STRONG INERTIAL COEFFICIENT RINGS
William C. Brown

INTRODUCTION

A well-known theorem due to J. H. M. Wedderburn and A. Malcev states that if A
is a finite-dimensional algebra over a field F and if A/N is separable over F, then
there exists a subalgebra S of A such that

S+N=A and SNN=0.

Here N denotes the radical of A. The theorem further states that S is unique up to
an inner automorphism G of A. The automorphism G is of the form

G(X)=(1-n)X(1-n)t,

for some n in N. Many authors have attempted to generalize this result by remov-
ing the restriction that F be a field. In particular, G. Azumaya [3] has extended the
Wedderburn-Malcev theorem to the case where F is a Hensel ring. Azumaya
proved the following result: Let A be an algebra over a Hensel ring R. If A is
finitely generated as an R-module and if A/N is separable over R/p, then A con-
tains a subalgebra S that is separable over R and has the property that S+ N = A.
Here N and p are the Jacobson radicals of A and R, respectively. Azumaya fur-
ther proved that S is unique up to an inner automorphism G of A, where G is as in
the original classical theorem. If R is a field, then S N N = 0, and we retrieve the
original theorem. The Wedderburn-Malcev theorem yields an F-algebra isomor-
phism of A/N into A. Since S N N # 0 in general, we lose this isomorphism in
Azumaya’s generalization.

In [6], E. Ingraham has studied a class of commutative rings, called inertial co-
efficient rings, that permit a generalization of the Wedderburn-Malcev theorem along
the lines of Azumaya’s result. Specifically, a commutative ring R with identity is
called an inertial coefficient ring if it has the following property: If A is an R-
algebra that is finitely generated as an R-module and has the property that A/N is
separable over R, then there exists an R-separable subalgebra S of A with
S+ N=A. If S isunique up to an inner automorphism of A generated by 1 plus an
element of N, then R is said to have the uniqueness property. In these terms,
Azumaya’s result says that every Hensel ring is an inertial coefficient ring with the
uniqueness property.

If A is an algebra over an inertial coefficient ring R and A satisfies the usual
hypotheses, then there need not exist an algebra isomorphism of A/N into A that
splits the sequence

0 —>N—A—->A/N—-0.
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However, if there exists a ring homomorphism j: R/p — R that splits
0 ->p—-R—->R/p—>0,

then there may exist an (R/p)-algebra isomorphism ¢: A/N — A that splits

0 — N— A— A/N — 0. The purpose of this paper is to study those pairs (R, j) that
permit 0 = N — A — A/N — 0 to be split by some (R/p)-algebra isomorphism ¢.
We call these pairs strong inertial coefficient rings. We shall show that they can be
identified with a proper subclass of inertial coefficient rings and enjoy many of the
properties of inertial coefficient rings. Our main result will show that if R is a
Hensel ring for which a splitting map j exists, then (R, j) is a strong inertial co-
efficient ring. We shall also obtain a partial converse to this theorem in the case
where R is a local domain.

Strong inertial coefficient rings are of interest, because they retrieve the iso-
morphism that was lost in Azumaya’s result.

PRELIMINARIES

Throughout this paper, we assume that all rings have an identity. All subrings
contain the identity of the overring and all ring homomorphisms map the identity to
the identity. By R, we always denote a commutative ring and by A, an R-algebra;
that is, A is a ring, together with a ring homomorphism 6 of R into the center of
A. If 6 is a monomorphism, we say A is a faithful R-algebra. We say A isa
finitely generated or projective R-algebra if A is finitely generated or projective
as an R-module. We say A is separable over R if A is projective as an
(AQRR A®)-module. Here A° of course denotes the opposite ring of A.

We shall let N denote the Jacobson radical of A and p the Jacobson radical of
R. Since all rings are assumed to contain an identity, both N and p can be taken to
be the intersection of all maximal right ideals of A and R, respectively. We state
the following lemma concerning p and N.

