A NONLINEAR PROBLEM IN POTENTIAL THEORY
Lamberto Cesari

1. In this paper we study the following nonlinear boundary-value problem in th=
unit disc: ’

Au+tgx y,u) =0 ((x,¥) € A=[x2+y2<1]),
(1)
u=0 ((x, y) € 0A = [x® +y% = 1]),

where g is a measurable function of x, y, u satisfying, for some given constants
R; >0, R, > 0, L > 0, the inequalities

|e(x, y, u)| < R, for almost all (x, y) € A and for |u| < Ry,
(2) le(x, v, u;) - g(x, y, uz)| < Lju; -uy| for almostall (x,y) € A
and for lull, |u2| < Rj.

We prove that if g satisfies certain additional inequalities limiting its values and
its growth with respect to u, then problem (1) has at least one solution u(x, y)
((x, y) € A) such that

(i) u(x, y) is continuous in A U dA and is zero on 9A,
(ii) u(x, y) has first-order partial derivatives that are continuous in A,

(iii) Au, in the sense of the theory of distributions, is a measurable essentially
bounded function,

(iv) Au satisfies (1) a.e. in A.

If g is also sufficiently smooth in (%, y), then u has continuous second-order partial
derivatives and (1) holds everywhere in A in the strict sense. The conditions con-
cerning the growth of g are not unreasonably strict. For instance, for the problem

Au+1(x, y) |u| = hix, y) ((x, y) € A),
u=20 ((X7 Y) € aA)7

all that we require of the measurable functions f and h is that they are bounded and
that |f(x, y)l < 4.13 in A. The example shows that the present requirement con-
cerning the growth of g is far removed from the usually very strict requirements
that are necessary in the use of perturbation techniques.

For the above problem in nonlinear partial differential equations, we apply here
a process that we discussed in some generality in [2] and [4] and that has been
studied, applied, and extended in a number of ways (see [1], [3], [5], [6], [8], [10],
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[12] to [21], [23], [25]), in connection with boundary-value problems in nonlinear
ordinary or partial differential equations and other functional equations.

2. Let S =L,(A) be the Hilbert space of all real functions u(x, y) that are
measurable and LZ2-integrable in A. Let u-v and ”u” denote the inner product and
the norm in S, respectively. Let S' be the subset of S of all functions u(x, y) that
are essentially bounded in A. Let

(u) = Ess Sup |u(x, y)| for all (x,y) € A

(so that 0 < u(u) <+« for every u € S'). We shall often write z for (x, y), or use
polar coordinates p, 8 {pcos 0 =x, psin 6 =y, p>0, 0 <6 < 2m).

The familiar linear problem

Au+gu =0 ((x,y) € A),

(3)
u=20 ((x, y) € 0A)

has a fundamental system of eigenvalues £; = AIZ and orthonormal eigenfunctions
$; =1, 2, ...), with 0 < Ai‘ < h%_{_ -»«. We know that {gbi} is a complete ortho-
normal system in L>(A). In polar coordinates, problem (1) becomes

-1 -2 _ ‘
@ Upptp Uy +p  ugg = g (0<p<1),
u=20 (p=1).

For problem (3), the eigenfunctions ¢; are all the functions of the form

¢Om = VOmJO()\Omp),

I

(5) o = YamInrnmpP)cos né ,
Ynm = YnmJInAnmp) sin nb,
(0<p<1,0<86<L2,n=1,2 -3 m=1,2, ---),

and the numbers ¢; = Aiz are the numbers A(Z)m and Arzlm (n, m=1, 2, ---). Here
Anm is the mth positive zero of the Bessel function Jn, and the normalization factor

Vhm 1S given by

]

V()m W—I/ZIJII(AOm)I (m:l, 2, -..),

(6)

Vnm = 21/277_1/2"]1_1}-1()\nm)] (n: m=1,2, ).

The smallest eigenvalue £ = h% and the corresponding (single) eigenfunction ¢1 are
given by

(7) >\1 = }LOI = 2.4048, Vo1 = 10868, ¢]_ = ¢01 = Vo1 J()O\Olp).

The next eigenvalues £, = ?\% and £3 = A% and the corresponding eigenfunctions are
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Ay = A3 = Ay] = 3.8317,

(8)
¢ = ¢11 = v11 I (A1 p)cos 8, B3 = vy 1T (A1 p)sin 6.

