MONTGOMERY-SAMELSON COVERINGS ON SPHERES

William Reddy

1. INTRODUCTION

In this note, we study maps $f: M \to N$ from a compact manifold onto a compact manifold. Such a map is called a *Montgomery-Samelson covering* if $f \mid (M - B_f)$ is a covering map onto $N - fB_f$ and $f \mid f^{-1}fB_f$ is a homeomorphism onto fB_f , where B_f is the set of points of M at which f is not a local homeomorphism. Furthermore, we assume that dim $B_f \le n - 2$ and that the Čech homology groups of B_f are finitely generated. For the rest of this note, f denotes such a map. All spaces, except B_f , are manifolds unless exceptions are explicitly noted. S^n denotes the n-sphere, and f (f (f) is the degree of f are prove the following results.

THEOREM 1. If $f: S^n \to S^n$ satisfies the requirements above, then B_f is an (n-2)-dimensional homology sphere, modulo each prime dividing d.

This theorem answers a question raised by H. Hopf [5, paragraph 3] and E. Hemmingsen [3, p. 328].

THEOREM 2. If f: $M \to S^n$ is a Montgomery-Samelson covering and fB_f is a trivially knotted p-sphere in S^n , then p=n-2, the manifold M is a topological sphere, and f is the (n-1)-fold suspension of a d-to-1 covering map of S^1 on S^1 .

We adapt to the setting of codimension zero some techniques that P. L. Antonelli devised in his work on Montgomery-Samelson fiberings [1], [2]. The proof of Theorem 1 uses a special homology analogous to that of P. A. Smith [7].

2. SPECIAL HOMOLOGY

PROPOSITION. Let $f: M \to N$ be a Montgomery-Samelson covering. Let p be some prime dividing d. Let H denote Čech homology with coefficients in Z_p (the integers modulo p). Then there exist graded Z_p -modules $H^{\tau}(M)$, $H^{\tau}(M, B_f)$, $H^{\sigma}(M)$, and $H^{\sigma}(M, B_f)$ such that

(a) for each m, there exist exact sequences

$$H_{m+1}^{\sigma}(M, B_f) \rightarrow H_m^{\tau}(M, B_f) \oplus H_m(B_f) \rightarrow H_m(M)$$

and

$$\operatorname{H}^\tau_{m+1}(M,\; \operatorname{B_f}) \;\to\; \operatorname{H}^\sigma_m(M,\; \operatorname{B_f}) \bigoplus \operatorname{H}_m(\operatorname{B_f}) \;\to\; \operatorname{H}_m(M) \ ,$$

and

(b) $H_{\rm m}^{\sigma}(M,\,B_{\rm f})$ is the homomorphic image of $H_{\rm m}(N,\,B_{\rm f})$.

Proof. Part (a) of this theorem is proved in [4]. The homomorphism of part (b) is induced at the chain level in the simplicial case if to each simplex s in (N, B_f) ,

Received February 5, 1969.

Supported in part by Army Research Office-Durham grant ARO-D-31-124-G892,S2.

Michigan Math. J. 17 (1970).

we assign the chain $\tau(s')$ for some s' in $f^{-1}(s)$. It is usually not an isomorphism, because of the special boundaries. See [6].

3. PROOF OF THEOREM 1

It was shown in [4] that under the hypotheses of Theorem 1, we have that $\sum_{0}^{\infty} \dim H_{\mathbf{i}}(B_f) \leq 2$, where $\dim H_{\mathbf{i}}(B_f)$ stands for the dimension of the vector space $H_{\mathbf{i}}(B_f)$ over Z_p . Since $B_f \neq \emptyset$, it follows that $\dim H_0(B_f) > 0$. Let \mathbf{r} be the greatest integer with $H_{\mathbf{r}}(B_f) \neq 0$. By hypothesis, $\dim B_f \leq \mathbf{n} - 2$; hence $\mathbf{r} \leq \mathbf{n} - 2$. Suppose that $\mathbf{r} < \mathbf{n} - 2$. We infer from the second exact sequence of the proposition that $H_{\mathbf{r}+1}^{\tau}(S^n, B_f) \neq 0$ and from the first that $H_{\mathbf{r}+2}^{\sigma}(S^n, B_f) \neq 0$. By part (b) of the proposition, $H_{\mathbf{r}+2}(S^n, fB_f) \neq 0$. Since $\mathbf{r} < \mathbf{n} - 2$, it follows from the exact sequence for (S^n, fB_f) that $H_{\mathbf{r}+1}(B_f) \neq 0$, contrary to the choice of \mathbf{r} . Theorem 1 follows.