LEMMA. Let A be a finitely genevated R-algebra, and let ﬂ mA denote the
intersection of the ideals mA, as m vruns thrvough all maximal ideals of R. Then

a) pA C N,
b) there exists a positive integer n such that N* C ﬂ mA,
c) if A is projective over R, then pA = ﬂ mA, and

d) if A is separable over R, then N = ﬂ mA.
For a proof, see [6, Lemma 1.1].

The lemma implies that if A is a finitely generated R-algebra, then A/N is a
finitely generated (R/p)-algebra. The algebra A/N is separable over R if and only
if A/N is separable over R/p. More generally, if I is an ideal of R contained in
the annihilator of A, then A is naturally an (R/I)-algebra. The algebra A is sepa-
rable over R if and only if A is separable over R/I. We shall make this shift be-
tween coefficient rings frequently without further comment.

Throughout this paper, m and mg denote the canonical projections of A and R
onto A/N and R/p, respectively. We say R splits as a ring if there exists a ring
homomorphism j: R/p — R such that 7gj is the identity on R/p. We shall indicate
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that R is split by j by writing the pair (R, j). If we have a pair (R, j) and a finitely
generated R-algebra A, then A can be regarded as an (R/p)-algebra via the map-
ping j. The sequence

0 -N—A— A/N -0

is exact both as R-algebras and as (R/p)-algebras. We say A splits as an (R/p)-
algebra if there exists an (R/p)-algebra homomorphism ¢: A/N — A such that 7¢
is the identity on A/N.

Finally, we said in the introduction that an inertial coefficient ring R has the
uniqueness property if S is unique in A up to a special type of inner automorphism.
This means if S' is another separable subalgebra of A with S' + N = A, then there
exists an element n in N such that (1 - n)S(1 - n)~l=g"

1. STRONG INERTIAL COEFFICIENT RINGS AND
THEIR ELEMENTARY PROPERTIES

Definition. A pair (R, j) is called a strong inevtial coefficient rving if every
finitely generated R-algebra A splits as an (R/p)-algebra, provided A/N is separa-
ble over R. A strong inertial coefficient ring (R, j) is said to have the wuniqueness
property if for each pair of (R/p)-algebra homomorphisms ¢ and ¢l splitting A,
there exists an element n in N such that

(1-n)ex@-n)"t=ctYx) forall xin A/N.

In terms of subalgebras of A, the pair (R, j) is a strong inertial coefficient ring
if and only if there exists an (R/p)-subalgebra S of A such that S+ N = A and
S N N = 0. The uniqueness property means that for every two such subalgebras S
and S', there exists an element n in N such that (1 - n)S(1 - n)-l=g"

PROPOSITION 1. If (R, j) is a strong inevtial coefficient ring, then R is an
inertial coefficient ving.

Proof. Let A be a finitely generated R-algebra such that A/N is separable
over R. Since (R, j) is a strong inertial coefficient ring, there exists an (R/p)-
subalgebra S of A such that S(H) N = A. The algebras S and A/N are isomorphic
as (R/p)-algebras, and hence S is separable over R/p. Consider RS C A. The
algebra RS is an R-subalgebra of A, and RS+ N = A. The fact that S is separable
over R/p implies that R® S is separable over R. Here the tensor product is taken
over R/p. Since RS is a homomorphic image of RX) S, it follows that RS is sepa-
rable over R. H

Proposition 1 implies that the collection of strong inertial coefficient rings can
be identified with a subclass of inertial coefficient rings. In general, if an inertial
coefficient ring R is split by some ring map j, the pair (R, j) need not be a strong
inertial coefficient ring. It is known [6, Theorem 3.16] that every Dedekind domain
with radical O is an inertial coefficient ring. Hence the integers Z are an example
of an inertial coefficient ring that is split as a ring by the identity mapping 1. It is
easy to see that (Z, 1) is not a strong inertial coefficient ring by considering, for
example, Z/4Z as our algebra A. More generally, if R is a commutative ring with
identity having radical 0 and a proper maximal ideal I such that I # 12 # 0, then
(R, 1) cannot be a strong inertial coefficient ring. For if we let A = R/I2 then A
is finitely generated over R and A/N = R/I is separable over R; but R/I2 cannot
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split as an R-algebra. Thus the mapping that sends (R, j) to R maps the class of
strong inertial coefficient rings onto a proper subclass of inertial coefficient rings.