More generally, we have the well-known asymptotic formulas

(9) Aom ~ (n-%+2m)%=-nz—7r—%+mn (n=0,1, -~-; m large),

2 \1/2 3\ 7 ‘
(10) J,px) ~ (;&) cos(x— (n+§)-2-) (n=0,1, ---; x> 0, large)
(E. Jahnke and F. Emde [11, pp. 138 and 143]; G. N. Watson [24, pp. 195 and 506]).
Formulas (6), (9), and (10) yield

1/2

- 2
Jor1ym) ~ (1) . (m\ ) (n=0,1, ---; m large),
nm

(11) 1/2

1/2
v0m~2"1ﬂ1/2(2m-%) ) vnm~2‘1/2'n1/2(n+2m—%)

Instead of the asymptotic relations (9), (10), (11), we shall use the relations

Aom > Api+(m- 1), XA ;>n for n>1/2 (m=1,2 ),

(9")
Xom > 2oz + (m - 2)(Ao2 - Ao1) (m=1,2 ),
|9 1] = [IL0,)] > (Lo694)n~t/ 6a-1/2)
(10') 1 1/2 -1/2 t
IJI(AOm)l = |JO(}"0m)| Z n 7\'Orn |J0(>\01)| ’
Vom < Zl/zﬂ'l/z(1.0694)'1n1/67\r11£§‘,
(117)

“1/2_-1/2.1/2 oy -1
YVom S 7 /24 /"ofn |30(o1)] 7,

where A}, denotes the first zero of y'(x), for y(x)=x!/2J4(x), and n =0, 1, 2, -,
m=1,2 - (see[23] [24]).

3. We shall denote by & the set of all functions u(x, y) ((x, y) € A) such that
u(x, y) is continuous in A U 2A with u =0 on 2A, u has continuous first-order par-
tial derivatives in A, and Au (computed in the sense of the theory of distributions)
is a measurable, essentially bounded function defined almost everywhere in A. Thus
g s, A: - S', S'CS.

Every element u(x, y) € S has a Fourier series
(12) U.(X, Y) ~ Eci¢ia

where 27 ranges over all i =1, 2, .-+ and where c¢;=u-¢;. Let P: S— & be the
linear operator defined by -

(13) Pu=cy¢ = (u-¢;)e;.
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Also, let H: S — S be the linear operator defined by

(14) v=Hu~-2¢N%¢, (x5 € A).
Then, in particular,

(15) Ho; = -2%¢; (i=1,2 ).

Note that u € S implies 27 cZ <-+w. Hence, A2 > 22> 0 implies 27 (c;1{2)2 <+,
and therefore v € S, that is, H: S — S.

Let us prove that the series (14) is absolutely and uniformly convergent in
A U JA. Indeed,

q q 1/2 7 o 1/2
S leaital < (D) (2t
i=p i=p i=1

for all integers 0 < p < q <«., Here the numerical series Ei ciz is convergent, and
the last series, by force of (5), (6), (9), (11), is a minorant of

) L)
C'2 2 (n+2m- 1/2)"3 < +,
n=0 m=1

where C' is some positive constant. Thus, series (14) converges absolutely and
uniformly in A UgA, and v = Hu is a continuous function in A U9A with v=0 on
0A.

By the theory of distributions (L. Schwartz, [22], Vol. 1, page 82), v is a dis-
tribution and Av (in the sense of the theory of distributions) is also a distribution,
and

[~ e} o0
Av = A(—Z} cixi‘ngi) = 2ic;¢; in A,
1 1

where equality means equality of distributions, and convergence means weak con-
vergence. Since the last series converges in L>(A) toward the square-integrable
function u, we conclude that Av =u is a square-integrable function.

Let us assume that u € S', that is, u is measurable and essentially bounded in
A. Ifby V(x, y) ((x, y) € E2) we denote the Newtonian potential (up to the factor
-1/47) defined by the mass distribution

u(x, y) for (x,y) € A,

U(x, y) =
0 for (x,y) e Ep - A,

then we know that V(x, y) is continuous in E; and has uniformly continuous first
derivatives in E, (see R. Courant and D. Hilbert [9, Vol. 2, p. 246]). If by V(x, y)
((x, y) € A U 9A) we denote the harmonic function in A that takes on 9dA the same
values as V(X, y), then V| is continuous in A U 9A and has continuous partial de-
rivatives of all orders in A.
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Now w =V - V; is continuous in A U 9dA, is zero on 9A, has continuous first-
order partial derivatives in A, and satisfies the equation Aw =u in A, in the sense
of the theory of distributions (L. Schwartz [22, Vol. 2, p. 70]). Let us prove that w
coincides with the function v = Hu defined by series (14). Indeed, V + v is a distri-
bution in A satisfying the condition

AV-v)=AV-Av = -u+u=0

(in the sense of the theory of distributions). Hence V - v is a harmonic function
[22,Vol.1,p.140]. Thus V - v and V; are continuous functions in A U dA, harmonic
in A, and taking the same values on 9A. By the maximum property of harmonic
functions, V - v = V1 ; that is,

w=V-V;=v=Hu forueS'andwed.
Thus A: ¥ — 8S', H: S' —» &, and also
(16) AHu = u forall ue S', HAu =u forallue ¢,

and

H(I- P)Au=(I-Plu and APu= PAu forallue J,
(17)
AH(I - Plu =(I- Plu forall ue S'.

