ON THE GROWTH OF UNIVALENT FUNCTIONS
Ch. Pommerenke

1. RESULTS
1.1. We shall assume that the function
(1.1) f(z) = z+azzz+---

is analytic and univalent in ]zl < 1. Throughout the paper, cap denotes logarithmic
capacity.

THEOREM 1. Let A(R)= {z: |f(z)| > R}. Then
(1.2) cap AR) < 1/YvR (R>0).
Fuvthermovre, either
(1.3) VvRecapAR) = 0 (R — «),
or there is a stavlike univalent function g(z) = z + ++- such that

f(z)

(1.4) log L5 | < K|log(1 - 1212 (|z] <1)

for some constant K.
Since |arg g(z)/z| < 7, it follows from (1.4) that

|arg £(z)/z] < K;|log(1 - |z|)|1/2 (Jz] <1).
A slight modification of the proof of Theorem 1 also gives the bound
1#z)| < K2 @ |2 - 2] (|2 <1, 0<a< 1),

The function fm(z) = z(1 - zm)‘?‘/m is univalent in ‘zl < 1, and it has the prop-
erty

lim inf VR cap A,(R) > 272/™  (m=1, 2, -.).

R—o

Hence (1.2) is essentially best possible. A result of W. K. Hayman and P. B. Ken-
nedy [5] shows that the right- hand side of (1.4) cannot be replaced by anything
smaller than o(|log(1 - |z|)]|!/2).

1.2. Hayman was the first to prove a regularity theorem of the following kind:
Rapid growth of a univalent function implies rather regular behavior. Let

M(r) = max |f(z)| .

Z|=T
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Then the limit a = lim1 (1 - r)2M(r) exists, and 0 < @ < 1. The theorem of Hay-
r —

man [3, Theorem 2.9], [5], states the following.
Let a > 0. Then there exists (| & | =1) such that

|t(re))] ~ a1 -1)"%  (r—1),
lt2)| < K00 |z - & |22 - |2])™  (Jz] <1, 0<a<2),
and, as |z| — 1 with |z - ¢ | > 86> 0,
(1.5) log |£(z)| = of|log(1 - |z])|1/2).

These estimates are best possible.

This theorem forms the basis of Hayman’s result [2], [3, Theorem 5.7], that
Ianl /n— a as n — o, It should be pointed out that Hayman’s theorem is valid for
more general class of areally mean univalent functions [4].

The relation between Hayman’s result and Theorem 1 will become clearer from
the following consequence of Theorem 1. The first part is due to Hayman [3, Theo-
rem 2.7].

THEOREM 2. (i) Let there be a finite ov infinite number of distinct points &
with || =1, and positive numbers oy and B such that

_ak
(1.6) [£(z)| > By (1 - |z])
on some curve Cy that lies in the unit disk except for its endpoint €. Then
(1.7) 27y < 2.
k
(ii) Let there be points §, (k=1, ---, m) with ICkI = 1, and positive numbers

oy and By with

@, +--ta =2
such that (1.6) holds. Then theve exist positive numbers vy and yy. such that

(1.8) (-1 TR <) <y -m) K

for 1/2 <r < 1. Also,

(1.9) loggzzz—)) < K|log(1- |z|*?2 (2| <1),
whevre
(1.10) ‘ gz) =z Il (1 —'Ek z)_ak

k=1

We call ¢ (|¢| = 1) a point of maximal growth if there exists a number f
(0 < B < 1) such that |f(z)| > BM(r) for all points z on some curve ending at ¢.



ON THE GROWTH OF UNIVALENT FUNCTIONS 487

COROLLARY. Let there be m distinct points €y, -, ., of maximal growth.
Then
(1.11) M(r) < Ko(1-1)7%™ (0<r<1i)

for some constant Kqo. Furthermore, if
(1.12) M(r) > Bo(l - r)™2/™  (1/2<r<1)
for some Bg > 0, then (1.8), (1.9), and (1.10) hold with

Q) = =ay, = 2/m.

