ON A CONJECTURE OF SCHUR

Michael Fried

The main purpose of this paper is to prove a conjecture due to I. Schur [11, p.
125]. Let K be a number field, finite-dimensional over the rational field Q. If f(x)
denotes an element of the polynomial domain K[x], then we may reduce the poly-
nomial, modulo any prime 4 (of the ring of integers of K) that does not appear in
the denominators of the coefficients of f(x). Let V/, (f) denote the values assumed by
f(x), modulo 4. An inspection of V (f) for only a few primes cannot be expected to

contribute immensely to our knowledge of f(x). However, Schur conjectured that if
Vi (£) cousists of all cosets modulo f, for infinitely many primes f of K, then f(x)

is a composition of polynomials of two special types:
(i) ax™ + b (yclic polynomials),

(ii) To(x) =272 {(x+ (x% +4)1/2)" + (x - (x% + 4)1/2)™} (Chebychev poly-
nomials).

In the lemma at the end of Section 1, we shall show that if f(x) € @[x] is a composi-
tion of polynomials of type (i) and (ii) such that the degree of f is relatively prime to
6, then f is one-to-one (mod p) for infinitely many rational primes p. The condition
(deg £, 6) = 1 will also be shown to be necessary. The elegant part of the argument
is due to H. Davenport.

That Schur’s conjecture is true is our Theorem 2, which follows from our Theo-
rem 1. Theorem 1 is formulated over a fixed field of any characteristic. At the be-
ginning of Section 2, we make certain calculations that have as one consequence our
Theorem 3. Let f be a finite field, and let f(x) € f[x] be a tame polynomial (see
Definition 2). The gist of Theorem 3 is that the polynomial

s, y) - =10

has an absolutely irreducible factor {as a polynomial in §f [x, y]) in extremely gen-
eral circumstances, unless f(x) is a composition of polynomials of type (i) and (ii).
If the degree of f is small in comparison with the order of f, then the condition that
#(x, y) have no absolutely irreducible factors is equivalent to f being one-to-one.
This can easily be seen from the proof of Theorem 2, in conjunction with a theorem
of MacCluer (see the remarks following Theorem 3).

Actually, Schur himself made many contributions to the problem. In particular,
by methods quite different from ours he was able to prove the conjecture for poly-
nomials of prime degree, in the case where K = @. However, our Lemma 9, which
will be used in subsequent work, strengthens even this result.

An analogue of the Schur conjecture is proved in [6]. Let g;(x), ***, gp(x) be in

J
K[x], and assume that U3 V, (g1) fills out all cosets modulo 4, for all but a finite
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number of primes 4. Then one of g;, ***, gy must be a linear polynomial. The
proof requires the use of Chebatorev’s density theorem and Hilbert’s irreducibility
theorem. Schur’s conjecture will be seen to hinge on some rather difficult group-
theoretic propositions and on the Riemann hypothesis for curves. Except for the use
of some deep tools, however, these two theorems seem to have little in common be-
sides their general formulation in terms of Riemann surfaces.

In Section 2, we state two conjectures related to the results of this paper.

1. PROOF OF SCHUR’S CONJECTURE

Suppose L is an arbitrary field and L* is a fixed algebraic closure of L. A
polynomial f(x) € L[x] is said to be decomposable over L if we can write
f(x) = £;(f,(x)), where f; and f, are polynomials over L of degree greater than 1.
We say merely that f(x) is decomposable if it is decomposable over L*. We call
£, and fp composition factors of f. The following lemma shows that decomposabil-
ity is in most cases independent of the field L.

LEMMA 1. If f(x) € L[x] is decomposable over L*, and if (deg f, char L) = 1,
then £(x) is decomposable over L. (This lemma is Theorem 3.5 of [7].)

Let A be an indeterminate over L¥, so that the zeros 6}, ***, 6, of f(x) - A are
also indeterminates over L*. The integer n denotes the degree of f. Let

’ A) = L(Bla "y gn)y

b

Q¢ = L6y, -

and let G(Qg_ ;\/L(A)) denote the Galois group of Qs_) over L{\). The group

= G(L* - Q¢ A/L (7)) is often referred to as the monodromy group of f(x) - A,
char L = 0. The group G* can be identified as the subgroup of G fixed on the ab-
solute constants of ¢ . ®H

Definition 1. A permutation group G on the letters 6, ---, 0, is said to be im-
primitive if there exists a subdivision of the set {6, «--, 6,} into disjoint proper
sets that are permuted among each other by each element of G. We say G is primi-
tive if it is not imprimitive.

LEMMA 2. Suppose f(x) € L[x] is indecomposable over L. Then, in the nota-
tion introduced above, the group G(Qs_y /L(A)) is a primitive group when vepre-
sented on the lelters 0], *++, 0.

