EXTREMAL LENGTH AND p-CAPACITY
William P. Ziemer

1. INTRODUCTION

In Euclidean n-space E,, consider two disjoint closed sets Cp and C;, where
Co is assumed to contain the closure of the complement of some closed n-ball B.
We follow [12] in defining the p-capacity (1 < p < =) of the pair (Cg, C;) as

(1) I'(Cq, Cy) = inf {S |grad u|P dLn},

En

where the infimum is taken over all continuous functions u on E, that are infinitely
differentiable on E, - (Co U C;) and assume boundary values 0 on Cg and 1 on
C;. Serrin found this notion useful in connection with the question of removable
singularities of solutions to certain partial differential equations. The case of con-
formal capacity is represented when p = n, and it has been fundamental in the de-
velopment of a theory of quasiconformal mappings in E, (see [7]). The importance
of conformal capacity in the theory of quasiconformal mappings is partly due to an
equality of Gehring [6] that relates conformal capacity to the reciprocal of the n-
dimensional extremal length of all continua in E, that intersect both Cy and C; .
Gehring’s proof is valid for a similar equality that involves p-capacity and p-dimen-
sional extremal length, provided p > n - 1. It is the purpose of this paper to provide
a proof for p > 1, thus answering in the affirmative question 16 of [13]. We note that
the proof is elementary in the sense that it demands only a few basic facts of real
function theory. Together with [4, Theorem 7], the result yields a new proof of a
theorem of Wallin [14], which relates p-capacity to potential-theoretic capacity. On
the other hand, our result, along with that of Wallin, establishes Fuglede’s theorem
for compact sets, in case k = 1.

The author wishes to thank William Gustin for a number of helpful discussions
that led to improvements of some of the theorems.

2. NOTATION AND PRELIMINARIES

L, and HX will denote n-dimensional Lebesgue measure and k-dimensional
Hausdovff measure in E, (for properties of the latter, see [2]). If A is an L,-
measurable subset of E;, let #P(A) be the class of functions f for which |f|P is
integrable, and let ||f||p be the ZP-norm.

2.1. A real-valued function u defined on an open subset G of E, is called
absolutely continuous in the sense of Tonelli on G (ACT) if it is ACT on every in-
terval I C G [11, p. 169]. The gradient of u (which will now be denoted by Vu)
exists L -almost everywhere on G; moreover, it can easily be shown that the
infimum appearing in the definition (1) of p-capacity is not diminished if we extend it
to the class of ACT functions that assume the specified boundary values (see [5] ).
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2.2. Let x be a set of continua in E,,. The p-dimensional module of x is

defined as
M(x) = inf { S fPdL : £ A x} ,
E

n

where f A X means that f is a nonnegative L,-measurable function satisfying the
condition

SdeHI > 1

for every B € x. The module of x is the reciprocal of its extremal length. Ob-
serve that in this definition, f may be assumed to be lower-semicontinuous, since
for every L,-measurable function f ¢ & P and each & > 0, there is a lower-semi-
continuous function g > f such that

S gPdL, < ‘S\ fPdL, + €.

We shall not need the following result in its full strength, but we enter it here for
the sake of completeness. For p > 2, the proof was given in [15], and in a private
communication to the author, M. Ohtsuka presented a proof for 1 < p < 2. The proof
below represents a consolidation of ideas.

0

2.3. LEMMA. Let x = U;_; X;, Where x| C x, C -+ are sels of continua in
E,. If 1 <p <, then

MP(X) = lim Mp(Xi)-

i—o0
Proof. For each i, there is a measurable function f; such that
£ AKX, XEC X, Mpxd) = Mp(xy),  &]5 = M(xs)

(see [4, Section 2]). If i < j, then it can be arranged so that xj C Xj and conse-
quently 2-1.(f; + £5) A Xi. Hence, Mp(x;) < 27P | £ + f; ||g; in other words,

(2) 2P' [Mp(Xi)]ll(p—l) S " fi + f_] ”P ,

where p' =p/(p - 1). Let M’I'; = lim; _, o Mp(x;), and assume, without loss of gen-
erality, that Mf <. Then, if p > 2, it follows from (2) and Clarkson’s inequality
[1] that

-1
2P M(xi) + 165 - 515 < I+ 5llp+ 18- 515 < 27 [lalp + 1515] < 2°Mj,
Similarly, for 1 <p < 2,
2P [Mp(x )1V P+ 1t - 518 < s+ 515+ 18- 513
L | - -1
<227 |g B+ 27 g B/ P

1/(p-1) 'arkl/(p-1)
< [PME] /P < aP P
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Thus, for 1 <p <, {f;} is a fundamental sequence in 2P ; therefore, there exists
an f such that [f; - f "p — 0. By appealing to [4, Theorem 3], we conclude that for

[~o]
an appropriate subsequence there exists a subset x* C x' = Ui:l X ; such that

Mp(x*) = My(x') = Mp(x) and  lim S |f; - f| dH! = 0 for each B € x*.

i—o00

But every B in x* is in some X'j’ and since f; A\ xj for i2> j, it follows that
f A x*. Hence,

My(x) = Mp(x*) < [£]f = lim [[£]5 = lim M(xy;

i—o0 i—o0
this concludes the proof.