PROPOSITION 2. Let (R, j) be a strong inevtial coefficient ving with the uni-
queness property., Lei 0: R — S be a ving homomorphism of R onio the commula-
tive ving S. Then theve exists a ving mapping j' that splits S and has the property
that (S, j') is a strong inevtial coefficient ving with the uniqueness property.

Proof. Let p' denote the Jacobson radical of S. Then o(p) C p'. Hence S/p' is
a ring-homomorphic image of R/p (R/p — S/o(p) — S/p'). Therefore, S/p' is sepa-
rable over R/p and hence also over R. Since (R, j) is a strong inertial coefficient
ring, there exists an (R/p)-algebra homomorphism j': S/p' — S splitting S. Now
let A be a finitely generated S-algebra such that A/N is separable over S. Then,
via 0, we can regard A as an algebra over R. Clearly, A is finitely generated over
R. Moreover, A/N is separable over S/p' and hence also over R/p. Therefore
A/N is separable over R. Since (R, j) is a strong inertial coefficient ring, there
exists an (R/p)-subalgebra T of A such that T(H) N = A. The algebra T is also an
(S/p')-subalgebra of A, and hence A splits as an (S/p')-algebra. Hence (S, j') is a
strong inertial coefficient ring. If (R, j) has the uniqueness property, then (S, j')
has the uniqueness property, because every (S/p')-subalgebra of A is also an (R/p)-
subalgebra. =&

PROPOSITION 3. Let (R;, j;) (i=1, -+, n) denote a finite number of pairs.
Then (D Ry, ®Dj;) is a strong inevtial coefficient ving with the uniqueness property
if and only if each (R;, j;) is a strong inertial coefficient ving with the uniqueness
property.

Proof. Suppose (® R;, @ ji) is a strong inertial coefficient ring with the uni-
queness property. Since each (R;, j;) is a homomorphic image of ((PR;, @ j;), we
may use Proposition 2 (with j; in place of j') to conclude that each (Ri, ji) is also
a strong inertial coefficient ring with the uniqueness property. To prove the other
direction of Proposition 3, it suffices, by induction, to consider only the case n = 2.
Let A be a finitely generated algebra over R} () R; such that A/N is separable
over R, /pl @RZ /pz . Then A decomposes into an orthogonal direct sum of an
R-subalgebra A; and an Rjy-subalgebra Az. Moreover, N decomposes into a di-
rect sum of N; and N, , where N; is the radical of A;. Each A; is finitely gen-
erated over R;. The fact that A/N is separable over R, ®R, implies that A;/N;
is separable over R;. Since each (R;, j;) is a strong inertial coefficient ring, each
A; splits as (R;/p;)-algebras via, say, ;. Then £; ) ¢, splits A as an
(Ry/p; PR, /pp)-algebra. Hence (Ri (PR3, j; @j2) is a strong inertial coeffi-
cient ring. To show it has the uniqueness property, we proceed in a similar manner.
If Sand T aretwo (R;/p; DR, /p2)-subalgebras of A such that SN = A and
T@EN=A, we break S and T into components S; and T; in A;. Since each
(Ri: ji) has the uniqueness property, there exists an element n; in N; such that

(1i - ni)Si (11 - ni)"l = T]‘_ .

Here 1; denotes the idehtity of Aj;, and we have the relations 1; + 12 =1 and
111, = 0. Since AjApz =0, a direct calculation shows that if n =n; + nz, then
(1-n)SA-n)l=T. m

Propositions 2 and 3 show that the class of strong inertial coefficient rings is
closed under the formation of direct sums and homomorphic images.
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If R is an inertial coefficient ring and p a nonzero prime ideal of R, then Ry,
the localization of R at p, need not be another inertial coefficient ring. We may
again cite the integers Z as an example. It is known [6, Theorem 3.11] that every
noetherian local domain with perfect residue class field is an inertial coefficient
ring if and only if it is a Hensel ring. (The reader may consult Section 2 of this
paper for the definition of a Hensel ring.) Since Zp is not a Hensel ring for any
p #0, Z, cannot be an inertial coefficient ring.

