ON THE THEORY OF SIMPLE I'-RINGS
Jiang Luh

1. INTRODUCTION

Let M and I' be two additive abelian groups. If for all x, y, z € M and all
a, B € T, the conditions

(1) xay € M,
(2) (x+y)az = xaz+ yaz, x(a + B)z = xaz + xBz, xa(y + z) = xay + xaz,
(3) (xay)Bz = xa(ypz)

are satisfied, then, following Barnes [1], we call M a T-ring. If these conditions
are strengthened to

1) Xay € M, axp e T,

(2') the same as (2),

(3') (xay)Bz = x(ayp)z = xa(yBz),

(4") xay =0 for all X, y € M implies @ =0,

then M is called a T'-#ing in the sense of Nobusawa. Clearly, every associative
ring A is a I'-ring, but it need not be a I'-ring in the sense of Nobusawa if T" = A.
In [4], Nobusawa obtained an analogue of Wedderburn’s theorem, for simple I'-rings
with minimal condition on one-sided ideals. In an earlier paper, the author de-
veloped the concept of primitivity for I'-rings, and he characterized the primitive
T'-rings in the sense of Nobusawa having minimal one-sided ideals, by means of
certain I'-rings of continuous semilinear transformations. This characterization
generalized a result of Jacobson in ordinary ring theory.

In this paper, we extend the notions of simplicity and complete primeness to
I'-rings. Our definition of simple I'-rings differs slightly from Nobusawa’s original
definition, and the simple I'-rings defined by Nobusawa are now called completely
prime I'-rvings. However, the two concepts are identical for a I'-ring in the sense
of Nobusawa with minimum condition on one-sided ideals. We study the relations
among simplicity, primeness, primitivity, and complete primeness for I'-rings.
Much of the development is analogous to the corresponding part of ring theory. We
also define socles for I'-rings, and we discuss their basic properties. One of our
main results is the generalized Litoff theorem for simple I'-rings having minimal
left ideals. Finally, we determine completely the one-sided ideals of a simple TI'-
ring having minimal one-sided ideals.

We refer to [2] for all notions relevant to ring theory.
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2. PRELIMINARIES

Let M bea I'-ring. If S, TC M and I'g C I', we shall write ST'3 T for the set

of finite sums Ei sjait;, where s; € S, t;j € T, a; € I'g. Asubgroup I of M isa
left (right) ideal of M if MTIC I (ITM C I). If I is both a left and a right ideal of
M, then I is a fwo-sided ideal or simply an ideal of M. A one-sided ideal I is
strongly nilpotent if I™ = ITIT"--- Tl = 0 for some positive integer n. A nonzero left
(right) ideal I of M is minimal if the only left (right) ideals of M contained in I
are 0 and I itself. We note that, for a minimal left ideal I of M, either ITI = 0, or
I = Mye, where y € T', e € M, and eye = e.

Let F be the free abelian group generated by the set of all ordered pairs (x, @)
with x € M, @ € T'. Let G be the subgroup of elements Ei m;(x;, a;) € F, where

the m; are integers such that Z)i m;(x; ¢;x) =0 for all x € M. Denote by L the
factor group F/G and by [x, @] the coset G + (¢, @). Clearly, every element in L

can be expressed as a finite sum Ei [x;, @;]. Also, for all x,y € M and @, 8 € T,
[x, a]+[x,8] = [x,a+8] and [x, a]+ly, ¢] = [x+y, a].

We define multiplication in L by
Z) [Xi, ai] : E [Yj ’ Bj] = E [Xiai Yi, B,'_] .
1 ) 1,]
Then L forms a ring. Furthermore, M is a left L-module, with the definition

12

2i[x;, ;]x = 2Zrx;a;x  for x € M.
i i

We call the ring L the left operator ving of M. Similarly, we can define the right
operator ring R of M. For SCM and Ty C T, we denote by [S, I'g] the set of all

finite sums 2J; [x;, @;] in L with x; € S and o; € T .

