MULTIPLIERS AND SETS OF UNIQUENESS OF LP
Alessandro Figa-Talamanca and Garth I. Gaudry

Let G be a nondiscrete, locally compact Abelian (LCA) group and I its char-
acter group. In this paper, we establish the existence of subsets of G of positive
Haar measure that are sets of uniqueness for Fourier transforms of functions in
LP(I) (1 < p < 2). We draw from this result several consequences concerning
multipliers of LP(T"), and we establish related results for other function spaces.
Specifically, in Section 1, we prove that there exist subsets E C G of positive Haar
measure with the property that no nonzero function whose Fourier transform belongs
to

U P
1<p<2

can be carried by E. This is an extension of a theorem of Y. Katznelson: Katznel-
son proved this result for the case where G = T (the circle group) and T' = Z (the
integers) (see [10], [11, p. 101]), and he has indicated to one of us that the proof of
his theorem can be modified to give the same result for the real line. The proof
presented here is in some sense independent of the algebraic structure of the group
and, in fact, yields also an analogous result for orthogonal systems on a nonatomic
measure space (see Remark 1.3 below). In Section 2, we use the results of Section 1
to extend to general nondiscrete LCA groups G several theorems concerning
multipliers and Fourier transforms of functions in LP(I"). These theorems were
proved for special classes of groups by the authors (working independently) [3], [6],
by R. E. Edwards, and by L. Hérmander [9].

In Section 3, we characterlze the multipliers of the space Lp(l") consisting of

those functions in L (F) whose Fourier transforms are in LP(G). Our result has
been stated previously in [12]; the proof of this result given in [12] is, however,
incorrect.

1. SETS OF UNIQUENESS FOR LP
If G is a nondiscrete LCA group and T is its character group, we define a set
of uniqueness for LP(I") (1 < p < 2) as follows.

Definition. Let E be a measurable subset of G; then E is called a sef of
uniqueness for LP(T) if no nonzero integrable function f, carried by E, satisfies the
condition f € LP(I).

(Here, as in the sequel, f denotes the Fourier transform of f.)

We can now state the main result of this section.
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THEOREM 1.1. For each measurable set M C G of finite positive Haar meas-
ure, therve exists a measuvable set E C M such that the measure of E is arbitvarily
close to that of M and such that E is a set of uniqueness for Lp(I‘), for every p in
the range [1, 2).

The proof can easily be obtained from the following lemma.

LEMMA 1.2. Suppose that M is a measurable subset of G of finite positive
measure and that m denotes the Haar measure on G. For each p (1< p<2) and
each ¢ > 0, theve exists a measuvabdle set Eg , C M such that

(i) m(Eg,p) > (1 - €)m(M), and

(ii) for each function f € LYG) carried by E the inequality

E,p>
”f" L°°(1") <t "f" LI(T)

holds.

Proof. We need the following result: for each measurable set M C G of finite
positive measure, there exists a measurable subset M'C M such that

m(M') = m(M)/2.

This follows [8, p. 174] from the fact that G is nondiscrete and is therefore a
nonatomic measure space with respect to m. By applying this result repeatedly, we
can define a sequence {7, } of partitions of M into measurable sets as follows: the
partition 7} consists of two subsets of M of equal measure, and the partition 7, is
obtained by dividing each set of 7m,_; into two sets of equal measure. For each n,
we define on M the Rademacher function r, relative to the partition 7,: we let

ro =1, and we let r, be constant and equal to +1 or -1 on each set of 7, in such a
way that the mean value of r, over each set of the partition m,_; is zero. Of
course, the Rademacher functions are not uniquely determined; for example, at each
step, we could choose -r, instead of r,; however, we choose a fixed sequence
{rn} of Rademacher functions relative to the sequence {7, } of partitions. By
forming all possible finite products of Rademacher functions, we obtain a system
W= {wi} of orthogonal functions whose L2-norm is m(M)1 /2, We call the func-
tions w; the Walsh functions, and we refer to W as the Walsh system on M.