Let us assume now that the function u above satisfies a Holder condition locally
in A; that is, for every closed region I' C A, let there exist constants K and «
(K>0, 0 <a <1) such that

|u(z)-u(z‘)| §K|z-z'|a for all z, z' € T.
Then the second partial derivatives Vyx, Vyy of V exist and are continuous in A, V
satisfies the equation AV =u in A, and hence Av =u in A in the strong sense (see

Courant and Hilbert [9, Vol. 2, p. 249]).

4. For functions u € S given by (12), we have the relation

(18) H(T- Pl ~ - 2 ¢;2i2¢y,
where 20 ranges over i =2, 3, ---. Therefore
) ' 1/2 ' 1/2
(19) jua - puf = (Z'ezart)? <2 (2e2) " <kl

Since )\52 =0.06811, we may take k = 0.069. Now, for every z € A,
' 12 1/2 '.-4,2 1/2
o) 1 - Pu@| < Zepni?lal < (D7) (Da5%02) T <me ]

Also, for z=(x,y)=(pcos 0, psin ) (0<p <1, 0L 0 < 2m),

00 [+%] ©0
2 - -
MAz) = 20 a5t 3 _J300mp) + 2 2 A2 320 00);
m=2 m=

nmVnm
n=1 1
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because |Jy(x)| <1 and |J_ (x)] <2712 for all x>0 andfor n=1, 2, --- (see [24,
p. 31]), it now follows from (6) that

o0 o0 o o]
Mi(z) < 2 agi 42t XX At 2
. m=2 n=1

(21) - -
< ﬂ'l( 2 Mot o)+ 2 2 x;fnJ;i‘lanm)).

m=2 n=1 m=1

By using formula (21), C. D. Stocking proved in [23] that M(z) < 0.23. Thus, re-
lations (19) and (20) yield for all u € S the estimates

(22) |H@- Pu| < k|ul, |H@Z-Pu| <k'[ul, with k=0.069, k'=0.230.

5. We shall denote by S; the subset of S consisting of all functions u(x, y) € S'
with p(u) < R, that is, with |u(x, y)| <Rj a.e. in A. Then, for u € S, the ex-
pression g(x, y, u(x, y)) is defined (a.e.) in A, and it represents a bounded measur-
able function in A with |g(x, y, u(x, y))| <Rz, or plg(x, y, u(x, y))| <Rz2. Let N
and F be the nonlinear operators defined in S; by

Nu -g(X: Y, U(X, Y)) ((X, y) € A; ue€ Sl)’

(23)

Fu = H(I - P)Nu (uesy.

Then N: S; — S' and Ft S; — ¢.

Note that, if u(x, y) € & N S; and its Au (in the sense of the theory of distribu-
tions) is a function in A satisfying equation (1) a.e. in A, that is, if

(24) . Au = -g(x,y,u) (or Au = Nu) a.e. in A,
then
p(e) < Ry, p(Nu) < Rz forue &, Aue S'.

Hence, by applying the operator H(I - P) at the left of (24), we obtain the equation
H(I - P)Au = H(I - P)Nu; that is, (I - P)u = Fu, or, finally,

(25) u = Pu+ Fu.
For every u € S; we shall now define the operator T: S;1 — & by taking
(26) v =Tu = Pu+ Fu = Pu+ H(I - P)Nu.
Note that, for u € S, » | "
@71 PFu = PH(I - P)Nu = 0.

If u*(x, y) ((x, y) € A, u*¥ € & N S;) is any approximation to a solution u of (24),
then u* satisfies equations (24) and (25) with errors 6 and © given by

(28) Au* =Nu*+0 (0e8S), uv=P*+Fu*+0 (0c9),
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where ® = H(I - P)§ for p(u*) < R;, and where u* satisfies the condition
p(Nu*) <R,. Also, for every u € Si, it follows from (22) and (2) that

| Fu - Fo*| = |BE - P)Nu - No*)|| < k[|Nu - No* || < KL flu - ot

p(Fu - Fu*)

1]

p[H(@ - P)(Nu - Nu*)] < k'||Nu - Nu*|| < k'L |lu - u*|.