A T-ring M is left (vight) primitive if (i) the left (right) operator ring of M is
a left (right) primitive ring, and (ii) xI’'M = 0 (MI'x = 0) implies x =0. M is a fwo-
sided primitive T-ving (or simply a primitive I'-ring) if it is both left and right
primitive. It is known [3] that every one-sided primitive I'-ring having minimal
one-sided ideals is a two-sided primitive I'-ring. Since no left primitive I'-ring has
nonzero strohgly nilpotent one-sided ideals, every minimal left ideal of a primitive
T'-ring M is of the form Mye, where eye = e. We note that any primitive ring A
(having minimal left ideals) is a primitive I'-ring in the sense of Nobusawa (having
minimal left ideals), if T"' = A.

Let (V, W) and (V', W') be two pairs of dual vector spaces over division rings
D and D', respectively, and let ¢ be an isomorphism of D onto D'. We denote by
Z(V, V') the additive group of all continuous semilinear transformations of V
(topologized by the W-topology) into V' (topologized by the W'-topology), and by
Z(V, V') the subgroup of #(V, V') consisting of all continuous semilinear transfor-
mations of V into V' of finite rank. We shall need the following result from [3].

THEOREM 2.1. Let M be a T'-ving. Then M is a left primitive T-ving in the
sense of Nobusawa having minimal one-sided ideals if and only if theve exist two
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pairs of dual vector spaces (V, W) and (V', W'), over isomorphic division vings D
and D', respectively, such that M is isomovphic to the T'-ring M', where

FWV, V)M CZ(V,V') and FENV',V)C T c2V,V),

and wheve the composition xay for x,y € M' and o € T' is the composition of
mappings. Moveover, F(V, V') is the unique minimal two-sided ideal of M'.

3. SIMPLICITY, PRIMENESS, PRIMITIVITY, AND COMPLETE
PRIMENESS OF T-RINGS

A T-ring M is said to be simple if (i) MI'M # 0 and (ii) M has no ideals other
than 0 and M itself. A T'-ring M is said to be completely prime if aT'b =0 im-
plies a =0 or b = 0. We recall Barnes’ definition: Let M be a I'-ring. An ideal P
of M is prime if, for all pairs of ideals S and T of M, SI'T C P implies SC P or
T € P. A I'-ring M is prime if the zero ideal is prime.

The following theorem characterizes primeness for ideals in I'-rings. The proof
is a minor modification of the proof of the corresponding theorem in ring theory, and
we omit it.

THEOREM 3.1. If P is an ideal in a T-ving M, the following four conditions are
equivalent:

(i) P is a prime ideal.

(ii) If a, b € M and aTMIb C P, then a € P or b € P.
(iii) If 1 and J avre vight ideals in M and 1ITJ C P, then 1C P or J C P.
(iv) If 1 and J ave left ideals in M and ITJC P, then IC P or J C P.

COROLLARY 3.1. A I'-7ing M is prime if and only if aTMTIb = 0 implies
a=0o0r b=0.

From this we can see that every completely prime I'-ring is prime. Let A be
an associative ring. If A is simple (prime, completely prime), then A, regarded as
a I'-ring where T = A, is simple (prime, completely prime). We also note that, for
a I'-ring in the sense of Nobusawa, primeness and complete primeness are equiva-
lent.

THEOREM 3.2. If M is a simple T'-ving, then M is prime.

Proof. Suppose that M is not prime and that SI'T = 0, where S and T are non-
zero ideals of M. Then, by the simplicity of M, S= T = M, and hence MI'M = 0,
which contradicts the simplicity of M.

THEOREM 3.3. If M is a left primitive T'-ving, then M is prime.

Proof. Let N be a faithful irreducible left L-module, where L is the left oper-
ator ring of M. Suppose, contrary to the theorem, that M is not prime and that
SI'T = 0, where S and T are nonzero ideals of M. We claim first that [T, I']N = N.
For otherwise, since [T, I']N = 0, it would follow that [T, I'] = 0, so that TI'M = 0.
By the primitivity of M, this would imply that T = 0, a contradiction. Hence we see
that [T, TJN = N. Likewise, [S, I'|N = N. Thus, we obtain the relation

0 = [srT, r]N = [s, r][T, TIN = [S, T']N = N,

and this is again a contradiction.
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Next we shall consider I'-rings having minimal left ideals. As we pointed out
earlier, for these I'-rings, one-sided primitivity implies two-sided primitivity.