Suppose now that N is a (large) positive integer. We shall define N functions
¢1, -*, ¢n that vanish on the complement of M, are orthogonal, and are, on M, real
linear combinations of the Walsh functions; the functions ¢, -+, ¢y will have the
following properties.

k+1

1 | dx < 2m(M); Zdx < 2 M).
(1) § llax <amon; § gfax <2 mo)
(2) m({x € M: ¢5(x) = 1}) > (1 - &/N)m(M).
(3) |$1(2) + -+ + ()| < 4m(M) (v € T).

Here k is a positive integer, depending on N, that will be chosen later. The precise
way to define k will appear naturally as the proof progresses.

To construct these functions, we let ¢; = X 1, the characteristic function of M,
and we suppose that n orthogonal functions ¢, ***, ¢ (n < N) have been defined
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that satisfy the conditions listed above, with (3) replaced by the condition
(3" |6100) + -+ 8,(»)| < (2+2n/N)m(M).

Since the ¢; are integrable functions, the Riemann-Lebesgue Lemma permits us to
choose a compact set of characters K C I" such that |¢j(7)| < m(M)/N, for

1 <j<n andall ¥y ¢ K. Since the family {Wi} is orthogonal, Bessel’s inequality
implies that, for each y € K|

2

LZ(G) m(M) .

2 |, w)l® < lrxal

The last inequality shows that 2J |(y, wi)lz is continuous in y. Dini’s theorem, ap-

plied to the partial sums of 2 I(y, Wi)lz , now implies that 27 |('y, wi)lz converges
uniformly on the compact set K. It is therefore possible to choose a finite set
F C W such that

Z |Gy, w)l?
Wi ¢ ¥
is uniformly (and arbitrarily) small on K; we shall assume further that F contains
all those Walsh functions that appear with nonzero coefficients in the (Walsh) expan-
sions of the functions ¢;, ***, ¢,,. This last aspect of the choice of F will ensure
that if w € W\ F, then w is orthogonal to ¢; (1 <j <n). For any such choice of F,
we can find a partition 7, of M such that the elements of F and the functions ¢;

are constant on the sets of 7, ,. Let E;, -, EZm denote the sets of 7,,; for each j

(1 <j<2™), we consider the partition of Ej into 2K subsets that is induced by the
gartition Tm+k Of M. We write E; = E'lj U .U E'ij, and we define ¢, as fol-
ows:

0 (x ¢ M),
Por1(x) = (0 - 1)/n  (x € E}j),

1 (XE E_]\E’l_]):

where, for convenience, we have written 7 = 1/2X. Since S ¢,+1 dx = 0, and since
E.
every w € F is constant on each Ej, it follows that !

5 Ppr1wdx = 0 (we F).
M

In particular, ¢,;; is orthogonal to each ¢; (1 <j < n). Therefore

(4) Sl = X 2 AjWj,
Wu

J

where the aj are real numbers and the sum is finite. It is easy to check that condi-

tion (1) holds and that
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k
m({x € G: ¢n+1(x)= 1}) = mM){1 - 1/2%}.

At this juncture, we restrict k by the requirement that 1/2% < £/N; hence (2) holds.
If v ¢ K, we have the inequality |H>j('y)| < m(M)/N (1 <j < n); therefore

|3, + -+ + 31| < nmM)/N+ |3,_,1(»)] < m(M)@ +n/N).

On the other hand, if v € K, we have that

|$ns10)] < aJS wi(x)y(-x)dx| < E laJI | (w;, 9|

WJQ/F

<(Z 1) ( = |(wj,y>12)
WjQ’F

1/2
< @/m0' D el o (D Jen,9)?)

WJ¢F

But by choosing F large enough, we can make the right-hand side of this inequality
arbitrarily small. Therefore we may suppose F to have been chosen so that

|0+ 1(»)| < 2m(M)/N. Hence the existence of functions ¢, **-, ¢ satisfying (1),
(2), and (8) is now assured.