We shall take u* = y¢; = yvg1Jo(ro1 p), where y is an undetermined constant such
that |u*| = |y¢;| <R; in A. Then the errors 6 and @ are functions of z € A and
v, and they are given by the equations

- 6(z, y) = Au* - Nu* = -'}’7\81 vo1Jo(ho10) +8(z, Yvo1J0R010)),
O(z, y) = HI - P)6(z, v).

We shall denote by B(y) the expression (with dz = dxdy)

B(y) = 6(z, v)-¢; = S SAe(z, y)épdz = -yad; S SA¢§dz+ S§Ag¢1dz

27 1
2
-YAp1 + S ‘S‘ g(z, yvo1Jo(ro1P)) vo1Jo(ro10)pdpdo,
o Yo

where Agl = 5.7831.

For y =70 =0, u* reduces to u* =ug =0, and
(30) 6(z, 0) = g(z, 0), ®(z, 0) = H(I - P)g(z, 0).
Let
(31) b = ||@(z, 0)], b'=p6(,0) = Ess Sup|6(z, 0)|,

where the Ess Sup is taken for z € A. Also, for any number ¢ > 0, let

(32) By; = Blc), Bgz = B(-¢), @ = min[|Bg;|, |Bo2|].
6. Let ¢, d, r, R be constants such that

(33) 0<c<d, r = cyg] <R < Rj.

Let V be the set of all functions u* = y¢) = yvg1Jo(o1p) with [Ju*| <c, that is,
with |y| <ec. Then

p(*) = plyvo1Jolhorp] = |¥[vor < <R <Ry
For every u* € V, let
(34) S* = {ulue s, Pu=u*, |u| <d, pl) <R}.
This set is not empty, since u* belongs to S*. Also, it is complete (in S, with the

norm ||ul| of S). Finally, S* ¢ S;, and hence T: S*¥ — &. Let us assume that the
inequalities
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(35) kL <1, c+kLd+b<d, r+k'Ld+b <R

hold. Then T: 8* — S* N &. Indeed, if v =Tu and u € S*, then, by force of (26),
(27), (34), (35), (29), (31),

Pv = P(Pu+ Fu) = PPu+ PH(I - P)Nu = Pu = u*,
Ivll = [ Pu+Fuf < o] + B - P)Nu - Nug)| + | - P)Nuo
< c¢+KL[u-upl| +|®(@, vo)| <c+kLd+b < d,
p(v) = p(Pu+ Fu) < pu*) + p[H(I - P)(Nu - Nug)] + p[H(I - P)Nu,]
<r+kLju-ug)+b' <r+k'Ld+b' <R.

Thus T: §* — ¥ N &. Also, kL <1 implies that T | $* is a contraction. Indeed for
u; € S* and v; = Tu; (i =1, 2), we have the relations

vy = Puy+Fuj, vz = Pup+Fup, Puj = Pup = u*,

and
vy - v2l = [[Fu; - Fup|| = |HE - P)(Nu - Nup)|| <k |[Nuj - Nup|| <KL |u; - up,
where kL < 1.

We conclude that, under hypotheses (2), (33), and (35), the restriction T |S* ad-
mits a unique fixed element, say v = Tv € S*, which is determined by u*, hence by
the value of the constant y ( |'y| < c¢). In other words, v € S* is a function of 7.
Actually, v is a continuous function of y. Indeed, for |7/1 ] , |')/2f <Lgc, u’{ =vy; 91,
corresponding sets S}, and fixed elements v; = Tv; of the maps T | S} (1=1, 2), it
is true that S} U S5 c §;, and

v; = Tv; = Pv;+ Fv;, Pv; =u¥ (i=1,2),
| v, - Fv,|| = [HT - P)Nv; - Nvp)|| <KL |v; - vy,
Ivi - val| = [|(Pvy - Pv2) + (Fvi - Fv2)| < Juf -u}] +kL v, - v,
and finally
vy - vall < (- kL) g -ug] = (- KL |y -y
If u¥ € V and v = Tv is the corresponding fixed element of T | S*, then
(36) v = Pv+ Fv = Pv+H(I - P)Nv.
This implies that v € S N &; in other words, v is a continuous function in A U 9A,
v =0 on 3A, v has continuous first-order partial derivatives in A, Av (computed in
the sense of the theory of distributions) is a bounded function in A, INv| <Ry, and
A(v - Pv) = A(I- P)v = (I - P)Av, AH(I - P)Nv = (I - P)Nv.

Thus, v satisfies an equation of the form
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Av = Nv + D, where D = P(Av - Nv),
or ,
(37) Av = -g(x,y,v)+D, D =D()¢;=[(Av+g) ¢1]¢.