THEOREM 3.4. If M is a T-ving having minimal left ideals, then M is primi-
tive if and only if it is prime,

Proof. By Theorem 3.3, primitivity implies primeness.

Now assume that M is prime. Let I be a minimal left ideal of M. Clearly, I is
an irreducible left L-module. We shall show that I is faithful. Since ITT # 0,

I = Mye, where eye = e. Suppose Ei [x;, ;]I = 0. Then the relation

27 x;7;MT'Mye C 23 [x;, 1
1 1

implies that ( 27 xiyiM)l"(Mye) = 0. By Corollary 3.1, 2J; x;7;M =0 or

Ei[xi, yil = 0. Thus I is a faithful irreducible left L-module, and L is a left
primitive ring. Moreover, if xI'M = 0, then xI'MI'x = 0. Again by Corollary 3.1,
x = 0. Therefore M is a primitive I'-ring.

Finally, let us consider the T'-rings with minimum condition on left ideals.

LEMMA 3.1. If M is a primitive T'-ving with minimum condition on left ideals,
then

M = My;e; +Myze,+ - +My,e, (divect sum),
where ejy;e;=e; and ejyje; =0 if 1> j, and where the My;e; arve minimal left
ideals of M.

Proof. Let 1, = My;e; be a minimal left ideal of M, where e;y;e; =e;, and
let M, = {x e M: xyje; =0}. Clearly, M; is a left ideal of M, and each a € M has
the form a =ay,e; +(a - ay;e;), where a - ay;e; € M;. Hence

M = My ;e;+M; (direct sum).

If M; # 0, then by the minimum condition, M; contains a minimal left ideal
My, e, of M, where e,y,e, =¢e, and e,y;e; = 0. Consequently,

M = My,;e; +Myze, + M,  (direct sum),

where M, = {x € M}: xy,e; =0}. Continuing this process, we find that M,, = 0 for
some positive integer n. Thus,

M = My;e; + Myze, + -« +Myye, (direct sum),

as was to be proved.

LEMMA 3.2. Lel M be a left primitive T-ving, and let 1 be a nonzevo left ideal
of M. If eye =e #0, where e € M amd v € T, then eyl #0.

Proof. Let N be a faithful irreducible left L-module, where L is the left oper-
ator ring of M. By the primitivity of M, [I, '] # 0, and hence [I, I']N = N.

Now suppose that, contrary to the lemma, eyl = 0. Then

le, ¥IN = [e, v][I, TIN = [ey1, T[N = 0.
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Since N is faithful, [e, ¥] = 0. This leads to the contradiction that
e = eye = [e, y]e = 0. Therefore, eyl # 0.

THEOREM 3.5. If M is a primitive T'-ving with minimum condition on left
ideals, then M is simple.

Proof. By Lemma 3.1,
M = My,e; + -+ My,e, (direct sum),

where e;y;e; = e; and e;yje;=0 if i> j, and where the My;e; are minimal left
ideals of M.

Let I be a nonzero ideal of M. Each x € I has the form

X = Xl'}’lel 4 e +Xn'}/nen,

where x; € M (i=1, 2, ---, n). Assume that Xxykex+ *** + Xp¥nén € I, where
1<k<n. Then (X yyxex+ - +X,7n€n) Y€K € I; hence, x; vy e € I, so that
X4l Ykl €ke1 T " T Xp¥nen € 1. Hence, by induction, xy yer € I (k=1, 2 «--, n).

But xp vk ex = (Xxvrker)¥rex € Iyxex, sothat ICIy;e; + -+ +Iy,e,. Since I isa
two-sided ideal, Iy e, € I, and hence I =1Iyje; + - + Iy, e,.