Proof. In [7, Proposition 3.4], it is shown that the fields between L(61) and L()
are in one-to-one correspondence with the composition factors of f(x). If f(x) is in-
decomposable, there exists no proper group between G(Q_» /L())) and
G(Q¢-) /L(61)). However, if G(Q¢-) /L(\)) were imprimitive, the stabilizer of the
set of imprimitivity containing 61 would be such a proper subgroup. H

Definition 2. We shall say that a polynomial f is fame over L if either

(1) the characteristic of L is zero, or

(2) (deg f, char L) =1 and (m + 1, char L) = 1 for all m that are multiplicities
of a zero of f'(x) (the derivative of f(x)).

If £ is tame, then the Riemann surface of f(x) - X over the A-sphere is tamely
ramified.
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For the remainder of this section, we limit the discussion to tame polynomials
f(x) € L[x].

We now list some lemmas that will be used in the proof of Theorem 1. These are
well-known in the case where L is the field of complex numbers. For the sake of
completeness, we shall outline the proof (or give convenient references) for this
case. This case is all that we actually need for the Schur conjecture (Theorem 2).
We shall comment on the general case after we have stated and proved our lemmas.

Consider the Riemann surface # for f(x) - A = 0 as a branched covering of the
A-sphere, and let A, ***, A, be the finite branch points. For a description of the
process by which the Riemann surface of f(x) - A = 0 is formed, see [13, Chapter 3].
Fix a point A* of the A-sphere different from Ay, **-, A, ©. Let p;, *=-, p,. de-
note the places in the fiber above A*. For each path § starting and ending at 2 ¥
and intersecting none of the branch points, we obtain a permutation of p;, ***, p,. by
mapping p; into pj, where p; is the starting point of a lift of the path to the Rie-
mann surface £, and pj is the end point of the same lifted path. By [13; Chapter 4,
Theorem 4.1], the point p j is uniquely determined by P and p;. Similarly, by
analytically continuing the zeros 6y, -+, 6, of f(x) - X =0 about ¥, we obtain an
automorphism of Q¢_» /C(X). Let $1, ***, Pr, P, be nonintersecting paths on the
A-sphere having the properties that

(@) $; G =1, -+, r) (respectively, P ) starts and ends at A* goes around A;
(respectively, ), but goes around no other branch point, and

(b) B, =, B, P, are pointwise nonintersecting.
Let 01, +-+, 0y, 0 denote the elements of G(Q¢.) /C(A)) obtained from the paths
By, =, Py, Bo. Wecall 0y, -+, 0., 0 branch cycles.

LEMMA 3. The surface R is tolally ramified over X = », If we replace the
letters 60, -+, 6, by 1,2, *=* n, we may write o, = (1, 2, ***, n) (that is, the ele-

ment o, is an n-cycle).

Proof. The lemma is an immediate consequence of the fact that the Puiseux ex-
pansions for f(x) - A = 0 over XA = « are of the form

-1/n

lea_lhl/n+afo+a17\ T,
92 = a_l §nA1/n +a0 +a1 CI;]. A—l/n + ...,
-1,1 -(n-1) -1/
6, =0 tg /o + oy + o Cn(n )A ",
where {, is a primitive nth rootof 1. m
LEMMA 4. Theve exists an ovdeving of 01, ***, 0 such that
01 +02 «++0r = 0.
Proof. For some ordering of the paths P, -, P, the path obtained by juxta-
position of these paths is homologous on the A-sphere (minus the branch points
Ai, ***, A, ) to the path B, . The lemma is an immediate consequence of the fact

that the automorphisms of £¢_y /C(7), obtained from homologous paths, are the same
(see [13, Theorem 4.4, p. 81]). =

Definition 3. Let G be a permutation group. If ¢ isin G and o =y; **-y4, then
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indo = 2o [ord (vy) - 1].
i=1

LEMMA 5. Let 0}, -+, 0. salisfy the conditions of the description preceding
Lemma 3. Then E; ind 0; =n - 1.

Proof. If xy is a zero of multiplicity m of f(x) - £(xg), then some place of the
Riemann surface & is ramified over xg = f(xg) with ramification index m. We can
see this most easily by computing the Puiseux expansions of f(x) = X about the value
Xg. Of course, Ay must be one of the points A;, **-, A, . The ramification of
this place over Ay contributes a disjoint cycle to 07‘0 =Y Vs (written as a prod-

uct of disjoint cycles). Say that the corresponding disjoint cycle is ;. Then v is
of order m, so that

!'yll—1=m—1.

Since x is a zero of f'(x) of multiplicity m - 1, the sum of the multiplicities of the
r

zeros of f'(x) is the same as Z;l ind 0;. The lemma follows from the fact that the
degree of f'(x) isn-1. =m

- Definition 4. Let £ and & be two Riemann surfaces over the A-sphere. Sup-
pose A* is a fixed point on the A-sphere and is not a branch point for either # or
. Let py, -+, p, (respectively, q;, ***, q,) be the places in the fiber over A* in
R (respectively, &). We say that & and & exhibit tke same branching over the -
sphere if there exists a labeling of the fibers over A* on % and & such that the
branch cycles for # and & are the same. The proof of the next lemma shows that
when the branching for # and & is the same, then & and & are analytically iso-
morphic. The isomorphism is canonical when A¥* is fixed.