COROLLARY 1. If n=4 and B_f is tamely embedded, then $B_f=S^2$.

Proof. We may assume that f is simplicial [6, Theorem 1]. Then B_f is a 2-manifold, and $X(B_f)=2$ [3, Theorem 1]. By Theorem 1, B_f is connected; hence $B_f=S^2$.

COROLLARY 2. If g: $M^5 \to N^5$ is a simplicial Montgomery-Samelson covering, then B_g is the disjoint union of 3-manifolds.

For a proof, see [3, corollary to Theorem 1].

4. PROOF OF THEOREM 2

The space S^n - S^p = S^n - fB_f has the homotopy type of S^{n-p-1} and admits the nontrivial covering $f \mid (M - B_f)$; but this can occur only if n - p - 1 = 1. Therefore p = n - 2. Now consider $f \mid B_f$. Since this restricted map is a homeomorphism, we have that

$$B_f = fB_f = S^{n-2}.$$

Pick a pair of antipodal points (p', q') in fB_f . Let $f^{-1}(p') = p$ and $f^{-1}(q') = q$. Since fB_f is trivially knotted, we may assume that (p', q') is also an antipodal pair in S^n . Let Y' be the equatorial sphere in S^n relative to (p', q'), and let $M' = f^{-1}(Y')$. Let $F: Y' \times I \to S^n$ be the homotopy between the inclusion of Y' in S^n and the constant map p' obtained by contracting along meridians. Let

$$\mathbf{F}_1 = \mathbf{F} \mid (\mathbf{Y}' - \mathbf{f}\mathbf{B}_f) \times \mathbf{I}$$
 and $\mathbf{F}_2 = \mathbf{F} \mid (\mathbf{Y}' \cap \mathbf{f}\mathbf{B}_f) \times \mathbf{I}$.

The homotopy F_1 lifts through f to a homotopy G_1 between the inclusion of M' - B_f in M - B_f and the constant map p, and G_1 is stationary with F_1 by the Covering Homotopy Theorem. Since $f \mid B_f$ is a homeomorphism, F_2 can be lifted to a homotopy G_2 between the inclusion $M' \cap B_f$ in B_f and the constant map p. Let G be given by G_1 on $(M' - B_f) \times I$ and by G_2 on $(M' \cap B_f) \times I$. Let G be an open set in $G(M' \times I)$. Then the set

$$G^{-1}(U) = (f \times id)^{-1} \cdot F^{-1} \cdot f(U)$$

is open, because the functions on the right side of the equation are continuous and because f is open. Let H denote the homotopy obtained by contracting Y' to q' along

meridians, and let K denote the homotopy that covers H. Each of the sets $G(M'\times I)$ and $K(M'\times I)$ is homeomorphic to a cone over M', and their intersection is M'. Therefore M is homeomorphic to the suspension of M', and f is topologically equivalent to the suspension of $g=f\mid M'$. It is easy to verify that $g\colon M'\to Y'$ is a d-to-1 Montgomery-Samelson covering of manifolds and that $B_g=B_f\cap Y'$. We know that Y' is an (n-1)-sphere and $B_f\cap Y'$ is a trivially knotted (n-3)-sphere. The obvious induction terminates with a d-to-1 covering of S^1 by S^1 . Therefore S^1 is topologically equivalent to the S^1 -fold suspension of a covering of S^1 by S^1 . Then, in particular, S^1 is the S^1 -fold suspension of S^1 ; hence S^1 is S^1 .

REFERENCES

- 1. P. L. Antonelli, Structure theory for Montgomery-Samelson fiberings between manifolds. I. Canad. J. Math. (to appear).
- 2. ——, Structure theory for Montgomery-Samelson fiberings between manifolds. II. Canad. J. Math. (to appear).
- 3. E. Hemmingsen, Open simplicial mappings of manifolds on manifolds. Duke Math. J. 32 (1965), 325-331.
- 4. ——, Light open maps on spheres (to appear).
- 5. H. Hopf, Über den Defekt stetiger Abbildungen von Mannigfaltigkeiten. Rend. Mat. e Appl. (5) 21 (1962), 273-285.
- 6. W. L. Reddy, Open simplicial maps of spheres on manifolds. Duke Math. J. (to appear).
- 7. P. A. Smith, Transformations of finite period. Ann. of Math. (2) 39 (1938), 127-164.

Wesleyan University
Middletown, Connecticut 06457
and
Institute for Advanced Study
Princeton, New Jersey 08540