We assert now that Iy, ey # 0 for each k. For otherwise,

(ek'ykI) I‘(ek'ykI) = ekyk(II‘ek)'ykI = 0,

while by Lemma 3.2 exykI # 0; hence exykI is a nonzero, strongly nilpotent right
ideal of M. This contradicts the fact that a primitive I'-ring has no nonzero,
strongly nilpotent, one-sided ideals. Consequently, Iy, e, = My e; , since My e
is a minimal left ideal of M. Therefore,

I=My,e;+:++Myye, = M,

and M is simple.
Theorems 3.2, 3.4, and 3.5 immediately imply the following.

THEOREM 3.6. For a I'-ving M with minimum condition on left ideals, the
thvee conditions

(i) M is prime,
(ii) M is primitive,
(iii) M is simple
are equivalent,

Howevey, none of the thvee conditions implies the complete primeness, even for
a finite T'-ving.,

Example 3.1. Let M be the ring of 2 X 2 matrices over the field GF(2), and let
= {§, £} be the additive group of order two with € as the identity element. For
all a, b € M, we define alb = 0 and acb = ab (the ordinary product of the matrices
a and b). It is easy to verify that M forms a finite I'-ring that is prime but not
completely prime.

For a I'-ring having minimal left ideals, complete primeness (hence primeness
and primitivity) does not imply simplicity.
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Example 3.2. Let M =2(V, V') and T = #(V', V) be defined as in Theorem 2.1.
Then M is a completely prime I'-ring, but it is not simple.

For a general I'-ring, neither primeness nor complete primeness implies
primitivity.

Example 3.3. Let M =T be the ring of integers. Considered as a I'-ring, M is
completely prime as well as prime, but it is not primitive.

The following example shows that for a I'-ring, simplicity does not imply primi-
tivity.

Example 3.4. Let M be a simple radical ring (the existence of such rings has
been shown by Sasiada [5]). We regard M as a I'-ring with I' = M. Clearly, M is a
simple T'-ring.

We shall show that M is not left primitive. Suppose to the contrary that a faith-
ful irreducible left L-module N exists, where L is the left operator ring of M.

Since M?2 = M, each a € M has the form a = Ei a;®; for some a;, @; € M. For

each x € N, define ax = Ei[ai, a;]x. We see that N is a faithful irreducible left
M-module. This is a contradiction, since M is not a left primitive associative ring.

4. SOCLES OF I'-RINGS

Let M be a I'-ring. The sum Sy (S.) of all minimal left (right) ideals of M is
called the left (right) socle of M. It is understood that if M has no minimal left
(right) ideals, then the left (right) socle of M is 0.

In this section we shall show that a one-sided socle of a I'-ring M is an ideal of
M, and that if M has no strongly nilpotent ideals other than O, then the left socle and
the right socle of M coincide.

LEMMA 4.1. Let M be a I'-ving. If 1 is a minimal left ideal of M, then, for
each v € T and each x € M, Iyx is either zevo or a minimal left ideal of M.

Proof. If Iyx # 0 and J is a nonzero left ideal of M contained in Iyx, then there
existsa € I with 0 #ayx € J. Let H= {z € I: zyx € J}. H is a nonzero left ideal
of M contained in I. The minimality of I implies that H =1, so that Iyx C J. It
follows that Iyx =J and that Iyx is a minimal left ideal of M.

THEOREM 4.1. If M is a T'-ving, then the left socle and the vight socle of M
ave ideals of M.

Proof. By symmetry, we need only prove that the left-socle Sy of M is an ideal
of M. It is clear that Sy is a left ideal of M. Assume that y € T', x € M, s € Sy,
and s € I} + --- +1I,, where I; are minimal left ideals of M. Then

syx € Iyyx+ -+ 17X .
By Lemma 4.1, I;yx is either 0 or a minimal left ideal of M. Hence syx € Sy, and
Sy is a right ideal of M.

The following extends Lemma 3.1 to simple rings with minimal one-sided ideals.

