THE BIRATIONALITY OF CUBIC SURFACES
OVER A GIVEN FIELD

H. P. F. Swinnerton-Dyer

Let V be a nonsingular cubic surface in 3-dimensional projective space, and
assume that V is defined over a given algebraic number field k. It is well known
that over the complex numbers any such V is birationally equivalent to a projective
plane. The problem of finding necessary and sufficient conditions for V to be
birationally equivalent to a projective plane over k was first raised by B. Segre;
and partial answers to it have been given by Segre [3] and J. I. Manin [1]. In this
paper, I use Segre’s methods to give a complete answer to the problem; for the
reader’s convenience, I have developed the argument ab initio, rather than quote
intermediate results from [3].

Following Segre, we denote by S, any subset of the 27 straight lines on V that
satisfies the conditions below:

(i) S, consists of n lines, no two of which meet.

(ii) If S, contains a line L, then S, also contains all the conjugates of L
over k.

Because of (i), we have that n < 6. We call an S, irreducible if it consists of a line
and its conjugates over k. We shall prove the following result.

THEOREM. A necessary and sufficient condition that V should be bivationally
equivalent to a projective plane over k is that V should contain a point defined over
k and that V should have at least one S, , S3, or S¢.

The condition that V should contain a point defined over k (which is clearly
necessary) can be put into an equivalent form in which it can be more easily checked,
if the other condition is satisfied. It follows from the construction below that if V
has an S;, it automatically contains points defined over k. Again, if V has an S3 or
an Sg, then it contains points defined over k if and only if it contains points defined
over each p-adic field, where p runs through all the primes of k; for a proof of this
result, which was first discovered by Chitelet, see [1] or [4].

Let k denote the algebraic closure of k. In what follows, we have to distinguish
between the geometric properties of V, which are defined over k or the complex
numbers, and the arithmetic properties of V, which are defined over k. In the
language of schemes, this is just the distinction between V®kl_{ and V. For geo-
metric purposes, we can obtain a model for V as follows. Choose six skew lines on
V; each of these is an exceptional curve of the first kind and can therefore be blown
down into a point. By blowing down all six of these lines, we birationally transform
V (over k) into a plane containing six distinguished points P}, :--, P4. No three of
these points are collinear, and they do not all lie on a conic. The 27 lines on V cor-
respond to the 6 points Pj, the 15 lines P;Pj;, and the 6 conics each of which passes
through five of the P;; from this correspondence, their incidence relations can
easily be read off. The plane sections of V correspond to the cubic curves passing
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through all the P;, and by this means, V can be recovered if one knows the P;. We
shall refer to this as the standard model for V; for a fuller account see for example

[2].

Let NS denote the geometric Neron-Severi group of V. It is a free abelian
group of rank 7; and we can take as its generators Ao, A;, ---, Ag, where Ag is the
class of those curves on V that correspond to general straight lines in the standard
model, and A; (i > 0) is the class of £;, the image of the point P; in V. The class

a = Z) nihi

corresponds in the standard model to curves of degree ng having a (-n;)-fold point
at P;j,for i=1,2, ---, 6. If

a = Z) nlhl and a' = Z; n;‘_hi

are any two classes in NS, it follows from the last remark that their intersection
number is given by the expression

(¢-@') = ngny - nyny - =+ - ngng.

This is a bilinear form of rank 7 and signature -5.

Now let o be some element of G, the Galois group of k over k, and let a, 6 be
two linearly equivalent divisors on V, both defined over k. Thus a -9 = (f), for
some function f on V defined over k; hence oa - ob = (0f), sothat ca and ob are
linearly equivalent. This induces a natural action of G on NS; denote by NS the
subgroup of NS consisting of those elements of NS that are fixed under every ele-
ment of G. It is not necessarily true that each element of NS contains a divisor de-
fined over k; but this is true provided V contains points defined over k. For let A
be in NS. By adding a sufficiently large multiple of the class of plane sections of V
(which can certainly be realized over k), we can assume that X contains positive
divisors. We can uniquely specify a positive divisor in A by requiring it to pass
through a certain number of prescribed points of V; and if these points are all de-
fined over Kk, the resulting divisor is also defined over k. We do not even need to
use Segre’s theorem that if V contains one point defined over k it contains infinitely
many; for if P is defined over k, we can find as many points as we need infinitely
close to P and defined over k.

