CONCORDANCE CLASSES OF
SPHERE BUNDLES OVER SPHERES

James R. Munkres

The purpose of this paper is to provide a proof for a theorem announced in [5]
concerning the classification, up to concordance, of differentiable structures on
manifolds that are sphere bundles over spheres. This is finer than classification up
to diffeomorphism; R. DeSapio [1] has proved results on the latter problem that are
interesting to compare with ours.

We recall that a concorvdance between two differentiable structures 8 and 8' on
a nonbounded PL (piecewise-linear) manifold K is a differentiable structure y on
the PL manifold K X I that equals 8 on KX 0 and 8' on KX 1. If we denote the set
of equivalence classes under the relation of concordance by C(K), the theorem in
question may be stated as follows.

THEOREM. Let K be the total space of an Si-bundle over S* whose character-
istic map may be pulled back to an element o of m,_1(80(j)). Then there exists a
one-to-one covvespondence :

CK) <> Iy D ADITry,;/image 74],

wheve A is a subgroup of T';. If @ can be pulled back to an element o' of
m;_1(80( - 1)), then A = r;N (kernel 7y1).

Here I, denotes the group of diffeomorphisms of sn-1 ' modulo the subgroup
consisting of those diffeomorphisms extendable to B®. It is isomorphic with C(S"),
the operation being connected sum. For n> 5, C(S") is _equal to the group ©, of
(oriented diffeomorphism classes of) dlfferentlable structures on S". The group S
is abelian and finite; it vanishes for n < 6.

The maps 7qg': I'j — Titj-1 and Tqg: T'j+1 — Titj are the so-called “Milnor-
Munkres-Novikov” twisting homomorphisms. (See [5, p. 189], where the homomor-
phism

7: 1 (SO(m - )X T — T .

is defined; in the present paper we denote 7(a, x) by 7g(x).)

Examples. Suppose K is the nontrivial $/-bundle over S‘2 (j > 1); we compare
its concordance classes w1th those of the trivial bundle SJ x S%. Of course, C(K) is
never larger than C(six s ), since 7o =0 if a =0; and there exist many values of
j for which C(K) is strictly smaller, for example, j =7, 13, 14, 15, and j =0 or
j =1 modulo 8. This follows from the fact that if a(k) is the nontrivial element of
71(SO(k)) (k > 2), then Ty (k): I'k+1 — I'k+2 is nontrivial for k = 7, 13, 15 and for
k =0 (mod 8). (See J. Levine [4], noting that his &(c, 0; 0, ) is ]ust our 7g(0).)

As a second example, take K to be an Si-bundle over S! having two independent
cross-sections (so that a' exists), where j is fairly closeto i (1<i-3<j<i+1);

Received July 18, 1969.

Michigan Math. 3. 17 (1970).

97



98 JAMES R. MUNKRES

we compare the concordance and diffeomorphism classifications in this case. In
these dimensions both 7, and T vanish [1], so that we obtain for the concordance
classes the correspondence

C(K) <—> Fi@rj@ri+j-

On the other hand, the oriented diffeomorphism classes are in one-to- one corre-
spondence with a quot1ent merely of I';+;; this quotient is equal to I'j;; when the
bundle is trivial [1].

< 1. A GEOMETRIC APPROACH TO THE THEOREM

An obvious question arises: if K is a manifold satisfying the hypotheses of the
theorem, how does one describe the differentiable structure on K corresponding to a
prescribed element of

(*) I‘i@(l"j N kernel Ta.)@(r‘i+j/image TOl) ?

The answer is as follows: Choose a fixed cross-section and a fixed fibre. Let

> 23 and =" pe differentiable spheres representing elements of T, I';, and
Litj /1mage Tq. Impose, if you can, a differentiable structure g on K under

Wh1ch the distinguished cross-section inherits the structure =1 and the distinguished

fibre inherits the structure EJ then assign to (Zl ZJ it the connected sum

Kg # »itJ | The structure S ex1$ts for every >t The set of =J for which B exists

includes 1" N (kernel TQ-) provided o' exists. (A short geometric argument is in-

volved here ) The concordance class of the result is well-defined [6].