THEOREM 4.2. If M is a simple T'-ving having minimal left ideals, then M is
a dirvect sum of minimal left ideals.
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Proof. Since the left socle of M is M itself, M is a sum of minimal left ideals
of M. Consider the family « of all independent sets of minimal left ideals of M.
Here a set {I,: o € A} of minimal left ideals of M is said to be independent if

I, N Eﬁa&a IB = 0 for each o € A. The family « is partially ordered by inclu-
sion. Applying Zorn’s lemma, we can obtain a maximal independent set in , say

{14: @ € B}. By the maximality of this set, I N 274 I, # 0 for each minimal
left ideal I of M, so that

INn 2 Iy,=I and IC 2 I.
aeB aeB

Therefore, M = EaeB I, (direct sum).

THEOREM 4.3. Let M be a T'-ving. If M has no nonzevo stvongly nilpotent
ideals, then the left socle S, and the vight socle S, of M coincide.

Proof. We recall that a I'-ring M without nonzero strongly nilpotent ideals has
minimal left ideals if and only if it has minimal right ideals. Moreover, every min-
imal left ideal is of the form Mye, where eye = e, and Mye is a minimal left ideal if
and only if eyM is a minimal right ideal.

e = 5 Yi €; , where e Y; €; are minimal leit 1ideals O an
Let Sy = 27; My e;, where the My; ¢; inimal left ideals of M and

e;v;e =e;. Since e; y; M are minimal right ideals of M, 22 ieyiMCS,.. But
e; € 8., and S, is an ideal of M, so that My;e; C S,. It follows that Sy C S,.. By

symmetry, S.C Sg. Hence Sy = S,., as was to be proved.

Remark: I M is a I'-ring with the properties described in Theorem 2.1, then
the left (right) socle of M is % (V, V').

5. SIMPLE T-RINGS HAVING MINIMAL LEFT IDEALS

In this section we shall prove a generalization of the Litoff theorem for I'-rings.
First, we need two lemmas.

LEMMA 5.1. Let (V, W) be a pair of dual vector spaces over a division ring D,
let V be a finite-dimensional vector subspace of V, and let W be a finite-dimen-
stonal vector subspace of W. Then theve exist finite-dimensional vector subspaces
Viand W1 such that

VOEVIEV and WOEW]_EW,

and such that (V{, W) is a dual pair relative to the given bilineay form.
For a proof, see [2, p. 90].

Let G be an additive group. We shall denote by G, ,, the additive group of all
m-by-n matrices over the group G. For 1 <h<m, 1<k<n, and g € G, let
gE(n k) denote the matrix having g at the hth row and kth column, and 0 elsewhere.
Let M be a I'-ring. Consider the groups Mpm,n and T'p . For (aij), (bij) € My n
and (v;;) € T, ), define (a;5) (v;3) (by;) = (cy;), where

n

m
Cij = 2 aih Yhk Pkj -
k=1 h=1
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Then M, , forms a T', ,,-ring.

LEMMA 5.2. Let M bea T-ving such that x € MI'XT'M for every x € M. Then
the ideals of the Ty, ving My, n, are of the form Uy, ,, where U is an ideal of M.

Proof. Let I be an ideal of My, ,, and let
U = {apyg (a;;) € I}.

Clearly, Ic Uy, p-

To show that U,, , C I, it will suffice to show that, for all h and k
(1<h<m, 1<k<n)andall ue U with u= apq and (aij) € I, the m-by-n ma-
trix uEq, i) isin L

We note that, for all a, b€ M and v, 6 € T,

(@E(i,1)) WE(1,p)) (@15) (OE (g, 1)) (bE (1 5)) = (ayapq 0b) Eys j) € L.
Since u € MI'uI'M, u = Ei ajyjudib; for some aj, b; € M and y;, 8; € I'. Thus,

uE(h,k) = (? ai'yiuﬁibi)E(h,k) = ? (ai'yiu'dibi)E(h,k) €I.

This completes the proof.

THEOREM 5.1. If M is a simple TI'-ving, then, for all positive integers m and
n, My, , s a simple T'y ~7ing.

