MONTGOMERY-SAMELSON COVERINGS ON SPHERES
William Reddy

1. INTRODUCTION

In this note, we study maps f: M — N from a compact manifold onto a compact
manifold. Such a map is called a Monigoniery~Samelson covering if fl (M - By) isa
covering map onto N - f{B; and f ] f-1fB¢ is a homeomorphism onto fBs, where Bg
is the set of points of M at which f is not a local homeomorphism. Furthermore,
we assume that dim By < n - 2 and that the Cech homology groups of By are finitely
generated. For the rest of this note, f denotes such a map. All spaces, except By,
are manifolds unless exceptions are explicitly noted. S™ denotes the n-sphere, and
d (d > 1) is the degree of f. We prove the following results.

THEOREM 1. If f: S® — S™ satisfies the requirements above, then B; is an
(n - 2)-dimensional homology sphere, modulo each primie dividing d.

This theorem answers a question raised by H. Hopf [5, paragraph 3] and E.
Hemmingsen [3, p. 328].

THEOREM 2. If {: M — S" is a Montgomery-Samelson covering and fBf is a
trivially knotted p-sphere in S™, then p =n - 2, the manifold M is a topological
spheve, and f is the (n - 1)-fold suspension of a d-to-1 covering map of S! on S!.

We adapt to the setting of codimension zero some techniques that P. L. Antonelli
devised in his work on Montgomery-Samelson fiberings [1], [2]. The proof of Theo-
rem 1 uses a special homology analogous to that of P. A. Smith [7].

2. SPECIAL HOMOLOGY

PROPOSITION. Let f: M — N be a Montgomery-Samelson covering. Let p be
some prime dividing d. Let H denote Cech homology with coefficients in Zyp (the
integers modulo p). Then theve exist graded Z,-modules H™ (M), HT (M, By),

HO (M), and H°(M, Bg) such that

(a) for each m, there exist exact sequences

Hpi1(M, Bp) - HL(M, B) @ H(By) — Hyy(M)
and
H' (M, By) — HY (M, B) ®H_ (B — H_ (M),
and
(b) an(M, By) is the homomorphic image of H, (N, By).

Proof. Part (a) of this theorem is proved in [4]. The homomorphism of part (b)
is induced at the chain level in the simplicial case if to each simplex s in (N, By),
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we assign the chain 7(s') for some s' in £~!(s). It is usually not an isomorphism,
because of the special boundaries. See [6].

3. PROOF OF THEOREM 1

It was shown in [4] that under the hypotheses of Theorem 1, we have that

0
Eo dim H;(B¢) < 2, where dim H;(Bg) stands for the dimension of the vector space
H;(Bg) over Zp. Since Bg # @, it follows that dim Ho(Bg) > 0. Let r be the greatest
integer with Hr(Bf) # 0. By hypothesis, dim B; < n - 2; hence r < n - 2. Suppose
that r <n - 2. We infer from the second exact sequence of the proposition that
HT,,(S", By) # 0 and from the first that HZ,,(S", Bf) # 0. By part (b) of the proposi-
tion, H,..>(S", fB) # 0. Since r <n - 2, it follows from the exact sequence for
(s, fo) that H,.,,(B;) # 0, contrary to the choice of r. Theorem 1 follows.

COROLLARY 1. If n =4 and By is tamely embedded, then Bs = S2.

Proof. We may assume that f is simplicial [6, Theorem 1]. Then B; isa 2-
manif%ld, and X(Byg) = 2 [3, Theorem 1]. By Theorem 1, B is connected; hence
Bf=8S~.

COROLLARY 2. If g: M° — N° is a simplicial Montgomery-Samelson covering,
then By is the disjoint union of 3-manifolds.

For a proof, see [3, corollary to Theorem 1].

4, PROOF OF THEOREM 2

The space S™ - SP = S™ - fB; has the homotopy type of S*"P-1 and admits the
nontrivial covering f| (M - Bg); but this can occur only if n - p - 1 = 1. Therefore
p=n - 2. Now consider f I B;. Since this restricted map is a homeomorphism, we
have that

B; = fB; = SP2.

Pick a pair of antipodal points (p', q') in fB¢. Let f-1(p')=p and f-1(q') = q. Since
fB; is trivially knotted, we may assume that (p', q') is also an antipodal pair in S".
Let Y' be the equatorial sphere in SP relative to (p', q'), and let M' = £-1(Y'). Let
F: Y' X1 — S™ be the homotopy between the inclusion of Y' in S™ and the constant
map p' obtained by contracting along meridians. Let

F, = F|(Y'-fB)XI and F,=F| (Y NniBg)xI.

The homotopy F; lifts through f to a homotopy G; between the inclusion of M' - B¢
in M - B¢ and the constant map p, and G; is stationary with F; by the Covering
Homotopy Theorem. Since f , B¢ is a homeomorphism, F, can be lifted to a homotopy
G, between the inclusion M' N B in Bg and the constant map p. Let G be given by
G; on (M' - Bg) XI and by G, on (M' N Bg) XI. Let U be an open set in G(M' x1).
Then the set

¢ Hu) = (Fxid) 1t -Fl-1(U)

is open, because the functions on the right side of the equation are continuous and be-
cause f is open. Let H denote the homotopy obtained by contracting Y' to q' along
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meridians, and let K denote the homotopy that covers H. Each of the sets G(M' X I)
and K(M' X I) is homeomorphic to a cone over M', and their intersection is M'.
Therefore M is homeomorphic to the suspension of M', and f is topologically equi-
valent to the suspension of g =1 l M'. It is easy to verify that gt M' = Y' is a
d-to-1 Montgomery-Samelson covering of manifolds and that Bg = Bf N Y'. We
know that Y' is an (n - 1)-sphere and Bf N Y' is a trivially knotted (n - 3)-sphere.
The obvious induction terminates with a d-to-1 covering of S! by S!. Therefore

f: M — S" is topologically equivalent to the (n - 1)-fold suspension of a covering of
S! by S!. Then, in particular, M is the (n - 1)-fold suspension of S!; hence M

is S,
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