Our original proof of the theorem proceeded along the lines that this description
suggests. We used the theorem [5] stating that there exists an injection
C(K) — EPHP(K; I'p)/images AF ,
and we computed the latter group to be
HY(K; T,) ® H(K; T;) @ H(K; Ty, ;)/image A,
which is isomorphic with
(%) r,® T @ I‘i+j/ima.ge Ta,

by 2.3 of [6]. Then we verified that the injection of C(K) into this group could in fact
be described by the geometric construction of the preceding paragraph. It follows at
once that if @' exists, C(K) is at least as big as the group (*) and no bigger than the

group (**¥). To show the existence of the group A in general and to show the equality
of A with the kernel of 7, if o' exists is more difficult; it requires a rather long

and messy geometric argument.

There is, however, an alternate method of proof, which we were unaware of when
we wrote [5], one that uses homotopy-theoretic techniques instead of geometric ones.
Here we present the latter proof.
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2. A HOMOTOPY-THEORETIC APPROACH

Recall that M. Hirsch and B. Mazur have announced [2] the construction of a
homotopy-associative, homotopy-commutative h-space I' such that for each non-
bounded PL manifold K and each differentiable structure 8 on K, there exists a
one-to-one correspondence between C(K) and [K, I'] (the set of homotopy classes of
maps of K into I') taking 8 to the constant map. The correspondence is natural
with respect to inclusions of open subsets of K. In the particular case where K = 8%,
the correspondence

C(s™) <— [s7, T] = 7,(T)

preserves the group operation if we let the usual differentiable structure on S" cor-
respond to the constant map.

We use this result to prove our theorem; the proof reduces to computing [K, T].
We have the following purely homotopy-theoretic lemma (proved in Section 3).

LEMMA. Assume X is an SI-bundle over Si, as in the preceding theovem.
Then theve exists a one-to-one corvespondence

(K, T] <> 7(1) @A @7, {(T)/image Jq,

where A is a subgroup of 7; (T"). If o' exists, then A = m (T') N (kernel Jy1).

Here Jgy: 7;;1(T) — 7;,5(T) is obtained from the J-homomorphism of homotopy
theory by defining Jy(x) to be J(i(a))o x, the composition of the image of @ under
the maps

7;_1(S0()) > m;_1(80G +1) & 7y ()

(where i is inclusion) with the element x of 7j+1(T). It is easy to see that Jy(x) is
bilinear in @ and x. (Note that J(a")ox is defined for a" in 7;_;(SO(j + 1)), but
bilinearity fails.)

Since m (T") and I’y are isomorphic, both being isomorphic with C(sX), we need
only to identify J, with 74 in order to obtain our theorem.

We stated this identification as obvious at the end of our expository paper [5];
now we are not so sure. We expect that it can be proved directly, using the tech-
niques of Hirsch and Mazur; but since their work has not yet appeared, we content
ourselves here with an indirect proof in Section 4 that the images of J, and 7,
have the same order. For this purpose, we consider the subset of C(K) consisting
of those structures that differ from the standard one only within a combinatorial
ball. By our smoothing theory [6], we know that this subset is in one-to-one corre-
spondence with T, /image 7, ; from the lemma of Section 3, we know that this sub-
set is in one-to-one correspondence with ﬂi+j(1")/image Jg . Our theorem follows.

3. PROOF OF THE LEMMA

We prove the lemma in the following form.

LEMMA. Let T be a homotopy-associative, homotopy-commultative, path-
connected h-space. For each K, give [K, T'] a group structure, using the multipli-
cation in T to define the operation. If K is an S'-bundle over S' whose
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chavacteyistic map can be pulled back to an element a in m;_1(SO(j)), then there
exist an abelian group G and exact sequences

i A
0 —~ G —~ [K, T] = =(T) — o0,

Jo u v
1Tj+1(F) —_ 7Ti+j(1-‘) — G — ﬂ'j(r'),
wheve the first sequence splits. If o can be pulled back to an element &' in
7;_1(SO(j - 1)), then one may adjoin
Ja'
m(T) — wy45.1(T)

to the second sequence and retain exactness.