LEMMA 6. Suppose theve exists g(x) € L*[x] such that the Riemann surface R
and the Riemann surface & of g(x) - X exhibit the same branching ovey the \-
spheve. Then there exist constants a, b € L™ such that g(ax +b) = f(x).

Proof. Let p be a place on #. Draw a simple path $* from p to some p; (an
element of the fiber above A*) so that $* intersects no ramified place. Project $*
to a path P$ on the A-sphere. Lift $ (this may be done uniquely by [13, Chapter 4,
Theorem 4.1]) to a path £* on & starting at q;. The end point of 2% is an analy-
tic function of p as we vary p. The fact that q is uniquely determined by p (inde-
pendent of the path s13"‘) is a simple consequence of the fact that #£ and & exhibit

the same branching.

We thus obtain an analytic isomorphism ¢: # — &. If f is a meromorphic func-
tion on &, we induce a meromorphic function on & by sending f into fo¢. Thus we
induce an isomorphism of the function fields of # and &. By construction, this
isomorphism is the identity on C()\), the function field of the A-sphere. The function
field for & is given by C(0;), where 6; is any one of the zeros of f(x) - A. Simi-
larly, the function field for & is given by C(a ), where o, +--, oy, are the zeros of
g(x) - . Thus C(0;) is isomorphic to C(a;), by an isomorphism flxed on Cc().

The only fields isomorphic to C(aJ) over C(h) are the fields C(o;) (i=1, ---, n).
Hence, for some integer i, C(6;)= C(a;). By simple field theory, a; is a 11near
fractional transformation of 01; therefore

6, +b
£(61) = x = gla;) = g(m)
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Since 6, is an indeterminate, we conclude that ¢ =0, d # 0, and f(x) = g(a'x +b')
for some a', b' € C. =

Remarks. In his thesis [8], W. Fulton gives a general procedure for proving
properties such as those occurring in the preceding lemmas, over any field. Without
appealing to the Lefschetz principle, he shows [8, Corollary 6.9, p. 6.7] that these re-
sults hold over any field with characteristic zero. If L* is of positive characteristic,
let R be the Witt vector ring with residue class field L*. Suppose ¢: X - Y isa
tame cover of complete, irreducible, nonsingular curves defined over L*. Then
there exist schemes X* and Y* that fit into a diagram

(where f;, f, are proper maps) whose reduction is ¢: X — Y, such that aut (X*/Y*)
(the group of automorphisms of X* over Y*) is canonically isomorphic to aut (X/Y).
Lemmas 3, 4, 5, 6 were concerned with the automorphisms of the Riemann surface of
Q¢_3(X) over the r-sphere (Y). The facts about aut (X*/Y*), where X* Y* are the
lifted schemes as given in the diagram above, then go over canonically to aut (X/Y).
As a matter of fact, it is an easy application of the Riemann-Roch theorem to show

that X* is actually a model for the Riemann surface of some function field Qf*_}\* ,

where f* € R[x] reduces to f, modulo the maximal ideal of R, and 2™ is an inde-
terminate over the quotient field of R. A careful reading of [8] (especially pages 4.9
to 4.12) will make clear the proofs of these results and how they lead to proofs of
Lemmas 3, 4, 5, and 6 in general. These and the remaining results of [8] were pre-
viously announced by A. Grothendieck in [9]. The proofs in [8] rely heavily on the
work of Grothendieck; in particular, the elementary properties of formal schemes
are used. It seems quite reasonable that an easier proof of the lifting can be found,
at least in the special case required for the proof of Theorem 1, when char L # 0.
However, in later applications these facts, as presented here, will be needed in their
full generality.

We record now one important comment. Without the assumption that f(x) is
tame, we cannot associate elements of G(Q¢_j /L(A)) with the branch points. This
corresponds to the fact that Puiseux expansions exist only around tamely ramified
places of the A-sphere.

We are now ready for our main result. Consider the polynomial

(3) o(x, ) = L= 10)

in two variables.

THEOREM 1. If £(x) € L[x] is indecomposable, tame, and neither a cyclic nor a
Chebychev polynomial, then ¢(x, y) is absolutely ivreducible.

We need the following facts from group theory. The first is due to Schur [12].
The second originated with Burnside [2], but Schur gave an elegant alternate proof of
it [3, p. 234].
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LEMMA 1. If a primitive peymutation group G of degree n contains an n-cycle,
then either n is prime ov G is doubly transitive.

LEMMA 8. If G is a group of prime degree p and G is not doubly transitive,
then |G| divides p(p - 1).

The following lemma almost immediately implies Theorem 1.