2.4. COROLLARY. If 1 <p< and Mp(xi) =0 for i=1,2, -, then
M (x) = 0.

Proof. For each i, there exists a measurable function f; such that f; A x; and
[£;] <i-!. Again by [4, Theorem 3], there exists a subset x* C x such that

M;(x*) = M;(x) and lim S f.dH! = 0 for each B € x*.

i—» 00 ﬁ

But each B in x* is in some Xj, and since ) ERVAN Xj for i > j, it is clear that x*
must be empty, and therefore that M;(x) = 0.

3. EQUIVALENCE OF p-CAPACITY AND p-MODULUS

We recall that if H!(8) < « for some continuum g8 in E,, then § is locally con-
nected and therefore arcwise connected (if 8 were not locally connected, there would
be a point x € B with the property that for all sufficiently small balls B centered at
x, (0B) N B would contain infinitely many points, and thus, by a general inequality
concerning Hausdorff measures [3, Theorem 3.2], it would follow that HL(g) = ).

3.1. LEMMA. If x is the set of all continua in E, that intersect both Cqy and
Cl ’ then I-‘p(C07 Cl)_>_. MP(X) (pZ 1)

Proof. 1t suffices to prove, for each infinitely differentiable function u on
E, - (Co U C]) that is admitted into the class of functions over which the infimum is
taken in (1), that

5 |vu|da! > 1,
B

where B belongs to x and is contained in B. We may assume that H1(8) < =, since
the set of 8 € x for which Hl(B) = o has p-dimensional module 0. Thus, 8 can be
taken to be arcwise connected, and consequently there is an arc

g*¥ cBN[E,- (CoUCy)]

joining two points xg and x; (x; € C;). Since H!(f*) < «, there exists an arc-
length parametrization of g*, say y: [0, a] — g*, such that v(0) = x,, y(a) = x;, and
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a = HI(8*) [9, p. 259]. Now y has Lipschitz constant 1, and |y'| =1 a.e. on [0, a].
This implies that u o y is a Lipschitz function, and therefore

a a
1< S |(woy)|dL; < S [Vuoy|-|y|dL; = S |Vu| an! =S |Vu| arl.
0 0 g* B

3.2. The remainder of this section will be devoted to the proof of the inequality
opposite to that in Lemma 3.1. To establish this inequality, it is sufficient to show
that

I'p(Co, C1) < 5E fP Ly,

n

where f is a function such that f A x. Observe that the family x can be assumed to
be contained in the closed ball B, the closure of whose complement is contained in
Cp. Referring to Section 2.2, we see that we can assume f to be lower-semicontinu-
out. Moreover, f can also be assumed to be bounded away from zero on int B. To
see this, let

f(x) if f(x)>i"! and x € int B,
f(x) = (it  if f(x) <i-! and x € int B,

0 otherwise,

for each positive integer i. Then f; is lower-semicontinuous, S fidH1 > 1 for

B

every 3 € x, and || f; - f”p — 0 over B, since B is bounded.

3.3. LEMMA. Suppose {B;} is a sequence of continua in B such that for some
M > 0, HY(8;) < M for all i. Further, suppose that theve are points x;, y; € B;
such that x; — x, y; — y. Then, there is a continuum § in B containing x and y
such that

i— o0

lim infS fan! > S fan!
Bi B

for every lower-semicontinuous function f: B — Ej .