This shows that v is a solution of problem (1) provided u* (that is, v) is chosen in
such a way that D=0, or (Av+g)-¢; =0.

Now assume that Nu = -g(x, y, u(x, y)) is a continuous function of (x, y) satisfy-
ing locally in A some H&lder condition whenever u(x, y) has the same properties.
Since v is continuous in A, together with its first-order partial derivatives, v
satisfies locally in A a Lipschitz condition (that is, a HSlder condition with expo-
nent one). Therefore Nv satisfies locally some Holder condition; hence H(I - P)Nv
has continuous second-order partial derivatives in A, and hence, by force of (36), v
itself has the same property. Therefore Av is the usual Laplacian.

7. Let

u = yép,

= Y091,

=t
an]
|

v=Tv~y¢;+crpp+c3¢ps+---,
2

Au* = -yryd),

Aug = -yord

ug Yor1®1,
2 2

AV ~ "'J/A.l(bl - 02A2¢2 - "',

Nv ~ 0;¢1+ 622+ -,

b S %k
Nu g+ 056, + 000,

Nuo ~ 610 ¢)1+620 ¢2+"’.
Then
2
D(y) = (Av - Nv)-¢) = -~yA] - 0,

B(y) = (Au* - Nu¥)-¢; = -yaf - 6%,
IDG) - BO)| = |6y - 6] = [(Nv - Nu¥)- ¢y < [[Nv - Nu*|| < Lffv -t
where v = Pv + H(I - P)Nv and Pv = u*, and hence
|D(y) - B(y)| < L|v-Pv| = L|H{I- P)Nv||
(38) | < L ||H{I - P)(Nv - Nug) + H(I - P)Nug|
< LKL ||v - up]| +b) < LkLd +b),

forall y (e <y <ec).
Let us assume that, together with (2), (33), (35), the inequalities
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(39) L(kLd+b) < & = min{|By;|, |Boz2|}, Bo1Boz <0,

hold; then Bgj = B(c) # 0, Bgz = B(-¢) # 0, and Bg; and Bp; are of opposite signs.
Suppose, for instance, that Bg; > 0 > Bgg; then, by force of (38),

D(c) > B(c) - L(kLd +b) > @ - L(kL.d+b) > O,
D(-¢) < B(-¢)+ L(kLd +b) < -2 + L(kLd +Db) < 0.
Hence D(y) changes sign in the interval [-c, +c], and hence D(y) = 0 for some
|7/| < c¢. That is, problem (1) has at least one solution v € &, in the sense that v is
continuous in A U A with u =0 on 9A, v has continuous first-order partial deriva-
tives in A, and Av (in the sense of the theory of distributions) is a measurable
bounded function in A with Av =g(x, y, v) a.e. in A, and with
lvl <d, v <R<Ry,  |vedi] <e.
8. Relations (33), (35), (39) should now be rewritten in the form
0<ec<d, r=1088c<R<R;, 0.060L <1,
(40) b < (1-0.069L)d-c, b' <R-1.0868c-0.230Ld, B(c)B(-c) < 0,

L(0.069 Ld +b) < € = min {|B(c)|, |B(-c)| },
where
b = |H(I - P)g(z, 0)], b' = Sup|H({ - P)glz, 0)],
(41) 21 A1
B(y) = -5.7831y + SO SO glz, yvg Johg1P) v ToRo1P)pdpdl .

Note that for any set of constants ¢, d, R with 0 <c¢ <d, 1.0868¢c <R <R, and
B(c) B(-c) < 0, there always exist constants 0 <b<d-c¢, 0<b'<R - 1.0868¢,
and we can find constants L > 0 satisfying the inequalities
0.069L < 1, 0.069Ld < d-c- b, 0.230Ld < R - 1.0868¢c - b',
L(0.069Ld +b) < £ = min {|B(c)|, |B(-¢)|};

all relations (40) are thus satisfied.

9. We can now summarize our result:

THEOREM 1. If g(x, y, u) is a measurable function of x, y, u satisfying
hypotheses (2) in A x[-Ry, R1], if ¢, d, R, L. are constants such that 0 < ¢ <,
1.0868c <R <R}, and

b = |H(I - P)g(z, 0)] <d-c, b'=Supy,|H({I- P)glz, 0)] <R - 1.0868¢,
(42) B(c)B(-c) < 0, 0.069L <1, 0.069Ld <d-c-b,

0.230Ld < R - 1.0868c - b', L(0.069Ld +b) < € = min {|B(c)|, |B(-c)|},
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then there exists at least one function u(x, y), continuous in A U3A and zevo on 9A,
such that u(x, y) has first-order pavtial devivatives continuous in A, Au (in the
sense of the theory of distvibutions) is a bounded measuvable function in A, and
Au+g(x,y,u)=0 a.e. in A.