Strong inertial coefficient rings are not closed under localizations either. To
see this, we need the following proposition, which is due to P. Samuel.

PROPOSITION 4. Let R be a noethervian local domain and p a nonzevo privie
tdeal of R. If Rp is a Hensel ring, then p is the maximal ideal of R.

Proof. Let m denote the maximal ideal of R. By a quadratic transformation,
there exists a noetherian local domain R; of altitude 1 that dominates R [1, page
15, 1.33]. The integral closure R; in its quotient field is a Krull ring of altitude 1.
Hence, if we localize R; at some maximal ideal, we obtain a discrete valuation ring
dominating R. Since R; lies in the quotient field of R, there exists a discrete valu-
ation v (with values in Z) of the quotient field of R that dominates R. Then v(R) is
a subsemigroup of Z that generates Z. Hence v(R) contains all large integers. Let
n > 2 be an integer prime to the characteristic of R/m (and of R/p, also). Suppose
p # m. There exists an a in p (a # 0) such that v(a) is prime to n. Let s' be an
element of m - p. Then a suitable power s of s' satisfies the conditions

n|v(s) and wv()<vwv(s).

Consider now the polynomial x™- (1 +a/s) over Rp. Its reduced polynomial
(modulo pRp) is x™- 1 and admits 1 as a simple root. Since Ry is Henselian,
x® - (1 +a/s) has a root in R,. Call this root X. Then 1 +a/s = x®. Hence
a+s=sx®;but v(@a+s)= V&) (since v(a) < v(s)). It follows that n | v(s) and
n | v(sx™), and thus n | v(a), a contradiction.

Using Proposition 4, we can show that localizations of strong inertial coefficient
rings need not be strong inertial coefficient rings, even when some splitting map is
available. Let F[[x, y]] denote the power series ring in two indeterminates x and y
over an arbitrary field F. Since F[[x, Y]] is a Hensel ring that is split as a ring via
1, Theorem 1 in this paper implies that (F[[x, y]l, 1) is a strong inertial coefficient
ring. If we localize F[[x, y]] at the prime ideal generated by x, we obtain a noether-
ian, integrally closed, local domain that is split as a ring by 1. Call this ring
F[fx, vll(x). By Proposition 4, F[[x, yll(,) is not a Hensel ring. Now it is known
that an integrally closed local domain is a Hensel ring if and only if it is an inertial
coefficient ring [6, Theorem 3.11]. Using Proposition 1, we conclude that
(F[lx, y]](x), 1) is not a strong inertial coefficient ring.

Finally, we shall show that the class of strong inertial coefficient rings is closed
under some types of extensions.

Definitions. A pair (R',j') is said to be an extension of the pair (R, j) if
(a) R' is a finitely generated algebra over R (say via #: R — R') and
(b) 6j =j'6, where 6 is the induced mapping on the rings modulo their radicals.

An extension (R', j') of (R, j) is said to be residually separable if R'/p' is
separable over R/p. Here p' is the Jacobson radical of R'.
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E. Ingraham suggested the next proposition to me.

PROPOSITION 5. Let S be a separable, commutative R-algebra, and let A be
an S-algebra. If A splits as an R-algebra, then A splits as an S-algebra.

Proof. The set Hompg (A/N, N) is an SX)r S-module in the following way: let

{(s®s"f}(a) = sf(s'a) (f € Homg (A/N, N), a € A/N).

Since S is separable over R, there exists an element e = 22 x; X y; in SR S
such that 2J X;y;i =1 and

2 sx; X y; = 2 X y;s,
for all s in S. Now let ¥ be an R-algebra homomorphism splitting
0>-N-—-A—A/N— 0.

Then ¥ is an element of Hompg (A/N, N), and thus e -¥ is well defined. One can
directly verify that e-¥ is an S-module homomorphism splitting

0 >N—>A—> A/N—>0.