The image of ij. consists of the homotopy classes of those maps that are con-
stant outside a combinatorial ball.

Proof. (1) The homomorphism J, . We give the definition of Jy in a more
useful form as follows. Let ¥: S1-1 — SO(j) represent the element @ of 7; -1 (S0(j)).
Let

1
h: (BY, 8) — (T, e)

represent the element x of 73,1 (T'). Then -Jg(x) is represented by the map
¢: 3(B' x BIt) -

defined by the equations

#(x1, z) = h(W(x))-z) (x € 3B,

¢(x, z)) = e (z; € 9B)).

(Here y(x;) acts on the first j coordinates in RI*1.) To see this, compare ¢ with
the original definition of the J-homomorphism in [7], where it is denoted by Hm,n.
The minus sign occurs for the reason that vertical projection of B™ onto the lower
hemisphere of S™ carries the standard orientation of B™ onto the opposite of the

one induced from the standard orientation of S™.

~ (2)_ Notation. Because K has a cross-section, we may consider it as the space
B! X BJ, modulo the identifications

, v1) = (x, y2) (yi, y2 € 9B’) and

(x5, yl/(xz)'l y) (x1, % €3 Bl).

(Xl ’ ’#(Xl)'l 'Y)

Let p: Bi X BJ — K be the identification map. Choose base points xg and yg in 8 Bi
and 9 B), respectively; let S* = p(B* X yg) and S’ = p(xg X BJ) be the standard cross-
section and fibre, respectively. Assume ¥ sends the base point xg into the identity
of SO(j). Let w: K — S' be bundle projection. In other words, we have the diagram
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Bixpl —2 s K

| b

pi Py g,

(3) Construction of the exact sequences. Define G to be the subgroup of [K, T]
consisting of homotopy classes of maps f: K — I" that are constant on SI. Let the
map i be inclusion; define A by the equation A[f] = [f| S!]. The first sequence is
clearly exact. If we define k: m;(T) — [K, I'] by the equation « [g] = [gn], where
g: S' — I, then Ak is the identity; hence the first sequence splits.

Define p by the equation u[g]= [f], where
g: (Bix BI, a(BIx BY)) — (T, e)
and f: K — T is the map induced by g. Define v [f] = [f l sdl. Clearly, exactness
holds at G.

Note that the image of iu consists of the homotopy classes of those maps f for
which f | S* U 8) is constant. Every such homotopy class is represented by a map
that is constant outside a combinatorial ball, and conversely.

(4) Exactness at 7., :(I'). Let

it+j

g: Bix B a(BixBJ)) — (I e) and h: (BIxXI 3(BIXI) — (T, e)
represent the general elements of 7Ti+j(1-') and nj+1(1"), respectively. Define a map
®: 9(Bix BIxI) — T,
depending on g and h, by the equations
a(x,y,1) = glx,5), @&x7y0) =e,
a(x,y;,t) =e (yreaBl), @1,y t)=hx1)y,t) (x3e€aB).

We show (a) that [&] = [g] - J, [h], and (b) that for a prescribed g, [g] =0 if and
only if, for some choice of h, the map & determined by g and h is homotopic to
Zero.

(a) For a prescribed &, let
&: 9B xBIx1) - T

equal & on B'x BJ X 1 and equal e elsewhere; let &, equal e on B*X B’X 1 and
equal & elsewhere. Then [®]=[®; ]|+ [®;]. Now & and g represent the same
element of 7;,; (T'), because ®; equals g on BiX Bix 1 and equals e elsewhere.
On the other hand &, represents the element -Jy [h] of Titj :(T"), for if we take the
standard homeomorph1sm 0: (x,y,t) — (x, z) of BlxBIixI w1th Bix BI*1l then
the map

po,6 L aBixBIt) - T

is precisely the map ¢ defined in part (1) of this proof. (Note that 6(x;, Y(xy)-y, t)
equals (x;, Y(x1)-z), because ¥(x}) acts only on the first j coordinates of z.)
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(b) Now [®] =0 if and only if & is extendableto Bi X BixI. ¥ & is extendable,
the extension induces a map F: KX I — TI' that is a homotopy between the map
f: K — I' induced by g and the constant map e, so that u[g]=[f]= 0.