In addition, if g has the property that g(x, y, w(x, y)) satisfies a Holder condi-
tion locally whenever w(x, y) does, and if ]w(x, y)| < Rj in A, then the function
u(x, y) above has continuous second-ovder partial derivatives in A, and the equation
Au + g(x, y, u) = 0 holds everywhere in A, in the usual sense.

Note that B(y) above is defined by (41) for |'y| < ¢, and that the third relation in
(42) certainly holds whenever

21 Al
(43) S S glx, y, e vy Jolrg1 P v Jo(ro1p)pdpdé| < 5.7831c.
0 0

10. The following example is of interest. Let us consider the boundary value
problem

(44) Au+g(x, y,u) = 0 in A, u=0 on 9A, with g(x, y, u) = {(x, y) ¢(u) + h(x, y),

where f and g are bounded and measurable in A, and where ¢ is a preassigned
function with ¢(0) = 0, lqb(u) - ¢(v)| < Iu - v| for all real u and v. If

a = Ess Supp lf(x, y)], B = Ess Supp |h(x, y)l,
then g(z, 0) = h(x, y), and

b = |H(I- P)h(x, y)| < #!/%kg,

11

b' = Supp |H(I - P)h(x, y)| < 7'/%k'8, L =a,

with k = 0.069 and k'=0.230, and R; can be taken as large as we wish. If o' and
B' denote the constants

Q
Il

2T A1 2 2
' jo §. [16, 9] 5,350 01020 dp a0,

27 A1
B! S S |h(x, y)| vo1J0(h01p)pdpde,
0 0

then

, 2ol )
0 < a < avy So -S‘o pJIoo1p)dpdd = a | go1]” = a,

1
, -1
0 < B8' < 2mBg; S pJo(o1p)dp = 2uBvo1ro1J1(X01),
0

and computations show that o' < a and B' < 1.47428. The relation (43) (and conse-
quently relation (42)) is then certainly satisfied if
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ac +1.474283 <5.7831c,
with
|B(c)|, |B(-c)| > 5.7831¢c - (ac +1.47428).
The list of inequalities that we need is now
0<e<<ad, 1.0868c < R, 0.12238 <d -c, 0.40778 < R - 1.0868c,
ac +1.47428 < 5.7831¢c, 0.069a <1, 0.069ad < d - c - 0.12233,
0.230ad <R - 1.0868c - 0.4077, «(0.069 ad + 0.12238) < (5.7831 - a)c - 1.47428.

We can satisfy the three relations involving R by taking R sufficiently large, since
R < Rj and R; is arbitrary. The list now reduces to

0<c<d, 0.12238<d-c, ac+1.47428 < 5.7831c, 0.069a < 1,
(45)
0.069ad < d - c - 0.12238, «(0.069ad + 0.12238) < (5.7831 - a)c - 1.47425.

The first relation concerns ¢ and d only, the next gives an upper bound for S, and
the others give an upper bound for «; in particular, the fourth one implies that

0 < a < ay=(0.069)1! = 14.492753 .

On the other hand, given B, we can always determine c and d satisfying the first
two inequalities, and the remaining relations then give an upper bound for a@. We
shall now prove that there exists some @ (0 <@ < @), namely @ = 4.13 (by defect)
such that for any o, 8 (0 < a <@, 0 < B <+«) we can determine constants ¢ and d
such that a, B8, c, d satisfy all relations (45).

First we consider the case 8 = 0. Then, with c =0d.(0 <o <1, d> 0), the first
two inequalities (45) are obviously satisfied, and so are the third and the fourth, since
0 <a<a@<5.7831 < ag. The fifth and sixth relations (45) now become

a < (1-o0)ag, a? +agoa - ap(5.78310) < 0,
and finally
a <27 ay[-0 + (0% +1.5961 0)1/2].

The equation (1 - ¢)ag = 2" ag[-o i(or2 + 1.5961 0)1/2] yields the value o = 0.715,
and the best value of o (namely @ = o = 4.13) obtainable by this argument.

Now we turn to the case where B > 0 is fixed. All pairs ¢, d with
(46) 0<ec<d, d > c¢c+0.12238
satisfy the first two relations (45), and the fourth one is also satisfied, since
0<ao<@<ag. Again, for 0 < o <@ =4.13 < ap, the third equation (45) is cer-
tainly satisfied if

(47) ¢ > (5.7831 - 4.13)7} 147428,  thatis, ¢ > 0.89188.