Proof. Since M is simple, MI'aT'M = M for each nonzero element a in M.
Hence a € MI'aI'M. Let I be an arbitrary ideal of the T'y, ,,,-ring My, ,,. Then, by
Lemma 5.2, I = U, , for some ideal U of M. However, M is simple, so that U=10
or U=M. Therefof‘e, I=0or I=Mpy,,. Also, it is evident that
Mm,nTn,mMm,n #0. Hence My, , is a simple I'y -ring.

Now assume that M is a simple I'-ring in the sense of Nobusawa. For all
X,y,2€ Mand ¢, 3,,B,€T,

x(ay(B; +B2))z = xa(y(B)+B2)z) = xa(yB1z +yB2z) = xa(yp1 z) + xa(yBz z)

x(ayB; )z + x(ayB, )z = x(ayB; + ayBy)z;

therefore, by condition (4'), ay(8; +8,) = @y, + ayB, in the definition of T'-rings in
the sense of Nobusawa. Likewise,

(a1 +ap)yB = ayB+ayB, alyi+y2)B = ayB+ayzB,
and

(axB)yy = a(xBy)y = ax(Byy),

for all a;, @z, o, B, v € I',and X, y, y1, y2 € M. Moreover, I'xI"' = 0 implies that
MI'xI'M = 0 and x = 0. Therefore, if M is a simple I'-ring in the sense of Nobu-
sawa, then I" is a I''-ring in the sense of Nobusawa, where I'' = M.

A T-ring M in the sense of Nobusawa will be called strongly simple if M is a
simple I'-ring and T is a simple I''-ring, where T'' = M.
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Now, we are ready to prove an analogue of the Litoff theorem for I'-rings.

THEOREM 5.2. Lel M be a strongly simple I'-ring in the sense of Nobusawa.
If M has minimal left ideals, then there exists a division ving D such thal, for each
finite subsel Mg of M and each finite subset T o of T, there exist M| C M and
' C T, satisfying the following three conditions.

(i) M1 is a T)-ving with rvespect to the composition defined in the T'-ring M.
(il) Mgc M,, T'(CT,.

(iii) The T -ring M) is isomorphic to a Dy p-7ving D, n; that is, theve exist
group isomovphisms ¢ of M1 onto Dm n, and ] of Ty onto Dn,m, with
(xyy)d = (x¢) (v0)(y9) for all x, y € My andy € T.

Proof. According to Theorems 3.2 and 3.4, M is a primitive I'-ring and T" is a
primitive I''-ring, where I'' = M. By Theorem 2.1 and the strong simplicity of M,
there exist two pairs of dual vector spaces (V, W) and (V', W') over division rings
D and D', respectively, where D and D' are isomorphic, such that M = #(V, V')
and ' = #(V', V). Since every element of M (of I') is a finite sum of elements of
M (of T") of rank one, we may without loss of generality assume that all elements of
Mg and of I’y are of rank one. Let ¢ be the isomorphism of D onto D', and for

d € D, denote by dY the image of d under o. Let Mgy = {a;, a,, ---, ag},
I“0 = {yl, '}/2, .-., ')/t}, WheI‘e
1 -1
a;:v—o (V, wi)G vi, Vit v — (V 7 )0 vi

for all v e V and v' € V' (see [3]). By Lemma 5.1, there exist two pairs of finite-
dimensional dual vector spaces (V}, W) and (V}, W}) over D and D', respective-
ly, relative to the given bilinear forms, such that

{VI,VZ’""vt}EVlEV’ {Wl,WZ,"',WS}EWlEW,
{v'l,v'z,--',v;}EV'IEV', {w'l,w‘z,"',w,é}gW'IEW'.
Let {ul , Uz, """, u } and {xl, X2, ", Xm } ve b10rth0g0nal bases of V; and W,
over D, respectlvely, and let {ul , Uy, ---, uil} and {Xl ; X3, 000, xn} be biortho-

gonal bases of V] and W} over D'. Let M; be the subgroup of M = #(V, V') con-
sisting of all transformations x of the form

XV — Z)(v x)0 13“3’
i,j

and let T'; be the subgroup of I' = #(V', V) consisting of all transformations y of
the form
-1

Y. v — E (v', x]{)0 fij“j’
1,]

where d;;, f;; € D. Then M; forms a T';-ringand Mg € M;, I'y C I';.