Conversely, if u[g] = 0, there exists a homotopy F between the map f induced
by g and the constant map e. We shall construct a homotopy F' between f and e
that leaves S' fixed at e. It follows at once that the map & determined by g and h
will be extendable, provided we choose h(y, t) = F'(p(xy, y), t); for then F'(p(x, y), t)
will be the desired extension.

Let a=F|S!XI;then a: (S1x1I, Stx3I) - (I, ). Choose a map
b: (SEXI, SEx9I) — (T, e)

such that a - b: (Si X I, S'x21I) — (T, e-e) is homotopic to a constant. (The map a
induces a map Sitl —» I carrying the north and south poles to e; choose b to induce
a homotopy inverse for a.) Define B as the composite

Xi :
KXI L_& StxI _.b___> (1-" e);

then F-B is a homotopy between f*e and e-e whose restriction to S* X I is ho-
motopically trivial. The homotopy extension theorem gives us the desired homotopy
F'.

(5) Exactness at m;(T’). Assume « can be pulled back to @' in 7;_1(SO( - 1)).
Let ¥, h, and ¢ be as in part (1) above, except that j is replaced by j - 1 through-
out. If Y represents o', then ¢ represents - Ju'[h]; this element vanishes if and
only if ¢ is extendable to B' X BJ. If ¢ is extendable, then the extension induces a
map f: K — I' that is constant on S, and v [f] = [f| )] = [h]. Conversely, if
[h] = v [£] for some £, then fp is an extension of ¢.

4. THE RELATION OF 7, AND J,

Definition. If K is a nonbounded PL n-manifold with differentiable structure g,
let Cb(K) denote the subset of C(K) consisting of those concordance classes contain-
ing differentiable structures that are equal to 8 in a neighborhood of the complement
of a combinatorial ball. We interpret Cig(K) in two ways.

First intevpretation. Choose the Hirsch-Mazur correspondence C(K) <—> [K, T']
so that B corresponds to the constant map. Then C'ﬁ(K) corresponds to the homotopy
classes of those maps that are constant outside a combinatorial ball.

Let 8' agree with B in a neighborhood U of K - D, for some combinatorial ball
D in K; let f: K — I" be the map corresponding to 8'. By naturality of the corre-
spondence under inclusions of open sets, | U is homotopic to a constant, so that f is
homotopic to a map constant outside D.

Conversely, if f is constant outside D, let U equal K minus an interior point of
D. Since f| U is homotopically trivial, g [U and B'| U are concordant. The con-
cordance-extension theorem of Hirsch and Mazur implies that 8' is concordant to a
structure " that equals B in a neighborhood of K - D.

Second intevpvetation. In [6], we showed how the formation of the connected sum
K.B # = of Kﬁ with a differentiable sphere Z™ defined an action of ', on C(K).

The concordance class of K3 # Z™ can be represented by a differentiable structure
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that equals B outside a combinatorial ball, and conversely. We used Ic(KB) to de-
note the subgroup of I',, consisting of those elements that act trivially on the con-
cordance class of 8; we called IC(KB) the concordance inevtia group of KB . The
one-to-one correspondence

Ch(K) <> Ty /Ic(Kp)

follows at once.

LEMMA. Let Kg be the Si-bundle over S of ouy theovem, with its usual dif-
ferentiable structure. Then theve exist one-to-one correspondences

73+j(T')/image Jo <—> Cé(K) <—> T'jtj/image 74 .

Pyoof. By the lemma of Section 3 and the first interpretation of Cig(K), we have
a one-to-one correspondence

Cé(K) <—> image iy,
and an isomorphism
image ip = 7;45(T)/image J .

On the other hand, by Theorem 2.5 of [6], we have the equation IC(Kﬁ) = image Tq;
now the second interpretation of C[g(K) gives us the one-to-one correspondence

Cp(K) <— Ti;;/image 74 .
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