The fifth and sixth relations in (45), with ¢ = od (0 < ¢ < 1), now become
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a < (1-o0)ag-0.1223ap8/d,

a? + ag(o +0.12238/d)a - ay(5.78310 - 1.4742B/d) < 0,
or

a <(1-o0)xg-1.77258/4d,
(48)
o < 27 ag[-0 - 0.12238/d + (o +0.1223/d)* + (1.5961 0 - 0.4069 8/d))"/?].

As before, we take ¢ = od, o = 0.715; then for sufficiently large ¢ and d the rela-
tions (46) and (47) are certainly satisfied. On the other hand, as d — +, the right-
hand members in relations (48) both approach @ = 4.13. Thus, given 8 > 0 and

0 < @ <@, we can always determine constants ¢ and d satisfying all relations (45).

We can now summarize our result concerning example (44). Let f(x, y) and
h(x, y) be bounded measurable functions in A, let @ = Ess Sup |f(x, y)| in A, and let
¢(u) (u real) be any function such that ¢(0) = 0 and |¢(u) - ¢(v)| < |u - vl for all
real u and v. Then the problem

Au+1f(x, y)¢(u) +h(x, y) = 0 ((x, y) € A),
u=20 ((X; Y) € aA)

has at least one solution u(x, y) as in Theorem 1, provided 0 < a < a = 4.13.

Note that the constant 4.13 above-—-though not necessarily the best possible con-
stant—cannot be replaced by a constant greater than 7‘%1 = 5.7831 (the first eigen-
value of the linear problem), since for (x, y) = 7‘%1 =5.7831 and ¢(u) = u, there
exist bounded continuous functions h(x, y) for which the problem above has no
solutions.

11. We return to the general problem Au+ g(x, y,u)=0 in A, u=0 on 9A, with
g(x, y, u) measurable in A X [-R;, R;] and satisfying hypotheses (2), and, in addi-
tion, with g together with g, absolutely continuous in u for almost all (X, y) € A,
and with the second derivative g, essentially bounded on A. Let Bgy, B;, B, be
the constants

21l
By = S S gz, 0) vo1Jo(ho1p)pdpdb ,
0 vo
21 A1 > 2
B = -S‘o So gu(z, 0) vo1Jo(o1p)pdpdb,
B, = Ess Sup |guu(Z, '}/VOIJ()()\Olp))I s

where the Ess Sup is taken for z € A, and where |'y| < c. Then, for |'y| <eg,
1 5 2m pl

|B(y) - [By + (B - 5.7831)y]| < 27 B,y S S 3,33, P)pdpdo
0 0

1
= (mgl 5; pJS(AOlp)dp)Bzyz < 0.3931B,72,
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since the last integral was found to be less than 0.09747. Hence
|B(+c) - [Bo + (B - 5.7831)c]| < 0.3931Bzc?.
Relations (40) are certainly satisfied if
0<c<d, 1.088c <R<R), 0.069L <1,
b <(1-0.069L)d-c, b <R-1.088c-0.231d,
“9) [Bo + (B; - 5.7831)c][Bg - (B; - 5.7831)c] < 0,
L(0.069Ld +b) < ' = min[|By + (B; - 5.7831)c| - 0.3931 B, c?].

For instance, we may take L <4 (so that 0.069L < 0.276 < 1) and R =R}, and
we can choose ¢ and d with

1.0868¢c < R, c <1, c =(1-0.069L)d - 0.25d = (0.75 - 0.069L)d.
For
b < 0.25d, b' < R - 1.0868c - 0.23Ld,

|Bo| < 0.25¢, |B;] <0.25¢, |Bz| < 0.25,
it follows that

Bg - (B] - 5.7831)c > (5.7831 - 0.5)c = 5.2831c > 0,

]

Bo + (B - 5.7831)c < -(5.7831 - 0.5)c = -5.2831c < O,

and hence the first three sets of inequalities (49) are satisfied. Finally
L(0.069 Ld + b) < L(0.069 Ld + 0.25d) < L(0.069 L + 0.25) (0.75 - 0.069 L) !¢
< 4(0.526)(0.474) !¢ < 4.44c
(50)
< 5.184825¢ = 5.2831c - (0.25)(0.3931)c
< 5.2831c - 0.3931B,c < 5.2831c - 0.3931B,c? < Q';

that is, all inequalities (49) are satisfied.

We can now summarize the result of the present section.