To complete the proof of the lemma, write
= (¢’l + e + ¢N)/N-
By construction, the ¢; are mutually orthogonal, and it follows that

1/2
Il 20y = % (Z Io5l20,) < fomaymn} /2,

The integer k has already been restricted to satisfy the condition 7 = 1/2X < g/N;
we now impose the further condition that ¢/N < 1/2k-1 =25, Then nN > £/2, so
that

" ¢ ”2 _<. C ’
where the constant C is independent of N. On the other hand,
&l 1oy < [p2 ¢j”L°°(p)/N < p/N,

where the constant p is independent of N, by (3). Finally, if 2 < q < % and
1/p+1/q =1, the relation

A\

2/q 1-2/q _ -1+2/
Lq(]_") = ” ” LZ(F) ” “ .*° (1'\) O(N q)
holds. If N is large enough, this inequality implies that || & || Lar) SE

Write Eg ;= {x € G: ®(x) = 1}; then
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N
Eg p 2 n {x: ¢j(x) =1},
j=1

and therefore m(Eg )> (1 - ¢)m(M). Let (i) be an approximate identity in L1(G)
consisting of functmns pi € L°(G) with |lu1||1 = 1. Then if { is integrable and is
carried by Eg ,,, we have the relations

|f(7)| = lim SGf*p.i(x)'y(-x)dx

i

= lim SG f* (%) @(x) v(-x) dx‘

i

= lim g fo' + V) A (' +7) 30" dy!

i

< lim_sup ” 3 ” LY(T) ” f\i‘j:i” Lp(l")
1

<elfl oy e

The proof of the lemma is complete.

Proof of Theorem 1.1. Let M be a set of positive measure, and write
-n-ng,

€n =3 and p, =2 - €, where ng is a fixed positive integer. Construct sets
Eg as in the lemma, and let
n:Pn w
E - n Esn,pn .
n=1

Then whatever the value of ng, the inequality m(E) > (1/2)m(M) holds, and by
choosing ngy large enough we can make m(E) arbitrarily close to m(M) If fis
carried by E and ||f || <« for some p < 2, then, by the Hausdorff ~-Young Theorem,
we may assume that f € LZ(G) so that f € LZ(I‘) and f € L'(I") (p <r <2). On the
other hand, for all sufficiently large n, we have that p, > p, f is carried by Eg ' Pp?
and hence

I£l. < &nlifllp, -

Since p <p, <2 and Hf]|2 and ”f"P are both fixed, Holder’s inequality shows that
I£ll5, is bounded as n — . Since e, — 0, it follows that ||f]|, =0, and therefore

f=0 a.e. on E.

Remark 1.3. The core of the argument in the proofs of Lemma 1.2 and Theo-
rem 1.3 consists in showing (roughly speaking) that if M is an arbitrary set of posi-
tive measure, then there exists a function ® on G with the properties that ® =1 on
almost the whole of M, ® =0 on G\M and |®| is small. The proof we have pre-
sented of this fact does not depend on the algebraic structure of G. We can there-
fore formulate an analogous result for arbitrary complete orthonormal systems as
follows. (The proof is an obvious modification of that of Lemma 1.2.)
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Let (X, m) be a finite nonatomic measure space, and suppose that (v;) is a
bounded and complete orthonormal system in LZ(X, m). Then if € > 0 is arbitrary
and 2 < q < «, theve exist a measuvable subset E of X and a function & € L™ (X)
having the properties that

(i) =1 on X\E,
(ii) m(X\E)<e, and

(i) 2; | (@, up)|” <e.

There is of course a corresponding form of Theorem 1.1, which we leave to the
reader to formulate. We remark that, in formulating this analogue, it is necessary
to impose some further conditions on the bounded, complete, orthonormal system
(u;) in order to be able to carry through the final step of the proof of Lemma 1.2.
For example, it would suffice to assume that there exists a constant K, independent
of i and j, with the property that

|@ @, u;)] <K[@, u)| (@ e L7(X).