LEMMA 9. Suppose f has degrvee n and f is indecomposable over L*, tame,
and neither a cyclic nor a Chebychev polynomial. Then the group

GL* - Q_, /LX)

is transitive on the letters 6, , -+, 0, . -

Proof of Theorem 1. To see that Lemma 9 implies Theorem 1, note that
¢(61 , y) has exactly the zeros 6, **-, 6,. By simple Galois theory, ¢(0;, y) is
irreducible over L*(6;) if and only if G(L*- Q¢ /L*(61)) is transitive on
82, ***, 0, . Since 8] is an indeterminate, the irreducibility of #(61, y) over
L*(61) is equivalent to the absolute irreducibility of ¢(x, y) over L. Of course,
transitivity of G(L*-Q¢_, /L*(0 1)) on the letters 62, -+, 8, is equivalent to double
transitivity of G(L*-Q £ /L(A)) = G*. We now show the double transitivity of G*
under the conditions of Lemma 9. We note that G* is a subgroup of
G(L - £_» /L(2)), and this latter group is sometimes more useful than G*, when
special information is available.

Proof of Lemma 9. Lemmas 2 and 3 imply that G* is a primitive permutation
group on the letters 6, , ---, 6,, and also that G* contains an n-cycle, where
n =deg f. If n is composite, then Lemma 7 implies that G* is doubly transitive,
and Lemma 9 is established. Now suppose that n is a prime p and that G* is not
doubly transitive. Then, by Sylow’s theorem, Lemma 8 implies that the group gen-
erated by o, = (1, 2, ***, p) is a normal subgroup. We shall prove that if f is tame,
then f is either a cyclic or a Chebychev polynomial. We now divide the argument
into three steps.

Step 1. With the notation preceding Lemma 3, o; (i =1, *-+, r) fixes at most one
letter.

Suppose o¢; fixes two letters. We may rename the branches so that these letters
are 1 and a. The operation of renaming the branches is algebraically achieved by
conjugating all elements of the group by some power of 0.

Since 0. generates a normal subgroup of G* we have that 0; 0, 03! = ¢S for
some integer s. But in this case,
(4) 03 ()’000'{1 = (1; Tty A, "') = Gfo = (1’ 1+s, 1+as, )

(where a is in the ath position in the second member). Thus a =1+ (a-1)s (mod p).
By solving this congruence, we see that s must be 1. Equation (4) implies that

-1
(5) 0i0n0i = 04

By comparing the two sides of equation (5), we see that if o;: 1 — t, then

oi_l:t+1—~>2 or oir2—t+1.
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In general, 0;: u — u+t - 1, which implies that ¢; is a power of 0, . By definition,
o; is not the identity (that is, t # 1 in the discussion above); hence o; fixes no let-

ters, contrary to the assumption that it fixed two letters.
Step 2. Description of the two possible types of branching of f(x) - A

For each i, 0; leaves at most one letter fixed. If we write o; as a product of
disjoint cycles, we see easily that ind o; > (p - 1)/2, with equality if and only if o ;

r
consists of a product of (p - 1)/2 two-cycles. By Lemma 5, 2J] ind 0; = p - 1.
There are only two possible cases, namely r=1andr=2, Kfr=1, then
ind 0; =p - 1. Thus f'(x) = b(x - a.)p , and f(x) is a cyclic polynom1a1 If r=2,
then

ind 0y =ind o, = (p - 1)/2,

and 07 and 0, both consist of (p - 1)/2 disjoint two-cycles.
Step 3. Explicil description of the case r = 2.

We now show that up to a relabeling of the branches of f(x) - A, the branching
type is determined by the conditions that ¢, 0, = 0, and that 0; and ¢, both con-
sist of (p - 1)/2 disjoint two-cycles. By relabeling the branches of f(x) - A, we may
assume 0 contains the two-cycle (1, 2). Thus o, contains the cycle (1, 3); there-
fore o] contains (3, p) and o, contains (p, 4); hence 0] contains (p - 1, 4) and
o, contains (p - 1, 5); it follows that o) contains (p - 2, 5) and 02 contains
(p - 2, 6), and so forth.

By Lemma 6, we may conclude that (up to a linear change of variable) there
exists at most one polynomial f(x) such that f(x) - A has this type of branching. We
may move the branch points A}, A2, « at will to A], A2, «, by a linear change of .
This amounts to changing f(x) to af(x)+ b, for seme a, b € L*. If the characteris-
tic of L is 2 or p, then, by Definition 2, no such fame polynomial f(x) exists.
However, if (char L, 2p) =1, the Chebychev polynomials T (x) have this branching
(see Lemmas 12 and 13 for more explicit information on the Chebychev poly-
nomials). =

Let K be an algebraic number field. For a prime ideal f of Ok, we denote the
order of the residue class field 0x;, by N(4). K f(x) € K[X] has its coefficients
in the ring of integers @ localized at the prime ideal /4, we say that f(x) has good
veduction modulo f. This means that we may reduce the coefficients of f modulo 4.
If f(x) is decomposable over K, say f =f;(f,), then good reduction of f(x) modulo a
prime 4 does not imply good reduction of f; or f;. Although the next lemma is
sometimes useful in this connection, it is not needed for the arguments of this paper.
We remark only that Lemma 10 may be proved in exactly the same manner as
Lemma 1.

LEMMA 10. Suppose i(x) € K[X] and deg f = n. Suppose further that £ =1£;(f,)
is decomposable over K and has good veduction modulo 4. If (n, N(4)) = 1, then
theve exist g, g, € K[X] such that £, =ag,+b for some a, b € K, and such that

= g,(g,), where g, and g, have good veduction modulo 4.

