynomial of degree at most 1, for each compact hypersurface in \overline{M} , if and only if \overline{M} is locally isometric to \mathbb{R}^2 . The purpose of the present note is to point out that the technique employed in [1] actually allows us to prove the following theorem, which is more general and more satisfactory.

THEOREM. A Riemannian manifold has the property that the growth function \mathcal{A} of each one of its compact hypersurfaces satisfies the linear differential equation

$$\mathscr{A}'' + c \mathscr{A} = 0$$

(where c is a fixed constant) if and only if it is a two-dimensional Riemannian manifold of constant curvature equal to c.

Using the known facts about the solutions of equation (1), we may rephrase the theorem in an equivalent way: the two-dimensional Riemannian manifolds of constant zero curvature are characterized by the fact that their growth functions are polynomials of degree at most 1; the two-dimensional Riemannian manifolds of constant positive curvature c are characterized by the fact that their growth functions are expressible as linear combinations of $\cos \sqrt{c} s$ and $\sin \sqrt{c} s$; and the two-dimensional Riemannian manifolds of constant negative curvature are characterized by the fact that their growth functions are expressible as linear combinations of $\cosh \sqrt{-c} s$ and $\sinh \sqrt{-c} s$.

Before giving the proof of the theorem, we must recall the results proved in [1]. We let M be a compact hypersurface of \overline{M} , and we let M_s be as above. Denoting by Ω_s the volume form of M, we have by definition the relation

(2)
$$\mathscr{A}(s) = \int_{M_s} \Omega_s.$$

To state the formula for $\mathcal{A}''(s)$, we separate our discussion into two cases.

Case 1: dim $\overline{M}=2$. In this case, each \underline{M}_s is simply a finite C^{∞} -curve. Let K denote the curvature function of the surface \overline{M} . Then

Received December 6, 1969.

This research was partially supported by the National Science Foundation.

Michigan Math. J. 17 (1970).

(3)
$$\mathscr{A}''(s) = -\int_{M_S} K\Omega_s.$$

Case 2: $\dim \overline{M} \geq 3$. Let \mathscr{R} denote the Ricci tensor of \overline{M} (\mathscr{R} : $\overline{M}_m \to \overline{M}_m$), and let h_s : $(M_s)_m \bigotimes (M_s)_m \to \mathbb{R}$ denote the second fundamental form of M_s . Then h_s admits an extension to

$$((\mathbf{M}_{\mathbf{s}})_{\mathbf{m}} \wedge (\mathbf{M}_{\mathbf{s}})_{\mathbf{m}}) \otimes ((\mathbf{M}_{\mathbf{s}})_{\mathbf{m}} \wedge (\mathbf{M}_{\mathbf{s}})_{\mathbf{m}} \to \mathbb{R}$$

which we also denote by h_s . Let $\dim \overline{M}=d,$ and let $\left\{e_1\,,\,\cdots,\,e_{d-1}\right\}$ be some orthonormal basis of $(M_s)_m$. It is easy to see that $\sum_{ij}h_s(e_i\wedge e_j\,,\,e_i\wedge e_j)$ is a globally defined function on M_s , independent of the particular choice of $\left\{e_1\,,\,\cdots,\,e_{d-1}\right\}$. Finally, let n_s denote the unit normal vector field to M_s in the direction of increasing s. The second variation formula pertaining to this situation is

(4)
$$\mathcal{M}''(s) = \int_{M_s} \left(\sum_{ij} h_s(e_i \wedge e_j, e_i \wedge e_j) - \langle \mathcal{R}(n_s), n_s \rangle \right) \Omega_s.$$

Eventually, we shall also need the following lemma, proved at the end of [1].

LEMMA. Sufficiently small geodesic spheres of any Riemannian manifold of dimension at least 3 have a positive definite second fundamental form.

We can now give the simple proof of the theorem. Suppose \overline{M} is a Riemannian manifold of dimension 2 whose curvature equals a constant c; then (2) and (3) imply that (1) holds. Conversely, suppose \overline{M} has the property that its growth function $\mathscr A$ always satisfies (1). If \overline{M} is of dimension 2, then (2) and (3) imply that for every finite curve M,

$$\int_{M} (K - c)\Omega = 0,$$

where we have denoted the volume form of \overline{M} by Ω . Since this is true for *every* finite curve, it is obvious that K = c and \overline{M} has constant curvature c. It remains to show that if dim $\overline{M} \geq 3$, the growth function \mathcal{A} does not satisfy (1). If it does, then by (2) and (4),

$$\int_{\mathbf{M}} \left\{ \sum_{ij} h(e_i \wedge e_j, e_i \wedge e_j) + c - \langle \mathcal{R}(\mathbf{n}), \mathbf{n} \rangle \right\} \Omega = 0$$

for every compact hypersurface M, where h denotes the second fundamental form of M, n is a unit normal field to M, and Ω is the volume form of M. As usual, the fact that this identity holds for *every* compact hypersurface M simply means that

$$\sum_{ij} h(e_i \wedge e_j, e_i \wedge e_j) + c - \langle \mathcal{R}(n), n \rangle \equiv 0$$

on every hypersurface M (compact or not). Now pick an arbitrary point m of \overline{M} , and let $\{x_1, \cdots, x_d\}$ be a system of geodesic (normal) coordinates around m satisfying the condition

$$\left\langle \frac{\partial}{\partial \mathbf{x_i}}(\mathbf{m}), \frac{\partial}{\partial \mathbf{x_j}}(\mathbf{m}) \right\rangle = \delta_{ij}.$$

Let M be the hypersurface defined by $x_d = 0$. It is well known that in this case the second fundamental form h of M at m vanishes. It follows that

$$h(e_i \wedge e_j, e_i \wedge e_j) = 0$$

for all e_i , $e_j \in M_m$, and (5) implies that

$$c - \left\langle \mathcal{R}\left(\frac{\partial}{\partial x_d}(m)\right), \frac{\partial}{\partial x_d}(m) \right\rangle = 0$$

provided we choose the unit normal field n to coincide with $\frac{\partial}{\partial x_d}$ (m) at m. Now m is arbitrary, and $\frac{\partial}{\partial x_d}$ (m) can be any unit vector in \overline{M}_m ; therefore \overline{M} has constant Ricci curvature equal to c. Hence (5) implies that

$$\sum_{ij} h(e_i \wedge e_j, e_i \wedge e_j) = 0$$

on every hypersurface M of \overline{M} . This contradicts the lemma quoted above, and the theorem is proved.

REFERENCE

1. H. Wu, A characteristic property of the euclidean plane. Michigan Math. J. 16 (1969), 141-148.

University of Maryland College Park, Maryland 20742 and University of California Berkeley, California 94720