2. MULTIPLIERS OF L’

We recall the definition of the space of multipliers of LP(I').

Definition. A bounded linear operator T on LP(TI') with values in LP(I")
(1 < p <L =) is called a multiplier if it commutes with translations; in the case
p = ©, we require in addition that T be continuous in the weak* topology of L(T).
We denote the space of multipliers of LP(I") by My(T).

It is known (and easy to prove) that Mp(I") can be identified by duality with
Mp(T) (1/p +1/p' = 1) and that Mp(T’) C M(T") € Mp(T), provided

|1/p - 1/2] > |1/r - 1/2].

One of the principal goals of this section is to prove that if I" is infinite and the in-
equalities |1/p - 1/2| > |1/r - 1/2| > 0 hold, then the inclusion relations above are
strict. We shall achieve this by using Theorem 1.1 and the following convexity
theorem. )

Ifo<Lt<1land 1/q=t/q;+(1-t)/qz (1 <q;<~) and T € Mg, N Mg, (T),
then T € My(T') and

t 1-t
(5) 1Tl < 1Ty 1T, -

It is also known that M,(T") can be identified isometrically with L®(G) in the
following sense: T € Mp(I') if and only if there exists ¢ € L*(G) such that
(Tf)" = ¢f for all f € LZ(T); in this case |T|| = | ¢[,. With this result in mind,
we define the Fourier transform T of T € M,(I') by writing T = ¢. This corre-
spondence between elements of M,(I") and elements of L™(G), together with the fact
that Mp(T') € M2(T), allows us to associate in a one-to-one fashion to each
T € Mp(l") an element T € L*(G). As in the case of the space L2(T), T is charac-
terized by the condition that (Tf)* = Tf for f € LP N L%;andif 1<p< 2, this for-
mula extends to the whole space LP(I'). Another well-known fact is that M(T) is
isometrically isomorphic to the space M(T") of bounded regular Borel measures on
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T, in the sense that if T € M (T), then there exists g € M(I') such that Tf = p xf;
of course T = u, where ,u denotes the Fourier-Stieltjes transform of p. We refer
the reader to [2, Vol. II, Chapter 16], [4], [6], [9], and [17] for proofs of these re-
marks and for other results on multipliers of Lp

It is an immediate consequence of Theorem 1.1 that if T" is a noncompact group
and p # 2, then M (1") is different from M,(I'). For if E is a subset of G satisfy-
ing the conclusmns of Theorem 1.1, then Xy is the transform of a nonzero element
of M,(T"). On the other hand, since E is a set of uniqueness, the only bounded
measurable function carried by E that is the transform of a multiplier of LP(T") is
the zero function. Observe further that for some g € L (G) the convolution g*x
is not the Fourier transform of an element of Mp(l") For otherwise, an easy ap-
plication of the closed-graph theorem would yield the inequality

e *xe) laeyry < Dlel 1 g
for some constant D independent of g € L1(G), where (g *X )" is that element of
Mp(F) of which g*x g is the Fourier transform. But it is a simple matter to de-
duce from this inequality that X p is itself the transform of an element of M ( ).
For if the function g ranges over the elements of an approximate identity (gl) in
L!(G), the corresponding multipliers (g; *Xg)" are bounded in norm. However,

M (I‘) is isometrically isomorphic to the dual of the Banach space Ap(T’) [4], and
hence the net {(g1 *Xp)” } has a weak* limit point in Mp(l") If one uses the defi-
nition of the space A ( '), it is a routine calculation to verify that this weak* limit
point is unique, and that it is the operator defined by multiplication of Fourier trans-
forms by the function X . But we have already noted that X g is not the Fourier
transform of an element of M (P) thus we have arrived at a contradiction. Finally,
let Co(G) denote the space of contmuous functions vanishing at infinity on G. Then
g*Xg € Cy(G). Hence we conclude that if I" is a noncompact group and p # 2, then
M(T)" N Co(G) # Co(G).