The following lemma in its most general form is usually attributed to E.
Noether. For the reader’s convenience, we provide a simple proof of the lemma. A
reader familiar with ultraproducts should have no trouble giving an even shorter
proof. We suspect that neither proof is new.
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LEMMA 11. Let K be a number field. If §x,y) € K[x, y] is an absolutely ir-
reducible polynomial in two variables over K, then ¢(x, y) modulo s is absolutely
irveducible over Ok, , for almost all primes s of the ring of integers O of K.

Proof. Let L be any field (char L > 0) over which it makes sense to consider
#(x, y). Let r =deg ¢ - 1. Then ¢(x, y) is reducible over L* if and only if there
exist polynomials

hy = 20 aj;x'yl, hy= 2 b;x'y
i+j<r itj<Lr

such that
(6) hih, - ¢(x,y) =

where hy, h, € L*[x, y]. Treat the a’s and b’s as indeterminates over L*, The
coefficients of (6) (quadratic polynomials in the a’s and b’s with coefficients in L)
are a basis for an ideal (L) of the ring

R(L): L[al’l’-..’a “,b

r,r;bl,l’ ) r,r]'

By Hilbert’s Nullstellensatz, (L) = R(L) if and only if (L) has no zero over L%,
and this is equivalent to the absolute irreducibility of ¢(x, y) over L. If, as is the

case by hypothesis, (K) = R(K), then 1 = 27 s;t;, where s;, t; ¢ R(K) and {t;} is
the basis of «(K) descrlbed above. Then, for all primes f for which we may re-
duce s;, t; (i=1, ---, ¢), we obtain .,d(ﬁK//,) = R(ﬁK/ﬁ). Thus ¢(x, y) is abso-
lutely 1rreduc1b1e modulo fo. R

THEOREM 2. Suppose f(x) € K[x] is a polynomial (not necessarily indecom-
posable) whose value set Vy; (f) consists of all cosets module f, for infinitely many
primes 4 of K. Then {(x) is a composite of cyclic and Chebychev polynomials.

Proof. I f(x) is decomposable over K*, then by Lemma 1, £(x) is decomposable
over K. If f =f;(f;), then, excluding the finite number of primes for which either f;
or f, has bad reduction, we see that f is one-to-one modulo 4 if and only if both
f; and f, are one-to-one modulo 4. A simple induction shows that we may assume
that f(x) is indecomposable over K*, Since char K is zero, f(x) is tame. If f(x) is
neither a cyclic nor a Chebychev polynomial, then Theorem 1 implies that

is absolutely irreducible over K. By Lemma 11, ¢(x, y) is absolutely irreducible
modulo ~ for all but a finite number of primes /4 of K. If deg ¢ is less than the
characteristic of Oy /4, then ¢(x, x) = £'(x) is not identically zero modulo f; hence
#(x, x) has no more than deg ¢ zeros modulo 4. The multiplicity of each point

(%, y) on the curve ¢(x, y) =0 (mod 4) is bounded by deg f' = deg ¢.

Weil [14, p. 71] has shown that if ¢(x, y) is an absolutely irreducible polynomial
(modulo ), then ¢(x, y) =0 has N(4) +O((N(ﬁ)) 2) zeros in OK/p- As was
shown above, if N(4) > deg f, then the polynomial ¢ =0 (mod £) has less than deg f
zeros with x =y (mod ). Hence it follows that for all but a finite number of £,
#(x, y) =0 (mod £) has a solution with x #y (mod £). This would imply in addition
that f(x) = f(y) (mod ), which would be a contradiction to the assumption that V, (f)
consists of all cosets modulo 4. MW
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We conclude this section with some lemmas about Chebychev polynomials.
These results are known in principle, but we include them for the sake of complete-
ness. If in the expression for T, (x) (formula (ii)), we let 2z = x + (x2 - 4)1/2  then
T, (x) = (z° + z71)/2, where x = (z +z"1)/2.

LEMMA 12. If (n, char L) = 1, then the Riemann surface for Tn(x) - X is
branched over A =1, -1, o, At A=-1and )X =+1, (n - 1)/2 places have vamifica-
tion index 2.

Proof. We can express Tp in terms of z by the formula

2n _ 1
T =n—s————.
n (ZZ _ l)zn-Z

Each x different from 1 or -1 occurs for two distinct values of z. Therefore, the
2n - 2 zeros of (z2n - 1)/(z2 - 1) correspond to exactly n - 1 distinct values of x,
which are the zeros of T}l(x). Since the values of z are 2nth roots of 1, the values
of A for which there is branching are +1. Thus, over each of the finite branch
points, the places have ramification as indicated in the statement of the lemma. =

LEMMA 13. If K is a number field and 4 is a prime ideal of K, then T, (x) is
one-to-one modulo f if (n, N(4) - 1) = 1. Ifin addition K = @, then every composi-
tion of cyclic and Chebychev polynomials of degvees velatively prime to6 is one-fo-
one modulo p, for infinitely many primes p.