Since ¥ is a ring homomorphism, e ¥ is also a ring homomorphism. Hence e-¥
is an S-algebra homomorphism splitting A. =

COROLLARY. If (R', j') is a vesidually separable extension of the strong
inertial coefficient ving (R, j), then (R', j') is a strong inertial coefficient ving. If
(R, j) has the uniqueness property, then (R', j') has the uniqueness property.

Proof. Since R'/p' is a commutative, separable extension of R/p, the result
follows directly from Proposition 5. Every (R'/p')-subalgebra of an R'-algebra A
is also an (R/p)-subalgebra. Hence the uniqueness statement follows. H

2. SPLIT HENSEL RINGS

As usual, let R denote a commutative ring with identity.
Definition. R is called a quasi-local ving if the nonunits of R form an ideal.

If R is a quasi-local ring, it has a unique maximal ideal p, which is its Jacobson
radical. Let R[t] denote the ring of polynomials in an indeterminate t over R.
Then we have a natural ring homomorphism A of R[t] onto (R/p)[t], defined as fol-

lows: if g(t)= 27 r;t' is in R[t], then
Mg(t)) = 27 molr;)tt.)

We shall usually denote A(g(t)) in (R/p)[t] by g(t) or just by g.

Definition. A quasi-local ring R is said to be a Hensel rving if every monic poly-
nomial f(t) in R[t] satisfies the following condition. If there exist two relatively
prime polynomials g;(t) and gz(t) in (R/p)[t] such that f = g; g2 and g (t) is monic,
then there exist two polynomials h; and hy in R[t] such that hyhy =f, h) =g},

h, = g,, and h; is monic.
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With these definitions, we proceed to the main results of this paper.

THEOREM 1. Letf R be a Hensel ving that is split as a ring by a ving homomor-
phism j. Then (R, j) is a strvong inertial coefficient ring with the uniqueness prop-
evty.

Proof. Let A be a finitely generated R-algebra such that A/N is separable over
R. First we prove the theorem in the following special case: Assume A is central-
separable over R. In this case, we have that N=pA,and 0 - N—- A - A/N—-0
becomes 0 — pA — A — A/pA — 0. It is known that the Brauer group B(R) of R
and the Brauer group B(R/p) of R/p are isomorphic under the mapping that takes an
element (A) in B(R) to the element (A/pA) in B(R/p) [3, Theorem 31]. Consider
the R-algebra A'= A/pA(X) R, where the tensor product is taken over R/p and R is
regarded as an (R/p)-algebra via j. Then A' is a central separable R-algebra hav-
ing A/pA as its corresponding residue class algebra. It is known that there exists
(up to an R-isomorphism) only one central separable R-algebra having a prescribed
central simple (R/p)-algebra as residue class algebra [3, Theorem 32]. Since A
and A' have the same residue class algebra A/pA, there exists an R-algebra iso-
morphism ¥ mapping A/ pA® R onto A. If we denote the composite map

A/pA — A/pPAXR — A

by o, then ¢ is an (R/p)-algebra homomorphism of A/pA into A. One can verify
that 7 (0 (A/pA)) = A/pA. Hence

o(A/pA) +pA = A.

Since 0(A/pA) is simple, we have that pA N 0(A/pA) = 0. Hence ¢(A/pA) deter-
mines an (R/p)-algebra homomorphism of A/pA into A that splits

0 - pA — A — A/pA — 0.

Therefore we proved the theorem for central separable R-algebras.

We now proceed to the general case. By [3, Theorem 33], A contains an inertial
subalgebra S that is separable over R. It is clear that if S splits as an (R/p)-
algebra, then A splits as an (R/p)-algebra. Hence we may assume without loss of
generality that A is separable over R. Let C(A) denote the center of A. Then
C(A) is separable and finitely generated over R [2, Theorems 2.1 and 2.3]. Since
C(A) contains a homomorphic image of R (the image being another split Hensel
ring with the same residue class field as R), it follows from [8, 43.15 and 43.16] that
C(A) is a finite direct sum of Hensel rings. Let us write

C(A) =R ® --PR,.