THEOREM 2. If g(x, y, u) is a measurable function of X, y, u satisfying hy-
potheses (2) in A X [-R;, R}, if in addition g together with g, is absolutely con-
tinuous in u for almost all (x, y) € A and the second devivative g, is essentially
bounded on A, and if for some constants L and ¢ we have the velations

0 <L <4, 0<c<1, 1.0868c < Ry,
b = |HI - P)eg(z, 0)| < 4-1(0.75 - 0.069L) 1 c,

b’ = Ess Sup, |H(I - P)g(z, 0)] < R; - 1.0868¢ - 0.23L(0.75 - 0.069L) ' c,
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2T Al
-1
lBOI = S ‘S‘ g(z, 0)V01J0(7t01p)pdpd9l <4 "c,
0 0
27 1 o .
|B,| = S S gulz, 0)V01301(>»01P)Pdpd9l <4 e,
0 *0

|B2| = Ess Sup |guu(z, ¥ vo1J0(01p)| <471 (ze A, |y| <o),

then theve exists at least one function u(x, y) having the properties listed in Theo-
rem 1 and satisfying (1).

12. For particular forms of g(x, y, u), we may impose less severe conditions on
g than in Theorem 2.

For instance, let ¢(u) (- <u < +«) be a function that is absolutely continuous,
together with ¢'(u), and satisfies the conditions

$0) =0, '0) =0, [¢'@|<3u® |¢"@)|<6]ul.

Let f(x, y) and h(x, y) be essentially bounded, measurable functions in A. Let us
consider the boundary value problem

Au+g(x,y,u) =0 inA, u=0 onodA,

(51)
with g(x, y, u) = i(x, y)¢(u) + h(x, y).

Then
g(x, y, u) = f(x, y)¢(u) + h(x, y),

gu = i(x, y)¢'(w),  guu = i(x, y) ¢"(u),
g(x, y,0) = h(x, y), gulx ¥, 0) =0;
hence B} =0. If
o = Ess Supy |f(x, y)|, B = Ess Supa |h(x, y)|,

then we shall assume that L = 3¢R? for |u| <R =R and that

1
-1
|Bo| < 20Bvo1 S pJo(o1p)dp = 21 vy Ag1 T1(hg1)B < 1.47428,
0

/218 =0.12238, ©b' = 7'/%k'p = 0.40778.

|B2| < 6aR, [b] <
Thus, inequalities (49) are certainly satisfied provided
0<c<d, 1.0868c <R, 0.069(3a¢R?) < 1,
0.12238 < [1 - 0.069 (3a¢R?)]d - c,

0.40778 < R - 1.0868¢c - 0.230 (3aR2 d), 1.47423 < 5.7831¢c,
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(3¢R2)[0.069 (3aR%d) + 0.12238] < 5.7831c - 1.47428 - 0.3931 (6aRc?).

Note that if ¢, d, R are prescribed constants satisfying the relations 0 < c¢c <d and
R > 1.0868c, then we need only verify that

0.12238 < d - c, 0.40778 < R - 1.0868c, 1.47428 < 5.7831c,

0.069 (3¢R%) < 1, 0.069(30R%d) < d - c - 0.12238,
(52)
0.230 (3¢R%d) < R - 1.0868¢c - 0.4071p8,

(0.069) (3aR?%)%d + (0.1223) (3aR2)B + (0.3931) (6aR)c® < 5.7831c - 1.47428.

The first three inequalities then give an upper bound for B; if we fix 8 within such a
bound, then the remaining four inequalities (52) give a bound for «. For instance,
for c =1, d=2, R = 2, we have the inequalities 8 < 8.17, B < 2.23, B < 3.92. If

B = 0.8, for example (or even if 0 < B < 0.8), then the remaining four inequalities
(52) yield @ < 1.20, o < 0.54, @ < 0.106, a < 0.355. Thus, boundary value problem
(51) certainly has a solution u(x, y) as in Theorem 2, for all o and B with
0<a<0.1, 0<BL0.8.

On the other hand, given any 8 > 0, we can always choose constants c, d, R
satisfying the conditions 0 < c¢c <d and R > 1.0868c and the first three relations
(52). Then the remaining four relations (52) yield a bound for a (relative to the
chosen values ¢, d, R). We may now summarize our result concerning example (51).

Let f(x, y) and h(x, y) be bounded measurable functions in A, let
o = Ess Sup |(x, y)|, B = Ess Sup lh(x, y)| in A, and let ¢(u) be any real-valued
function that is absolutely continuous together with ¢'(u) and satisfies the conditions

9(0) =0, ¢(0)=0, [¢'@]< 3% [¢"W] < 6]uf.

Then the problem
Au +£(x, y)¢(u) +h(x, y) =0 ((x, y) € A),

u=0 ((x, y) € 2A)

has at least one solution u(x, y) with the properties listed in Theorem 1, provided
0 < a <a(B) for some @(B) > 0. For instance, for B = 0.8 we can certainly take
0<a<0.1.
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