Proof. U x is a coset modulo 4, associate with x one of the solutions z (it
doesn’t make any difference which solution) of x = (z +z-1)/2. All such z lie in the
unique quadratic extension F of O/ = If x; and x, represent distinct cosets

modulo 4 such that T, (x;) = T,(x;), then either z] =z} or z] =z;", since we have
z} + 27" = 25 + 23" . The multiplicative group F - {0} is cyclic and of order

N(4) - 1. Since we have assumed (n, N(z) - 1) = 1, it follows that z; =z, or

Z) = zil . Thus x; = x,, and therefore Ty(x) is one-to-one modulo 4. Of course,
a cyclic polynomial of degree n is one-to-one (mod ) if and only if

(n, N(z) - 1) =1.

Let f(x) = f; (f,( +** (f.(x))) be a composition of cyclic and Chebychev polynomials
of degree n;, ---, n,.. If p is a prime such that (n;, p> - 1)=1 for i =1, -+, r,
then the first part of this lemma, applied to K = @, shows that f(x) is one-to-one
modulo p. Let nj---n,. = N. We have therefore established the second part of the
lemma if we show that there exist infinitely many primes p such that (N, p+1)=1.
However, there are infinitely many primes in the arithmetic progression {jN + 2},
because (N, 2) = 1. We have that ((jN+2)+ 1, N) = 1, because (N, 3) = 1, and hence
we are done. MW

It is important to observe that if f(x) is a composite of cyclic and Chebychev
polynomials for which (deg f, 6) # 1, then f is not necessarily one-to-one modulo p
for infinitely many primes p. First of all, by the simple properties of cyclic and
Chebychev polynomials, f is a composition of cyclic and Chebychev polynomials of
prime degree. If (deg f, 6) # 1, then f could be one-to-one only if its composition
factors of degrees 2 and 3 are one-to-one modulo p. However, polynomials of de-
gree 2 are never one-to-one for large primes p. Certainly x3 is one-to-one for
infinitely many p. However,

T3(x) - T3(y)
Xx-y
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has an absolutely irreducible factor of degree 2 over @. The argument of Theorem
2 shows that T;(x) is not one-to-one for large primes p.

2, FURTHER RESULTS AND CONJECTURES

For any finite field F, Davenport and Lewis [4] called f(x) € F[x] exceptional
relative to F if ¢(x, y) = [f(x) - £(y)]/[x - y] has no absolutely irreducible factor
over F. They conjectured that such polynomials are one-to-one on F. MacCluer
[10] showed that this is true if f is tame. The following corollary is an immediate
consequence of Theorem 1.

COROLLARY 1. If 1(x) € F[x] is indecomposable and tame, then f is excep-
tional velative to F only if { is a cyclic or a Chebychev polynomial.

We now introduce techniques that will allow us to handle some problems where
f(x) is decomposable. We remind the reader that we are, as always, restricting our-
selves to consideration of tame polynomials.

Suppose f(x) = h(g(x)) € L[x] (L is arbitrary again), where deg h =n and
deg g = m. Let x(i) (i =1, ---, n) denote the zeros of h(x) - A, and let x(i, j)
(j =1, -+, m) denote the zeros of g(x) - x(i). We choose a primitive mnth root of
1, say &, , in order to identify x(i, j) by its Puiseux expansion over A =, We
then may label x(i, j) (i=1, --, n; j=1, ---, m) so that

1 1
-— -- - _ ..- ._l -———
(7) x(i, §) = a_g G PO g gy gr TR, L

With these choices, we can describe the action of the branch cycle over A = © by
(8) 0, = (x(1, 1), x(2, 1), -+, x(n, 1), x(1, 2), x(2, 2), *-, x(n, m)) .

Our biggest concern is to examine when
(9) G(Q¢_) /L(x(1, 1)) is transitive on the letters x(i, j} for i #1 .

LEMMA 14. Condition (9) is equivalent to

_ I(x) - £(y)
v Y) = - e)

being irveducible as a polynomial in K[x, y].

Proof. Since x(1, 1) is an indeterminate over K, y¥/(x, y) is irreducible over K
if and only if Y(x(1, 1), y) is irreducible (as a polynomial in y) over K(x(1, 1)). The
zeros of Y(x(1, 1), y) are exactly the indeterminates x(i, j) (j = 2, ---, m;
i=1, ---, n), because g(x(1, 1)) = x(1), and the zeros of g(y) - g(x(1, 1)) are exactly
the indeterminates x(1, j) (j =1, ***, m). By Galois theory, ¥(x(1, 1), y) is irre-
ducible over K(x(1, 1)) if and only if G(¢_)/K(x(1,1))) is transitive on x(i, j)

G=2 -+, m;i=1 *+ n). =

We need a simple concept to explain what we may describe as the best situation.

Let G be a permutation group on the letters x(1, 1), -+, x(n, m), where the sets
X(i) = {x(@, 1), >+, x(i, m)} form a system of imprimitivity. Let H be the subgroup
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of G that leaves each of the sets X (i) (i=1, *--, n) fixed as sets. Let H;
(i =1, -+, n) be the permutation group operating on X(i) obtained by restricting to
H; each element of G that maps X(i) into itself.

