A NOTE ON INVARIANT SUBSPACES
Allen L. Shields

P. R. Halmos and L. J. Wallen have asked whether on Hilbert space, there
exists an algebraic linear transformation (not necessarily continuous) having no
proper closed invariant subspace. In this note, we show that such transformations
do exist. We also show, using a result of H. H. Schaefer [5], that every continuous
linear transformation on the Fréchet space (s) of all sequences has a proper closed
invariant subspace.

The author benefitted from discussions with Halmos and Wallen in the Diamond
Head Circle Seminar.

THEOREM 1. Let H denote a sepavable, infinite-dimensional, complex Hilbert
space. Then theve exists an algebraic linear transformation T of H into itself hav-
ing no propeyr closed invariant subspace.

Proof. Let c denote the cardinal number of the continuum, and let w. denote
the first transfinite ordinal number for which the set of all smaller ordinal numbers
has cardinality ¢. The set of all infinite~-dimensional proper closed subspaces of H
has cardinality c; well-order this set in a minimal well-ordering. That is, assign
to each ordinal number @ (1 < @ < w.) an infinite-dimensional proper closed sub-
space Mg such that each subspace occurs exactly once.

Using transfinite induction, we shall assign two vectors f,, g, to each ordinal
number o < w. such that

i) fp € M,
ii) gy ¢ Mg,
iii) the set of all vectors f and g is linearly independent.

Choose f; and g; to satisfy i), ii), iii) above for o = 1. Now assume that
o < w. is given and that fg, g have been chosen for all 8 < a. Then the vector
subspace V determined by all these fg and gg cannot contain My, since the
cardinality of a Hamel basis for My is ¢. For £, , select some vector that is in
Mg but not in Vg . The vector subspace W, determined by V, and f, is not all of
H, since it has a Hamel basis of cardinality less than c; therefore it cannot contain
any nonvoid open subset of H. Hence the set-theoretic union of M, and W, is not
all of H. For g, choose some vector not in this union. Then the set of all vectors
f.3 » 88 (B < @) is linearly independent, and the induction is complete.

Extend the set of all fy, g, (@ < w.) to a Hamel basis for H by the adjunction
of a set {h.),}. Define the linear transformation T by requiring that

Tiy = 8o, T8q = fa+1 (@ <we).
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The definition of Th, requires the consideration of two cases. If the set {h } is
infinite, let T be a permutation of this set with no finite orbit. If this set is f1n1te
say

{h;} = {hy, =, hn},

put Th; =h;;; (i <n) and Th, =f;. Now that T has been defined on a Hamel basis,
extend the definition to all of H by linearity. Then no proper closed infinite-dimen-
sional subspace can be invariant under T, since each such subspace is an My for
some «, and Tfy = g is not in My . Also T can have no eigenvectors (every vec-
tor is a ﬂnite linear combination of vectors f, g, and h; the image under T of such a
linear combination involves at least one new basis Vector). Hence T can have no
finite-dimensional invariant subspace, which completes the proof.

In 1963, H. H. Schaefer [5] proved that every algebraic linear transformation on
an infinite-dimensional vector space has a proper invariant vector subspace. This
leads to the following result. (This result may have been known to D. A. Raikov,
though neither the statement nor the proof seems to have been published.)

Let (s) denote the space of all complex sequences f, with the seminorms

”f"n = max If(k)] .
k<n

The set of all continuous linear functionals on (s) may be identified with the set (P)
of all sequences that are finitely nonzero, by means of the pairing

(f, g) = 22 fn)gln) (fe (s), g € (P)).

n=1

Under this pairing, (s) may be identified with the algebraic dual of (P), the set of all
algebraic linear functionals on the vector space (P) (no topology, no continuity).
Hence, if V is a vector subspace of (P) and if g is a vector not in V, then there
exists an element f € (s) such that

f1V and (f,g) =1.

The set of all £ (f L V) is easily seen to be a closed subspace of (s).

THEOREM 2. Every continuous lineay tvansformation of (s) into itself has a
proper closed invariant subspace.

Proof. Let T be a continuous linear transformation on (s), and let T* be the
adjoint transformation on (P). By Schaefer’s results referred to above, there exists
a proper vector subspace V of (P) that is mapped into itself by T*. The subspace
VL of all f € (s) such that f L V is then a proper closed subspace of (s), invariant
under T.

In conclusion, we state two problems, the first of which arises in connection
with W. Arveson’s work [1] on transitive operator algebras.

1. Let H denote a separable, infinite-dimensional, complex H11bert space. Let
A be a bounded linear transformation on H such that neither A nor A* has any
eigenvectors. Does there exist an algebraic linear transformation T of H into it-
self, commuting with A and having no proper closed invariant subspace?
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2. Does every commuting family of continuous linear transformations of the
space (s) into itself have a common proper closed invariant subspace?

Added July 1, 1970. Theorem 2 occurs in a paper of K.-H. KSrber [3, Satz 3].

In his dissertation [4], Alan Lambert has described a class of bounded operators
with the property that each densely defined commuting operator (not necessarily
closed or closable) must actually be bounded. The adjoints of his operators always
have eigenvalues.

Thanks to recent work of B. E. Johnson and A. M. Sinclair [2], we have complete
knowledge of when a compact or quasi-nilpotent operator A on a Banach space has
discontinuous operators that are everywhere defined and commute with A.
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