It remains to show that the T'j-ring M, is isomorphic to the D, ,,-ring D,y 5.
Consider the mappings ¢: M} — D, , and 6: T') — Dy, ., defined by X¢ = (le)
y0 = (f; ) By straightforward computatlon we can see easily that ¢ and 6 are
1som0rphlc and onto, and that (xyy)¢ = (x¢)(y0)(y¢) for all x, y € M, , v € T';. The
proof is therefore complete
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6. ONE-SIDED IDEALS OF STRONGLY SIMPLE TI'-RINGS WITH
MINIMAL ONE-SIDED IDEALS

Let M be a strongly simple I'-ring. As in the discussion in the proof of Theo-
rem 5.2, we may assume that M is a I'-ring of continuous semilinear transforma-
tions of finite rank on certain vector spaces. Throughout this section, let (V, W) and
(V', W') be two pairs of dual vector spaces over division rings D and D', respec-
tively, let o be the isomorphism of D onto D', and let M = #(V, V'), T" = #(V', V).
We shall completely determine the one-sided ideals of the I'-ring M. Our technique
is analoguous to that in ring theory for a simple ring having minimal one-sided
ideals (see [2, p. 91]).

If U' is a subspace of V' over D', we denote by ig the left ideal of M consist-
ing of all elements of M whose range is contained in U'. More precisely,

168 ={x€ M: vx = Z(V’Wi)cu{,ui'GU',WiEW,VEV},
1

We shall show that every left ideal of M is of this form.

THEOREM 6.1. IfI is a left ideal of M, then 1= o' for some vector subspace
U' of V'.

Proof. If 1=0, then clearly I = U', where U' is the zero subspace of V'. We
assume now that I #0, Let U'=VI= Z)i v;X;: v; € V, x; € I(. Clearly, Ic U'.
On the other hand, each element in U' is a finite sum of y’s satisfying the condition

vy = (v, wg)9u} forallveV,

where wg € W and uj € Vx with x € I. Hence, to show that U' 1, it suffices to
show that for each x € I, each wg € W, and each nonzero uj € Vx, the mapping

y: v — (v, wg)9 uj

is an element in I.
Let {u'l , u'z, e u;n} be a basis of the range of x, and let

m

xv — 27 (v, w)%ul,
i=1

where w; € W.

We assert that w;, w,, ---, W, are linearly independent over D. Otherwise,
there would exist dj, d,, -+, d,,, in D, not all zero (say d; # 0), such that

Wldl +W2d2+ ser +wmdm =0.
This would imply that, for all v € V,

m m m
vk = 20 (v, w)Pul- 2 (v, w)%af @i u} = 2 (v, w))? (u] - af(d7)7 u}),
i=1 i=1 i=2
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and that the dimension of the range of x is less than m, a contradiction. Thus by
the nondegeneracy of the bilinear forms, there exist v, € V, v] € V', w] € W', such
that (vi,w;)=1,(v;, w;)=0 for i=2, 3, ---, m, and (v}, w}) = 1. We define
veTI,zeM by

-1
viy = (v, w}))? “v; forallv'eV', wvz=(v,wy)v] forall veV.

Then it is easy to see that y = zyx and hence y € 1.

Similarly, for each subspace U of W, we denote by U the right ideal of M con-
sisting of all elements x of M whose adjoints x* have ranges contained in U. We

note that if x: v — Z)i (v, w;)? vi for all v € V, where w; € U and vje€ V', then

-1
Xk W — 2 w;(vi, w')?
i

for all w' € W'. From this, we can prove that

U= {xe M: vx = E(v,wi)ovi',wieU,v{eV’,veV}.
i

THEOREM 6.2, If 1 is a vight ideal of M, then I = U for some vector subspace
U of W.

The proof is similar to that of Theorem 6.1, and we omit it.
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