Let S, be the symmetric group on n letters. We obtain a group T (isomorphic
to S,) by letting ¢ — o1 (0 € S,), where o7 is the permutation on
x(1, 1), ---, x(n, m) obtained by setting

(10) or(x(i, j)) = x(a (), j).

Let Tg be the image in T of G obtained by representing o € G on the sets X(31)
(i=1, -+, n). Thatis, we forget what o does on the elements of the sets X(i). We
form a map

(11) a:G—->TgXH;X:XH, by o —0T x[(oT'lo), e (oi;lo)n],

The map @ is easily seen to be a group homomorphism that is injective.

Definition 5. We say that a permutation group G, as described above, is fully
imprimitive if the homomorphism & of (11) is onto (that is, & is an isomorphism).

We now return to the case where G = G(Q¢-) /L(X)) and the sets of imprimitivity
are the sets X(1), ---, X(n).

LEMMA 15. The group G(Qs_ /L*(\)) is fully primitive on the letters
x(1, 1), ***, x(n, m) with respect to the sets X(1), -+, X(n) of imprimitivity if

for each X\ # =, at most one of the values x(i)(Ag) i=1, -+, n)

H

(12)
is a branch point of g(x) - y.

Note, Two situations negating (12) can occur. That is, the set
x(1) (g), +++, x(n) (Aq)

may contain a given branch point of g(x) - y twice, or this set may contain two
distinct branch points of g(x) - y.

Proof. Let A* be a nonbranch point for f(x) - A on the A-sphere. Let
{y; = %) (2*)}7 be the fiber above A* on the Riemann surface for h(x) - 2, and let

m,n

{yi,j = %0, DON}i=1 5=1

be the fiber above A* on the Riemann surface for f(x) - A. Starting at y;, draw
simple paths (call these P*), in the manner of the paths drawn in the discussion pre-
ceding Lemma 3, around branch points for g(x) - y. Here we refer to the Riemann
surface for h(x) - A as the A-sphere. In addition, assume that the projections P on
the A-sphere of the paths P* enclose no additional branch points of f(x) - A. The
fact that paths P for finite branch points encircle one branch point exactly once is a
consequence of (12). In addition to the paths P, draw paths Q on the A-sphere so as
to obtain branch cycles for h(x) - A. Again this is to be done in the manner of the
discussion preceding Lemma 3.

We denote by ¢ (P*) the automorphism obtained from P* of the fiber above y;
(say zy, ***, 2,,) on the Riemann surface for g(x) - y. If o(P*): z; — zj, then

o (P*) o (PX)d: 25 — z5.
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By projecting these paths on the A-sphere we obtain, using 0(Q%) = 0(P,), that
(13) 0(P)0(Qe) ™: ¥y 1 = Vit

where k is the unique integer such that ¢(P) moves y; . By (12), k is unique.
Thus,

(14) o(P): yix = ¥j k-
Also from (12), for j #k and all £, we find that

By conjugating the branch cycles of f(x) - A of form o(P) by powers of ¢ (P), it is
now easy to see that the image of o in (11) contains {1} XH; X -+ X H_ . The sur-
jectivity of o follows from the fact that (12) also implies that the image of the group
generated by the branch cycles of form ¢(Q) is exactly T x {1} x -+ x {1}. =

THEOREM 3. Let h, g € L*[x], and let £(x) = h(g(x)). Using the notation follow-
ing Covollary 1, if (12) holds and h(x) is indecomposable and neithev a cyclic nor
Chebychev polynomial, then

_ f(x) - £(y)
(16) Vi 3) = o) T ely)

is trreducible.

Proof. By Lemma 14, we must show that G(9_, /L™(x(1, 1))) is transitive on
the letters x(i, j) for j #1. By Lemma 15, G(_»,1, %)) is fully primitive.
Therefore our result follows from the fact that G(&,_; , L*(A)) is doubly transitive
on x(1), +--, x(n) and G(Qg_Y/L* (y)) is transitive on z(1), ---, z(m) (the zeros of
gx)-y) =

We do not know necessary and sufficient conditions for either Lemma 15 or
Theorem 3. Such conditions would be useful for many arithmetic questions. We
point out that without condition (12), Lemma 15 is false. Counterexamples that deny
the conclusions of both Lemma 15 and Theorem 3 can be obtained from computations
with monodromy groups of small order. However, we give only the simple examples

(17) h(x) = xz, g(x) = Ty(x) (see (ii)).
As is noted in [5, p. 304],

f(x) - f(y)

)~ gly) - Talx) +Taly)

is reducible. This contradicts the conclusion of Lemma 15 by the technique of proof
of Theorem 3.