The same conclusions can be reached, but by different methods, when I'" is an
infinite compact group. In this case, well-known results on random Fourier series
can be applied to prove that Mp(I‘) # M,(T") if p #2 and that

Mp(I)* N Co(G) # Co(G).

See [2, Vol. II, Chapters 14, 16].

We now utilize the remarks above to prove that the inclusions
Mp(].") C M,.(T) € My(T)

are proper whenever T is infinite and |1/p - 1/2] > |1/r - 1/2] > 0.
THEOREM 2.1. If |1/p ;- 1/2] #|1/p,- 1/2] (1 <py, pp <) and T is in-
finite, then

Mp, (T)" N Go(G) # Mp,(T)" N Co(G).

Proof. By the duality result mentioned earlier, we may suppose without loss of
generality that 1 < p; <p, < 2. The proof distinguishes two cases.

(i) 1 <p; <pp=2. In this case, the remarks preceding the theorem yield the
desired result.
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(ii) 1 <p1 <p, <2. We use case (i) and a process of interpolation. Suppose
that MPl (1) N Cy(G) = Mpz(l")"‘ N Cy(G). Each space is a Banach space when given

its appropriate M_-norm. (The M_-norm is at least as strong as the L®-norm on
M_(T)", as can be seen by taking q1=p, q2 =p', ¢ =2 in (5).) Therefore equality of
the spaces implies equivalence of their norms; in other words, there exists a con-
stant B such that the inequality

(6) 1Tl () < 1Tl (@ < BlThy, )
holds for all T € Mp, N Mpz(l") with T € Co(G).

At the same time, we know that M, (T)" N Co(G) # Co(G) and that LY i
contained in each space and is dense in the second. Therefore My, (I‘) and M( 1")
induce different topologies on L (1") and there exists a sequence (f ) of elements of

L1(T") satisfying the conditions | f,| M, = 1 and |f,]., — 0. However, since
1

(EN My, is bounded, (5) (applied to the case q = p,, q; = p;, q, = 2) shows that
l£,lpc — O because t <1 in this case. On the other hand, (6) shows that
p

|l £ M, is bounded away from zero. This is a contradiction, and the proof is
2
complete.

Theorem 2.1 has some interesting corollaries. In order to state two of them,
we recall the definition of the space A(T) of [4].

Definition. Let Ap(T) (1 < p < =) denote the subspace of Co(T") consisting of
those functions g that can be written in the form

(7) g = 2 hyxk;,

i=1

where h;, k; € C.(I') (the space of continuous functions with compact supports) and

(8) 27 gl p Ikillpr < o
The space Ap becomes a Banach space if we define the norm of g to be the infimum
of all sums (8) over all possible representations (7).

It is a consequence of the Riesz convexity theorem that the inclusion
APZ(].") C Apl(l") holds if 1 < p; <pz <2. Theorem 2.1 shows that this inclusion

is in general strict.
COROLLARY 2.2. If 1 <p; <pz L2, then Apl (T) # APZ(I‘), unless T is finite.
The corollary follows easily from the main result of [4], namely that Mp is the
dual space of A, .

COROLLARY 2.3. If 1 <p <, then LP*LP (') = Co(T) if and only if T is
finite.
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Proof. Since 1 < p <, we have that Lp*Lp'(F) C Ap(T); now the factorization
theorem [1, Theorem 2.2] implies that Cq(T) = A(T).

Remarks. (a) Corollary 2.3 is an extension of a known result of I. E. Segal [16]
that the space A(T') = Ax(T") of Fourier transforms of integrable function on G is
equal to Co(T") if and only if I' is finite.

(b) Theorem 2.1 has been proved independently, and in a slightly more general
form, by J. F. Price [13]. His proof also applies to the compact, noncommutative
situation.

We now present another application of Theorem 1.1, namely a result concerning
multiplication of transforms of LP-functions by functions in Co(G). For functions
defined on compact groups, there are well-known results concerning random changes
of the signs of their Fourier coefficients. One might expect analogous results for
functions defined on noncompact groups. Our result shows that such an analogue fails
dramatically.