To find NS, we use the following lemma, which is essentially due to Segre [3].

LEMMA 1. NSz Q, as a vector space over Q, is generaled by the class of
plane sections of V and the classes of the S, on V, if any.

Certainly, all these classes lie in NS. If, for some V, they did not generate
NS ® Q, we could find a nonzero class @ in NS whose intersection number with
each of the classes in the lemma was zero. Let a be a divisor in o defined over k.
Replacing a by the sum of all its conjugates over k (each of which lies in «), and
replacing o by a suitable multiple of itself, we can assume that o is defined over k.
Among the 27 lines ¢ on V, let ¢, be the one that maximizes |(a- 2)|, the absolute
value of the intersection number of ¢ with a. Note that if ¢; is conjugate to £,
over k, then

(“'ﬁo) = (a’ﬂl),

because o is defined over k.
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(i) If ¢o belongs to some S, then (a-¢g) = n~!(a-S,) = 0, by the original
choice of «.

(ii) If £, does not belong to any S, there is a conjugate ¢; of £, that meets
£o9. Let £, be the unique line that meets {5 and ¢, ; then £, + £, + £, is a plane
section of V, and therefore it has intersection number zero with a, by the original
choice of @. But now

(a-85) = -2(a- L),

and the maximality property of {5 shows that (a-£g)=0.

Thus in either case, we have that (a*25) =0, and hencg__(a -9) =0 for each £. By
what we know of NS, this shows that the class of a in NS, and hence also in NS, is
zero; and this confradiction proves the lemma.

It is not true that the classes in the lemma always generate NS as an abelian
group. For suppose, in the language of the standard model, that there is just one
S, , which is the Sg given by £; + -*- + £¢. The class of plane sections of V is
3xg - A1 - -+ - Ag; and the group generated by these two classes contains 375 but
not >\O .

LEMMA 2. Suppose that V contains points defined over k. A necessary and
sufficient condition for V to be bivationally equivalent to a projective plane over k
is that theve should exist on V a lineav system of ivveducible curves of self-
intevsection 1, freedom 2, and arithmetic genus 0, and that the class of these
curvves should be in NS.

We shall show below that the three arithmetic conditions on the curves of the
system are not independent. The curves may of course be constrained to have pre-
scribed multiplicities at certain base points, some of which may be infinitely near
points.

Let II denote a projective plane, and suppose first that there is a birational map
¢: I — V defined over k. The straight lines on II form a linear system of irreduc-
ible curves of self-intersection 1, freedom 2, and arithmetic genus 0; hence their
images under ¢ have the same properties. Moreover, the image under ¢ of a
straight line on Il defined over k is a curve on V defined over Kk, and therefore its
class is in NS. This proves the necessity of the condition.

Now suppose that such a linear system exists. By the remarks before Lemma 1,
we can choose a curve I'g of the system defined over k. Consider the functions f
defined over k such that (f) + I'¢ is a curve of the system; because the system is
linear and has freedom 2, these functions form a vector space over k of dimension
3. Let fy, f, f, be a base for this space. The map V — II given by the corre-
spondence

P — (£o(P), £,(P), £,(P))

is defined over k and takes curves of the linear system on V onto straight lines on
II. Moreover, this map has degree 1; for let P; be in general position on V, and let
P, be a point of V whose image in II is the same as that of P;. Then every curve
of the linear system that passes through P, would have to pass through P, and this
is impossible, because the general curve of the system is irreducible and has self-
intersection 1. This completes the proof of Lemma 2.

Now consider an arbitrary linear system on V that has assigned base points Qj

with multiplicity m; and whose class in NS is 2 n;A;. By considering the
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standard model, or otherwise, it is easy to see that for this system the following
conditions hold:

self-intersection = n% -2 n? -2) m?

(1) arithmetic genus = % (ng - 1)(ng - 2) - 27 %ni(ni +1)- 2 %mj(mj - 1),

freedom > %no(no +3)- 2 %ni(ni -1)-22 % mj(m; + 1),

where the sums over i are taken for i =1, 2, ---, 6. (We may not have equality in
the equation for the freedom, because the constraints imposed by the Qj may not be
independent.)

LEMMA 3. (i) If V has an S4 or an Sg, it has an S, or an Sg.
(ii) If V has an S, , then V is bivationally equivalent to a plane over k.