Proof. Using again the fact that a continuum of finite one-dimensional Hausdorff
measure is arcwise connected, we see that there is an arc B’i" C B; whose end points
are x; and y;, since Hl(Bi) < M < «, Thus, there is an arc-length parametrization
of B¥, say v;: [0, a;] — BF, where ¥;(0) = x;, vi(a;) =y;, and a; = H!(8}). The
function y; is Lipschitzian with Lipschitz constant 1, and |yi| =1 a.e. on [0, a;].
Since v; is Lipschitzian, it can be extended to [0, M ] with the same Lipschitz con-
stant [10, p. 341]. Hence, the sequence {y;} is equicontinuous on [0, M] and uni-
formly bounded, since the ranges of all y; touch a fixed compact set. By Ascoli’s
theorem, there exist a subsequence (which will still be denoted by {y;}) and a map
y: [0, M] — E,, such that {y;} converges to y uniformly on [0, M]. Note that y has
Lipschitz constant 1. By passing to another subsequence, we may assume that
a; —a € [0, M]. Inview of the fact that |vi(a;) - vi(d)| < |a; - a|] — 0, it is clear
that y;(a) — y(a) =y. Let 8 =1([0, a]), and observe that g contains x and y. For
every € > 0, a; > a - ¢ for large i. Therefore, Fatou’s lemma, the



EXTREMAL LENGTH AND p-CAPACITY 47

lower-semicontinuity of f, and the facts that |y{| =1 a.e. and |y'| <1 a.e. yield
the relations

lim inf ‘S faH1 > lim inf S fdH! = lim 1nf5 foyllyll dL,

i—oo B i—oe0 Bi i-—o00

a-¢ a-g
> lim inf S nyidLIZS fOVdLIZSO foyly'|dL;.
0

i-— 00

Since ¢ is arbitrary, we conclude that

N _
11m1nfS faa! > S foy|y|dL, = Sdel.
0 B

1-— 00

3.4. The function f introduced in Section 3.2 will be modified once again. As-
suming that f is bounded away from zero on B, that f is lower-semicontinuous, and
that f N\ x, we define for every positive integer k the function

f(x) if f(x) <k,
fk(X) =
k if f(x) >k,

which is still lower-semicontinuous. For every x € B, define
u(x) = inf{S f, aH! } ,
B

where the infimum is taken over all continua 8 in B that intersect both {x} and
Co. We shall now show that the infimum is actually attained.

Suppose {B;} is a minimizing sequence in the definition of u.(x). Then {B;}
contains x and a point y; € Co N B. Since Cg N B is compact, we may assume that
y; =y € Cop N B. By appealing to Lemma 3.3, we find that there exists a continuum
B containing x and y such that

i-—o00 Bl

3.5. We recall the notion of approximate continuity and the fact that an L, -
measurable function f: E, — E; is approximately continuous in each variable at L -
almost every point in E, [11, pp. 132, 298]. Moreover, the derivative of the indefi-
nite integral of a bounded, measurable function g of a real variable exists and is
equal to g at points where g is approximately continuous.

Applying these remarks to the function fi, we conclude that at L,-almost every
point x € E_, there is a countable, dense set Ap(x) of vectors, each issuing from x
and having unit length, such that

(3) im 1§ g )aEl) = 400
t—0 tA
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for every A € Ap(x).

3.6. LEMMA. The function ux has Lipschitz constant k and satisfies the in-
equality ]Vuk(x)| < f1(x) for almost every x € B in the sense of Ln.

Proof. Choose x| and x;, in B, and let 8, be a continuum that minimizes the
infimum in the definition of u,(x;) (see Section 3.4). The line segment A that joins
x; to x, is in B. Hence,

) < § fan!? +S frdHY < uy(xy) +KHIQ).
B A
To establish the second part of the lemma, consider a point x € B at which

Ax(x) is defined (see Section 3.5) and at which uy is differentiable [10, p. 336]. It
will be sufficient to show that

(4) Duy (%, v) < fi.(x),
where Du,(x, v) denotes the directional derivative of u; at x in the direction of the

unit vector v.

Choose € > 0, and select A € Ar(x) with the property that if o; denotes the line
segment joining the end points of tv and tA, then Hl(ozt) < et, for t > 0. Then

w(x +tv) < ulx) + S f,dH! + S f,,dH! < uk(x)+5 f, dH! + ket .
tA a4 tA

In view of (3), the above inequalities imply (4), since € is arbitrary; the proof of the

lemma is thus concluded.

Obviously, the function uy vanishes on C, . Since u, is continuous on E,, the
number

my = min {u(x): x € C;}
is well-defined.
3.7. LEMMA. lim inf my > 1.

k-—o

Proof. Let xy € C1 be such that ui(xy) = my. Recall from Section 3.4 that
there is a continuum B C B that intersects both {xk} and Cg such that

uk(xk) = ‘g fdel.
B
If we assume that lim inf m; < 1, then some subsequence would satisfy the inequality
k — o0
S f,.dH < 1.
Bk

Since f; is assumed to be bounded away from zero by a number c > 0, the last in-
equality implies that H1(8;) < ¢! for infinitely many k. Now, an application of
Lemma 3.3 produces a continuum S8 C B that intersects both Cyp and C;. Hence,