The following theorem was proved by R. E. Edwards for the case where T' con-
tains an infinite discrete subgroup [6, Theorem 2.7], and by one of the authors of the
present paper for T' = R™ [3]. (See also [15, Lemma 3.3].)

THEOREM 2.4. Let T be a noncompact LCA group, and let G be its charac-
ter group; let p be a fixed number (1 < p < 2). Suppose that F is a function on G
with the property that ¢F € LY(T)" for each ¢ € Co(G). Then F=0 l.a.e..

Proof. If F is not locally negligible, we can find a function ¥ € C.(G) such that
YF has the same property as F and ¢F is not negligible. Hence we may assume
that F itself has a compact support. In this case, the Hausdorff-Young Theorem
shows that F € L2(G); we may therefore assume that p > 1.

We now assert that if E is any compact subset of G, then X g F is also in
LP(I')". For it is easy to see that the mapping ¢ — (¢F)", which (by hypothesis)
carries Co(G) into LP(I"), is continuous. (This is a simple application of the
closed-graph theorem.) Hence there exists a constant C such that

(9) [ 6FY | oy < Cllolee (4 ColG).

Suppose (¢;) is a net of functions in C.(G) whose supports shrink to E, and suppose
each ¢; takes its values in [0, 1] and equals 1 on E. Then if we substitute ¢; for
¢ in (9) and take limits, it is easy to deduce (recall that p > 1) that

(xgF)* € LD).

But by Theorem 1.1, we can choose E so that it is a set of uniqueness and so that, at
the same time, X  F is not negligible. This is a contradiction.

Remark. By applying Baire’s category theorem to the space CO(G), one can
prove that the conclusion of Theorem 2.4 holds with the apparently weaker hypothesis
that

sre U  LPD)
1Sp<2

for every ¢ € Cy(G). This is the approach of R. E. Edwards in [6, Theorem 2.7].
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Theorems 2.1 and 2.4 have a number of other important consequences concern-
ing multipliers. To quote these results would take us too far afield and would in any
case necessitate the use of the fairly elaborate language (developed in [5] and [6]) for
Fourier transforms of entities more general than bounded measures or elements of
LYI) (1 < p<2). We quote just one result of this kind, referring the reader to [6]
for a detailed discussion of this and other results. The result we quote is the most
fundamental of all the results of [6].

THEOREM 2.5. Let I' be a noncompact group, and let p> 2. Then there
exists a function f € LY(T) such that f is not a measure.

Remarks. We mention in conclusion that the results of [6], which are proved
there for the case where I' contains an infinite discrete subgroup, can be extended
to the general situation by use of the principal structure theorem for LCA groups.
This approach is developed in detail in [7].

3. MULTIPLIERS OF L]
The space LII)(I") (1 < p < =) is the following dense subspace of L (D)
Lyr) = {f ¢ LYT): f e LR@G)} .

The space L(T) becomes a Banach space if we define [[f]| = [f]|; + [[{],. I this
section, we characterize the multipliers of Lp(I‘), where I' is noncompact, as the
space M(T): the identification is isometric, each multiplier being defined by con-
volution with an element u of M(I'). It is easy to see that it suffices to show that
the space of multipliers of L%)(l") into LY(T") is isometrically isomorphic to M(I’).

As usual, a multiplier is a continuous linear operator commuting with translations.

The space L%,(I‘) was studied previously in [12], where Theorem 3.1 was ac-

tually stated. However, the proof given in [12] is incorrect; more precisely, it is
not always possible to find a function f € L}(I‘) that satisfies the conditions (i), (ii),

and (iii) specified at thc pottom of page 375 of [12].

THEOREM 3.1. Let T be a noncompact LCA group with characteyr group G.
Then the space of multipliervs from Lll)(l") into LI(T) is isometrically isomovphic to
M(T), each multiplier being defined by convolution with an element p. of M(T), and
conversely.