The author has incorrectly announced (on at least one occasion) that if a tame
polynomial f is exceptional, then f is a composition of cyclic and Chebychev poly-
nomials. As a matter of fact, Theorem 3 is the closest the author has come to prov-
ing this conjecture. The author’s attempted proof seems to fail because of the possi-
bility that there could exist a polynomial f(x) such that
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(18) f(x) € K[x], where K is a number field,
(19) f is exceptional relative to K, but

(20) f modulo p is exceptional relative to the residue class field of the prime
ideal p for only finitely many primes p of the ring of integers of K.

We now make a conjecture that may be regarded as a generalization of Mac-
Cluer’s result. It is not simple to state; but if it is true, it has many useful conse-
quences. We give one of these as Corollary 3. The procedure around which we base
our statement of the conjecture is similar to a method used by Birch and Swinnerton-
Dyer [1] to discuss the number of values assumed by a polynomial over a finite field.

Assume f(x), g(x) € F[x]. Eventually, we shall also assume that f and g are
tame polynomials. However, the following discussion remains valid without that
assumption. Our conjecture will be that the condition

(21) Ve(f) € Vig)

is a consequence of a certain condition placed on G = G(Q¢_ - Qg2 /F(x)). Because
this condition is difficult to describe, we shall state it indirectly.

For i=0,1, -»-, degf and j=0, 1, -*-, deg g, let m;; denote the number of ele-
ments Ao € F for which f(x) = Ay has exactly i distinct solutions x and g(y) = A¢
has exactly j distinct solutions yg . Then, if

(22) 27 myp = 0,

i=1

condition (21) is also satisfied. Each of the quantities m;; may be computed roughly
from G in the following way.

Consider the affine variety Sij given by the condition
(23) f(x1) = f(xp) = - = f(x;) = gly;) = g(yp) = = = g(y;) = z.

This algebraic set consists of a finite number of curves irreducible over F. Let
6y, -+, 0, be the zeros of f(x) =2, and let a;, ***, a,, be the zeros of g(y) = A.
We consider the curves T that are not entirely contained in any of the hyperplanes
Xg =Xt for s #t or y, = yy for u #v. Each such irreducible curve can be de-
scribed by a generic point of the form (¢, 62, =, 0;; a1, ***, @;; A), where

01, -, 0; are distinct and @, ---, @; are distinct. Two such generic points
describe the same absolutely irreducible curve if there is an element of

G(F* - Q¢_) - Q- /F*(1)) = G* sending one of the points coordinatewise into the
other. A curve T is not absolutely irreducible if one of its generic points is sent
into some other point by G, but not into this latter point by G*. By the Riemann
hypothesis for curves [14, p. 71], each of the curves T that is absolutely irreducible
has |F| + O(| F| 1/2) rational points. By Bezout’s theorem, any two of these curves
have a bounded number of common points. Also, a bounded number of these points
lie on any of the hyperplanes x4 = x¢ and y, = ¥y, since T is contained in none of
these hyperplanes. Again by Bezout’s theorem, the curves that are not absolutely
irreducible have only a bounded number of F-rational points. Clearly, the number
N;; of absolutely irreducible curves T on Sj; that are contained in none of the
hyperplanes x;, = X, or y, =y, is computable from G.
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Let mj; be the number of rational points on S;; whose first i coordinates are
distinct and whose next j coordinates are also distinct. The discussion above shows
that

m;; = N|F| +o(|F|!/?).

Although the problem is combinatorially difficult, we can theoretically solve for
mj; in terms of the quantities mj, (¢=1, -=-, n;k=1, -, m) and |F|. Let the
solution be given by

(24) Lij(myy, =+, m),, |F|) = my (i=1,-,n;j=1, -+, m).

Let my; = Nj; | F|, and let mf; = Ly;(myy, -, mp,, [F|).

CONJECTURE 1. If 1, g € F[x] are tame polynomials and 2;-, m}y = 0, then
V(f) C V(g).

Using the procedure above on the special case where f is linear, we would find

that E?zl mjy = 0 if and only if g(x) is exceptional. MacCluer’s result [10] im-
plies the truth of Conjecture 1 in the case where f is linear. The reader should be
warned that MacCluer stated his result for polynomials of degree less than the
characteristic of F, but proved it for tame polynomials.

COROLLARY 2. If Conjecture 1 is true, and n and { ave positive integers,
then theve exists an integer N(n, L) with the following property. Assume f, g € Q[x]
and p is a rational prime greater than N(n, {) satisfying the inequalities

(25) degf <n and degg<n
and
(26) | V() - Vo(g)| <2

(én other words, let the values of £ be contained in the values of g, with at most
exceptions). Then Vp(f) C Vi(g).

Proof. With f and g reduced modulo p, in the notation of the argument preced-
n
ing Conjecture 1, Ei:l m;) # 0 implies that ]Vp(f) - Vp(g)l > ¢, for large primes
p. It follows that Z}?zl m{"o =0 for all f, g, and primes p larger than some
N(n, ¢£), where f and g satisfy (25) and (26). Conjecture 1 now gives the result. ®

Practically nothing is known about the situation where f(x) € F[x] is not as-
sumed to be tame. Any analogues for nontame polynomials, similar to the results
obtained in this paper, should be valuable.
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