(iii) If V has an S3 or an S¢ and V contains a point defined over X, then V is
bivationally equivalent to a plane over k.

There are just two lines on V that meet all the lines of a given S4; these two.
lines are skew and therefore form an S,. There are two possible types of S5 on V.
One type can be taken as the images of P;, P,, P3, P4, and P5P¢ in the standard
model; it has just two transversals (the images of P} P, P3 P4Ps and
P; P, P3P4Py), and these must form an Sp. The other type can be taken as the
images of P;, P2, P3, P4, and Ps; there is just one line that meets none of these
(the image of Pg), and by adjoining it to the original Sg, we obtain an S¢. This
completes the proof of (i); for more details see [2].

Now suppose that V has an S;, and let II be a plane in general position in the
space in which V is embedded. If P is a point of V defined over k and in general
position, there is a unique transversal through P to the lines of S;; and this trans-
versal is defined over k and meets Il in a point P' defined over k. If P' is in gen-
eral position, it comes from a unique P; hence P — P' determines a birational map
V — II defined over k. This proves (ii).

If, in the standard model, the lines of the S, correspond to the images of
P,P;P,P;Py and P, P3P, PPy, then the class of the S; is
ANg - Ay - Ap - 2X3 - 224 - 215 - 2ng,

NS contains this class and the class of plane sections, and the linear system of
Lemma 2 associated with this map is given by the conditions

ng=2, n;=n,=-1, ng=ng=n5=ng=0, my=1.

This corresponds to the conics through P;, P, and Qj, in the standard model.

If V has an Sg and a point defined over k, then the map that gives the standard
model is a birational map from V to a plane. The linear system of Lemma 2 is
given by the conditions

ng =1, n;=""=ng=20,

and it is the system of twisted cubics on V that meets no line of the Sg.
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Supposle finally that V has an S3 and contains a point defined over k. There is
now no simple geometric description of the birational map we need, but we can again
use the machinery of Lemma 2. Let the lines in the S3 be £;, {2, £3; then the
linear system given by the conditions

ngp =3, ny =np =n3 =0, ng=ng=ng=-1, m =2, my =1

satisfies all conditions of Lemma 2. The curves in the standard model to which the
system-corresponds are cubics with a double point at Q) and simple points at
P4, P5, Py, and Q ; and in general such a curve is irreducible.

This concludes the proof of Lemma 3.

To complete the proof of the theorem, we have to show that if V has no S, with
n > 1, then V is not birationally equivalent to II over k. To do this, we show that
there is no linear system of irreducible curves on V satisfying the conditions of
Lemma 2. But the larger NS is, the easier it will be to construct such a system.
Thus we may assume that NS is maximal, subject to the condition that V does not
have an S,, with n > 1. Clearly this happens when NS is generated by three co-
planar lines, each of which is defined over k. Choose the standard model so that
these lines are the images of P; P4, P, P5, and P3 Pg; thus the general element of
NS is given by

ng =a,+a,+az, n =n, =-a, n, =ng = -a,, N3z = Ng = -a,.

By (1), the arithmetic conditions of Lemma 2 now become
(2) Em3-2=2a1a2+2a2a3+2a3a1-a.%-a%-a%—1,

(3) Emj=a1+a2+a3—3,

/

and by considering the corresponding curves in the standard model, we have the
inequalities

(4) a; >0, a > 0, a3 > 0, m; > 0.
To complete the proof of the theorem, we have to show that every curve T that sat-
isfies (2), (3), and (4) is reducible.

To do this, we construct for each such curve I' a curve I'"' (which must be
positive but may be reducible) such that the intersection number of T' and I'' is
strictly negative. This implies that I" and T"' have common components, at least
one of which has negative self-intersection; and this is impossible if T is irreduci-
ble, beca,use I" has self-intersection number 1. We define I'' by means of values of
a{ and m , in the same way as ‘I" is defined by the a; and m; ; here the points
Q Q are to be the same for both curves. The cond1t1ons for I'' to be positive and

reahzable are

(5) a; >0, a,>0, aj3>0, > 0,

me >
(6) (a.'1 +a,"2+aé)(a'1 +a|,'2+a.'3 +3)-220 a'i(a'i-i-l) > 27 m'j(mij+1),

the last of these coming from the inequality in (1) for the freedom of I''. The inter-
section number of I" and I'' is
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) (a) +a, +a3)(a) +ap+a3) - 22 a;a) - 2 mymj < 0.