Proof. One half of the theorem is trivial. For the converse, suppose that T is
a multiplier of LL(T) into LY(T). Then

(10) Izl < IThdiels + 1Elp) @ € ().

We want to prove that

(11) feelly < zll - el -

Once (11) is established, the theorem will follow from the facts that Lllj( T") is dense
in L!(T) and that the space M,(T) is isometrically isomorphic to M(I") (see [13]).

In proving (11), we may assume that f is continuous and has a compact support.
Fix € > 0 and choose a compact set K in I' containing the support of f and having
the property that
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S |Tf| dy < €.
I'\K

Since T is not compact, we can find inductively elements y;, ***, ¥n, *** in I" such
that (K+y;) N (K+ yj) =@ for i #j. We define

f, = + e +f.},n)/n ,

(ty,

where £, denotes the translate of f by the amount 7;. The choice of K and the

fact that T commutes with translations imply that
ITeally, > Iwt]ly - 2e.

Also, since K contains the support of f, we have that ||f,[|o — 0 as n — «. But

||f || 1 is bounded; hence Hilder’s inequality shows that | fy I] 2= || ful]l 2 — 0. Since

f — 0 in L“(G), we may, by passmg to a subsequence if necessary, assume that
f,— 0 a.e.. But |fn| = l¢nf| where ¢, is the sum of n characters of G divided
by n, so that || < 1. This implies that ]f | < ]fl hence we may apply Lebesgue’s

dominated-convergence theorem and conclude that “f |p — 0. Writing £, in place of
f in (10), we find that

sl - 26 < ITgally < ITH Qally + IEallp) < DTl el + Eall o)

Letting n — «, we obtain the inequality

i)y - e < Il Nl -

Since € was arbitrary, (11) follows, and the proof is complete.

Using Theorem 3.1, one can show that if I" is noncompact, the multipliers of
LMo LP(r) a<p< °°) (respectively, L1(I") N Co(T)) into L 1(T') are precisely
the operators defined by convolution with elements of M(I'). This result can, how-
ever, be established more simply by a direct argument, which we now present The
proof is due to Frank Forelli. We give the space Ll(l") N LP(I") (respectively,
LY(I) N Cy(T)) the natural norm ||f| = ||£]|, + l]f"p

THEOREM 3.2. Lef I be a noncompact LCA group. The space of multipliers
of LY(T) N LP(I") (1 < p <) (respectively, L1 (") N Co(T)) into LL(T) is isometri-
cally isomorphic to the space of bounded measures on T,

Proof. It is obvious that each y € M(I') defines a multiplier Tu and that
el nary > Tl

Conversely, let T be a multiplier, so that the inequality
(12) el < Izl lells + el p)

holds for all f € LY(I") N LP(I") (respectively, L1(I') N Co(T)). Replace f in (12) by
f+1f,. Then

(13) Tt + (1), |, <

Il e+ gl + e+ 20l

Letting a — «© in (13), we get the inequality
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2|ty < Tl @l +2' /P lle] ),
or, equivalently,
-1,
Irely < Dol (e, +2° 7 el ).

Carrying out this shifting process n times, we find that

-1
(14) lzel, < ol el + 2P pe) ).

The exponent p‘l - 1 is negative; letting n tend to infinity in (14), we get the rela-
tion

Il < Il Nl -

As in Theorem 3.1, this inequality allows us to complete the proof.

Remarks. (a) The situation where I' is compact is altogether different in each
of the cases above. We leave it to the reader to observe that when I is compact,
the corresponding multiplier problems are either trivial (and have quite different
solutions from those enunciated in Theorems 3.1 and 3.2) or impossible.

(b) [12] contains another correct result with an incorrect proof. It 1s Theorem
5, part (ii). A correct proof is readily obtained by using the fact that L ( I') contains
every integrable function whose transform has compact support. See [14] where a
much more general class of algebras is studied.
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