Each R; is a Hensel ring and a finitely generated, separable R-algebra. We now
follow the same procedure as in the special case to show that each R; is split as a
ring via an (R/p)-algebra homomorphism. Fix i (1 <i <n). Suppose p; is the
Jacobson radical (that is, maximal ideal) of R;. Then

0—>pi—>Ri—>Ri/pi—>0

is exact, and R;/p; is a separable field extension of R/p. Let 6; denote the ring
homomorphism giving R; the structure of an R-algebra. Then R; contains 60;(R),
and 6;(R) is a Hensel ring having R/p as its residue class field. The ring 6;(R) is
also split as a ring via 6; j. Now let
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Z = Rl/p]_@ BI(R),

where the tensor product is taken over R/p, as usual. Then Z is a quasi-local, un-
ramified, regular extension of 6;(R). The residue class field of Z is isomorphic to
R;/p;. It now follows from [3, Lemma 5] that there exists a unique 6;(R)-algebra
homomorphism ¢: Z — R; that is an isomorphism of R;/p;, modulo pZ. Then ¢ is
also an R-algebra homomorphism. Let us denote the composite map

R;/p; — Ri/p;® 6;(R) = Z i R;

by ¥. Then ¢ is an (R/p)-algebra homomorphism of R;/p; into R;. One can
readily verify that Y(R;/p;) @ p; = R;. Hence R; is split as an (R/p)-algebra.

Now A is central separable over C(A)=R; @ @ R,. Hence A can be written
as Aj(®--@®A,, where each A; is a central separable R;-algebra. Since each R;
is a Hensel ring that is split as a ring, it follows from the special case that A; is
split as an (R;/p;)-algebra. In particular, each A; is split as an (R/p)-algebra.
Hence A is split as an (R/p)-algebra.

We have now proved that (R, j) is a strong inertial coefficient ring. To show
that (R, j) has the uniqueness property, we can proceed as in the classical case.
Suppose A is split by two (R/p)-algebra homomorphisms €; and {, . Then N can
be regarded as an (A/N)-bimodule in the following way: let

na = n¢,(@) and an = ¢{;(a)n (a € A/N, n€ N).

Let f: A/N — N be defined by f(a) = £;(a) - £2(3). Then f is a crossed homomor-
phism of A/N into N and hence determines an element of Hochschild’s first co-
homology group H1(A/N, N). Since A/N is separable over R/p, it follows that
H1(A/N, N) = 0. Thus f is a principal homomorphism, in other words, there exists
an element m in N such that f(3) =am - ma. Hence

tl(i) - 62(5’) Cl(a)m -m&, (@)

or, equivalently, (1 - m)¢&,(a)(1 - m)-! ¢, (a), for all a in A/N.

Theorem 1 is false if R is not a Hensel ring. Consider the following example:
Let @ denote the rational numbers and Q[x](x) the localization of the polynomial
ring Q[x] at the prime ideal generated by x. It is easy to see that Q[x]y) is not a
Hensel ring. The polynomial

y2+y+x

in {Q[x](x)} [y], for example, does not satisfy Hensel’s lemma. The fact that
(Q[xl(x), 1) is not a strong inertial coefficient ring follows directly from Proposition
1 and [6, Theorem 3.11]. We can even exhibit a central separable (Q[x]))-algebra
that fails to split as a Q-algebra.

Let A be the generalized quaternion algebra over Q[x](x) with basis 1, «, 3,
and «af, where
a2=32=x—2 and af = -Ba.
Then A is a free Q[x](,)-algebra with basis 1, @, B, and af. Since Q[x]() is
noetherian, A is separable over Q[x](x) if and only if A/xA is separable over Q
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[2,_Th_eox_‘e_m 4.7]. But A/xA is the quaternion algebra over Q generated by
1, a, B, a¢f with relations

@2 =-2=p2 and af = -Ba.