S fdH! > 1, where f is as in Section 3.2. For € > 0, choose m so that
B
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Sfdel > 5 faH! - ¢ > 1-¢.
B
For k > m, we obtain the relation
S f, aH! > S £ aH!
k =z m ’
By By
and Lemma 3.3 now implies that

(5) hmmfmk—hmme £ dH1>11m1nfS £ dH >5fde1>1-s.

k — 0 k — o0 k —>o ﬁ

Since ¢ > 0 is arbitrary, (5) contradicts the assumption lim inf m, <1.
k — o0

3.8. THEOREM. If p > 1, then T,(Cq, C1) = My(x).
Proof. By Section 3.2 it suffices to show that

I'p(Co, C1) < S PdL,

n

To this end, let u be the truncation of u; at level m;, and observe that mlzl u’f(

(as discussed in Sectlon 2.1) is an admissible function for T'(Co, C;). From
Lemma 3.6 we see easily that |Vuk| <fy a.e. in E Flnally, Lemma 3.7 leads to
the inequalities

I'p(Co, C1) < lim inf myP SE |VuX|PdL,, < lim inf my® SE fpdLy, < SE fPaL
TN n

k — o n k—o

4. POTENTIAL-THEORETIC CAPACITY AND p-CAPACITY

In this section we show that the results of Wallin [14] and Fuglede [4, Theorem 7]
are equivalent, for compact sets and k = 1.

4.1. Definition. The p-capacity of a compact set A C E, is defined to be

T (A) = inf {SE

where the infimum is taken over all functions u € C* that have compact support and
are identically equal to 1 on A. If p > n, then the support of each function u is re-
quired to lie in some fixed sphere.

|vulP aLn},

n

For every r > 0, let I“II;(A) be: as in Definition 4.1, except that we require the
supports of the functions u to be contained in an r-neighborhood of A.

4.2. LEMMA. If 1<p<n and r > 0, then I‘r(A) =0 if and only if T(A) =0

Proof. Only the “if” dlrectlon‘ requires proof, and we may assume that
1 < p <n (otherwise, there would‘ be little to verify).
\
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Let {u;} be a sequence of C*-functions with compact supports, identically 1 on
A, and suppose that ||V"ui||P — 0 as i —» . Let ¢ be a C*-function that equals 1

on A and whose support is contained in an r-neighborhood of A. Then ¢-u; is ad-
missible in the definition of T'}(A),.and

V@l < [Vo-usllp+ - Vuill .

Consider the Sobolev inequality

lu]l, < const. "Vu"p (r =np/(n - p)).

Applying this inequality to the functions u;, we deduce for a subsequence of the u;
that u; — 0 a.e. Since the u; can be assumed to be bounded above by 1, we conclude

that || Ve-u;fl, — 0 as i — «. Obviously, [[¢-Vu;fp — 0, and therefore
” V(gu;) "p — 0.
Let x(A) denote the set of all continua that intersect A.
4.3. THEOREM. If 1 <p <n, then Mp[x(A)] =0 if and only if I‘p(A) =0.

Proof. Let [A]r denote the r-neighborhood of A, and let x .(A) be the set of all
continua that join A to E, - [A],.

If Mp[x(A)] =0, then clearly Mp[x (A)] =0 for all r > 0. But Theorem 3.8 im-
plies that I‘E(A) = 0, which in view of Lemma 4.2 implies that I‘p(A) = 0.

Conversely, if I‘p(A) = 0, then (by Lemma 4.2) I“Ir,(A) = 0 for every r > 0. Now
Theorem 3.8 implies that M[x ,(A)] = 0, and we conclude that

x@a = U x.a.
r >0

Consequently, Corollary 2.4 shows that Mp[x(A)] = 0.

The equivalence of the results of Wallin [14] and Fuglede [4, Theorem 7] for
compact sets and k = 1 follows immediately from Theorem 4.3; for Wallin relates
potential-theoretic capacity to I'y, whereas Fuglede relates it to Mp[x (A)].

We conclude by stating that if 2 denotes the class of closed sets separating Cy
from C; in B and if 1 <p <, then

(6) (rp) /P = Mo(z) (0 =p/p - 1)).

Relation (6) extends the results in [15]. Its proof proceeds along the same lines as
the proof in [15], once an extremal for T, has been obtained. The methods of [7]
provide an extremal in case p > n - 1. However, by using the methods of [8, Chap-
ter 3], we can show that the value of I'c does not change if we enlarge the class of
competing functions in the definition of I'; (p > 1). An extremal exists in this
larger class, and this along with the proof in [15] establishes relation (6).
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