We have therefore reduced the proof of the theorem to the proof of the following
purely arithmetical lemma.

LEMMA 4. To each pair of integevs a;, mj satisfying (2), (3), and (4), theve
corvespond integers aj, m'j satisfying (5), (6), and (7).

We prove this by induction on the value of a; +a; +a3. Let a; = @;, mj = p;
be a solution of (2), (3), and (4), and suppose that the lemma is true for all sets
aj, my with

a; +ap+az < a; +ap +aj.

At least one pj is nonzero, for there are no solutions of (2), (3), and (4) for which
all m; vanish. Renumbering if necessary, we can therefore assume that

a; > ap > a3, () =Maxpu; >0.
Moreover, we need only consider the case where
(8) a; < az +a3,

for if o) > @ + a3, we can satisfy (5) to (7) by taking aj =1, aj =a3 =0, mj=0.
We next prove that

9) az+az > pp > axtas-al.
The first of these inequalities follows from (2) in the form
2 2
27 uj?‘ = (ay + a3)? - (a2 - @3)” - (ap +a3 - 1) -1;

and the second follows from (2) and (3) in the form

2 ujz 20,(ay - a;) + 2a3(a) - az)+3(a, +az -a))-1
= Ol2+a3 - Oll + .
Hj

By >

Ofl +012+Oz3- 1

Here the numerator of the fraction on the right-hand side is strictly positive, except
perhaps when a, + @3 = @, and in that case the desired inequality follows from the
inequality p, > 0.

It follows from (8) and (9) that the a;, m; defined by

a) = 0y +asz - Uy, a = 0, az = a3,
(10)

m; = @ +az-a;, m;=p; for j>1,
satisfy (4); and they satisfy (2) and (3) because the @;, uj do. But by (9),
a; tap; +taz < a; +a, +as,

and by the induction hypothesis, it follows that to these a;, m; there correspond
values of a;, m‘; satisfying (5), (6), and (7). Let these values be
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L] 1 1 1

(11) a] =a], az=az, a3=0a3, mj=pj.
Now, by (6), we have the relations
2 wi(uy +1) < (o) +ep +a3)(a) +az +a3 +3) - 227 o(a +1)

= (a2 + a3) (a2 + a3 +2) - (af7_+a'3—a'1 -i--;-) - (a'z—aé)2+%

<(ap +az +1)(ap + a3 +2),
whence p] < @3 +aj + 1, and as both sides are integers, it follows that
(12) p1 < oz taj.
Suppose first that az + @3 > @1, and write

1 1 1

1 ] 1 ! 1
a) = Qp +03 - Uy, Ay = 05, asz = 03,
(13)

m) = a,+az -, m

j = M for j > 1.

I claim that these are the values we need, to dispose of our given set
(14) a] =@, az =0z, a3z =03, mj=Mj.

In view of (12), they certainly satisfy (5). But (6) for the values (13) is precisely the
same as (6) for the values (11), and (7) for the values (13) and (14) is precisely the
same as (7) for the values (10) and (11). Hence (5), (6), (7) hold, and the lemma is
proved in this case. If instead @] > @3 + @3, the only change we need to make in
(13) is to choose m) = 0 instead of mj = @ + @3 - @] . Now (5) is satisfied, and
since this change diminishes mj(mj] + 1) and -m; mj, (6) and (7) are still satisfied,
since they were satisfied before. This completes the proof of Lemma 4 and thus also
of the theorem.

REFERENCES

1. Ju. I. Manin, Ratiomzl suvfaces over perfect fields. 1. (Russian. English sum-
mary) Inst. Hautes Etudes Sci. Publ. Math. No. 30 (1966), 55-113. For a trans-
lation see Amer. Math. Soc. Transl. (2) 84 (1969), 137-186.

2. B. Segre, The non-singular cubic surfaces. Oxford Univ. Press, Oxford, 1942.

, On the vational solutions of homogeneous cubic equations in four vari-
ables. Math. Notae 11 (1951), 1-68.

4. H. P. F. Swinnerton-Dyer, Applications of algebraic geomelry lo number theory.
Proceedings of Symposia in Pure Mathematics 20.

Trinity College
Cambridge, England