It follows from [5, page 67, Theorem 1] that A/xA is a division algebra over Q.
Since A/xXA has center Q, A/xA is central-separable over Q. It follows that A is
central-separable over Q[x](y). The Jacobson radical of A is xA. We shall show
that A cannot split as a Q-algebra. For if a splitting map ¢ existed, then A would
have an element whose square is - 2. Hence there exist constants ag, a;, ap, and
a3 in Q[x]y) such that

a%+(x-2)a%+(x—2)a%— (x—2)2a§ = -2

and aga; =0 (i =1, 2, 3). Clearly ag= 0. The resulting equation is equivalent to
the equation

(x- 2)AS+(x- 2)A5- (x - 2° A5 = - 245

in Q[x]. If this equation had a solution in Q[x], we could assume that the A; have
no common factor, and by repeatedly letting x = 2, we could proceed to the contra-
diction that x - 2 divides all the A;j. Hence A cannot have an element whose square
is - 2, and thus no such splitting map { exists.

We say a quasi-local ring R is local if it is noetherian. If R is a local integral
domain, we can obtain a converse to Theorem 1. We proceed by proving some new
results about inertial coefficient rings.

Definition. If R is an integral domain with quotient field K, then the derived
normal ving of R is the integral closure R' of R in K.

THEOREM 2. Let R be a local domain with maximal ideal p and devived nov-
mal rving R'. Let N denote the Jacobson radical of R'. If R is an inevtial coeffi-
cient ving and R'/N is separable over R/p, then R' is quasi-local.

Proof. Since R'/N is separable over the field R/p, it follows from [9, Theorem

1] that R'/N is a finite-dimensional algebra over R/p. Let u;, ***, U, be a basis of
R'/N over R/p. Choose u;, **, u, in R' such that w(u;) = u;, and consider the ring
S=R[uy, -+, u,). Since each u; is integral over R, the ring S is a finitely gener-

ated R-module. If we let q denote the Jacobson radical of S, then it follows from
[4, Theorem 1] that NN S=q. Now 7 maps S onto R'/N with kernel N N S. Hence

0—>q—8S—R/N—0

is exact. Since R'/N is separable over R/p, S/q is separable over R/p. Since q
contains p, S/q is separable over R. Now R is an inertial coefficient ring; hence
there exists an R-separable subalgebra T of S such that T +q = S. The subalgebra
T is a finitely generated, separable extension of R and hence is an inertial coeffi-
cient ring [6, Proposition 3.3]. Moreover, T is clearly semilocal and connected (it
has no idempotents other than 0 and 1). It now follows from [6, Theorem 3.6] that T
is a local ring. Since S is integral over T, it follows again from [4, Theorem 1] that
the maximal ideal of T is q N T. Therefore we have the relations

S/q =T+q/q = T/T Nq,
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and T/T N q is a field. Hence q is a maximal ideal of S, and thus N is a maximal
ideal of R'. The fact that N is maximal implies that R' is quasi-local with unique
maximal ideal N. =

COROLLARY. Let R and R' be as in Theovem 2. Thenif {x,, -, x_} is
some finite collection of elements of R', theve exists an R-subalgebra S of R'
having the following four properties.

1) SD R[xy, =, Xml.

2) S is a local ring with maximal ideal N 0 S = q.

3) S/q=R'/N.

4) S contains a separable R-algebra T having the properties that
a) T is an inertial coefficient ving;
b) T is a local ring with maximal ideal T N q;
c) T+q=S and T/T Nq=S/q=R'/N.

Proof. Let S=R[x;, "', X,,, u3, "', U, ], and proceed as in Theorem 2. =

THEOREM 3. Let R be a local domain and R' its devived normal ring. Letl p
and N denote the vadicals of R and R', respectively. If R is an inertial coefficient
ring and R'/N is separable over R/p, then R is a Hensel ving.

Proof. By Theorem 2, we know that R' is a quasi-local ring and that R' is nor-
mal. We shall show first that R' is a Hensel ring. Suppose that R' is not a Hensel
ring. Then, by [8, 43.2] there exists a monic polynomial

f(X) — Xn_}_clxn--l + *+cp

in R'[x] such that c¢; is not in N, the coefficients c2, *+, ¢n are in N, and f(x) has
no linear factor of the form x+b with b - ¢; in N. We consider the collection of
all such polynomials and select one of minimal degree. Call this polynomial f(x)
also. Then f(x) is monically irreducible in R'[x]. By the corollary to Theorem 2,
we can find an S having properties 1 through 4 and such that ci, **-, ¢, arein S.
Hence f(x) is in S[x] and is monically irreducible. Since N N S is the maximal
ideal q of §, it also follows that c¢] is not in q, that ¢z, ---, ¢, are in q, and that
f(x) has no linear factor of the form x+b with b in S and b - ¢ in q. We also
note from the proof of the corollary to Theorem 2 that we can take S to be finitely
generated over R.

Now consider A = S[x]/(f(x)). The algebra A is finitely generated over S.
Moreover, A is connected, since f(x) is irreducible. The algebra A is finitely gen-
erated over T, since S is finitely generated over T. Let M denote the Jacobson
radical of A. Then the definition of f(x) in S[x] implies that

A/M = S/q@S/q = T/TNqg@T/T Naq.

Hence A/M is separable over T/T N q. Thus A/M is separable over T. Now T is
an inertial coefficient ring; thus we can find a T-separable subalgebra V of A such
that V+ M = A. The subalgebra V is also finitely generated over T and thus is a
semilocal ring. Moreover, V is connected, since it is contained in A. Using [8,
Proposition 3.3] again, we see that V is an inertial coefficient ring. Using [6,
Theorem 3.6], we see that V is a local ring. Since A is integral over T, A is
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integral over V. Hence M N V is the maximal ideal of V. We now have arrived at
a contradiction, for we have the relation

S/a®S/q = A/M =V+M/M=V/VNM,

and V/V N M is a field. Hence R' must be a Hensel ring.

Since R' dominates R, we may assume, by [7, Theorem 4], that the Henseli-
zation R* of R lies inside R'. Hence we have the inclusions

RCR*CcR'CK,

where K is the quotient field of R. By [7, Corollary 1], we have that aR* N R =a,
for all ideals a in R. By [8, 43.8], &g R* is exact. It now follows from [8, 18.4]
that K N R* = R. Hence R =R* and R is a Hensel ring. =

COROLLARY. Let R be as in Theovem 3, and suppose R is split by some ring
homomorphism j. If (R, j) is a stvong inertial coefficient ving, then R is a Hensel
ring.

Proof. I (R, j) is a strong inertial coefficient ring, then R is an inertial coef-
ficient ring. Now the result follows from Theorem 3. ®

We note that Ingraham proved Theorem 3 under the condition that R be inte-
grally closed. Our Theorem 3 is more general, as can be seen from the following
example. Let F be a field, and let F[[x]] denote the ring of formal power series in
the variable x. Let R be the subring of F[[x]] consisting of all power series of the
form

ag+ta,x®+azx>+ (a; € F).

Then R is an example of a local domain for which the hypotheses of Theorem 3
are satisfied; but R is not integrally closed.

REFERENCES
1. S. S. Abhyankar, Resolution of singularities of embedded algebraic surfaces.
Academic Press, New York, 1966.

2. M. Auslander and O. Goldman, The Brauer group of a commultative ving. Trans.
Amer. Math. Soc. 97 (1960), 367-409.

3. G. Azumaya, On maximally central algebras. Nagoya Math. J. 2 (1951), 119-150.

4. I. S. Cohen and A. Seidenberg, Prime ideals and integval dependence. Bull.
Amer. Math. Soc. 52 (1946), 252-261.

5. L. E. Dickson, Algebras and theiv arithmetics. Dover Publications, Inc., New
York, 1960.

6. E. C. Ingraham, Inertial subalgebras of algebras over commutative rings. Trans.
Amer. Math. Soc. 124 (1966), 77-93.

7. M. Nagata, On the theory of Henselian vings. IIl. Mem. Coll. Sci. Univ. Kyoto.
Ser. A. Math. 32 (1959), 93-101.



84 WILLIAM C. BROWN
8. M. Nagata, Local vings. Interscience Tracts in Pure and Applied Mathematics,
No. 13. Interscience Publishers, New York, 1962.

9. A. Rosenberg and D. Zelinsky, Cohomology of infinite algebras. Trans. Amer.
Math. Soc. 82 (1956), 85-98.

Michigan State University
East Lansing, Michigan 48823