If we take m = 1, we obtain Hayman’s theorem, though in a slightly different
form. For instance, (1.9) is only an O-estimate, whereas (1.5) is an o-estimate.
On the other hand, (1 9) gives an upper bound for llog f(z)], but (1.5) only for
log | £(z)].

2. PROOF OF THEOREM 1

2.1. For a compact plane set E, we define

(2.1) A (E) = max H H Iz - V| (n=2,3, )
Zl,:,Z2n€E =1 v=1
L#FV

(the points z,, ---, z, for which the maximum is attained are called nth Fekefe

points of E). Then
(2.2) [AyE)/PP1) N cap B (n— ).
Let 0 <p <1. We define
AR, p) = {z: |z| <p, |i(z)] > R}.
Because A(R, p) increases with p,

(2.3) lim cap A(R, p) = cap A(R).
p—1

We may assume that cap A(R) > 0. Then cap A(R, p) > ¢ for some ¢ >0 and
po < p <1, and therefore, by (2.2),

(2.4) An(AR, p)) > o1 (o <p <),
2.2. Golusin has proved the following inequality [1, p. 121} If
-1
h(C) = §+b0 +b1§

is uni- dent in |¢| > 1, then
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i h(¢,) - h(g,) . 1
27 cy c., log o 1< 2 c, ¢, log —m—m———
=0 i Su =Sy T =0 p=0 Hv l'l/cuﬁv

(2.5)
u=0 v

forall ¢, and |, | >1 (v =0,1, =+, n).

vl

We choose z,, =z (R, p) (v =1, -+, n) as nth Fekete points of A(R, p). We ap-
ply Golusin’s inequality with h(¢) = 1/£(¢-1) and §o=¢=1/z, cg=c,and §, =1/z,,
c, =1 (v =1, .-, n). Taking the negative real part on the left-hand side of (2.5),
we find (with the indices p and v ranging from 1 to n)

h(g) - h(t,,)]

-9 [c? log h'(€)] - 293,: c 27 log T-¢
v

14

h(¢,) - h(¢,)

-Z)Elog Cu‘gv

Ly

2 1 N 1
< |C| logl_—lzlz—l—zﬁl[czlog-———l_ :l

v ZVZ

- 27 1log |h'(¢,)]
14

(2.6)

+ 20 Elog-l——_—;—.—-+z>log 1

TR wly v 1- IZVIZ .
The case n =1 of (2.5) gives
[1og h'(¢)] < |log(1 - €] 7%)] < |log(1 - |z])] .

Since |h(¢,)| =1/|#(z,)| < 1/R,

ITII |n(¢,) - hg,)| < nPr"E-1),
LY

Also, |z -z, | <[y -8, |2y -2,| <|1-2,2,], and |z, | <p. We write

S h(¢) - h(g,)
2108 Ty -5y

% (£(z) - £(z)) 2z,
v=1

1
(2.7) ¢nfz) = — 8 G =2, - 2, DI@)1z,)

v=1
and from (2.6) we obtain the inequality

-2n9%[c ¢, (z)]

<2 |cl2 log +nlogn - n(n - 1)log R + 2n log - 2 log A (A(R, p)).

1
1-|z| 1-p
The last term arises because of (2.1) and the choice of the points z, . The inequality
is valid for all c. We choose |c| =ny and argc =7 - arg ¢,(z). After division by

n?, we find that, for |z| <1,
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2y |én(z)] < 2¢%|log(1 - |z])]

(2.8) log n

+ (1——1-)10gR-—]10g(1—p)[————logA(A(R p).

2.3. It follows from (2.4) and (2.8) (with y = 1) that
|oa@)] < |10g(1 - |2D|+ K@) +— [og (1 - p)| (2] <1, p>py),

where K(R) depends only on R and f. By Montel’s theorem, some subsequence
{cj)nk(z)} converges locally uniformly in |z| < 1, say to ¢(z, R, p), and clearly

(2.9) |#(z, R, p)| < |log(1- |z])] +KR) (|z]| <1, p>py).

Let n =n, — « in (2.8). Because of (2.2), we see that
(2.10) 2y | #(z, R, p)| < 2¢%|log(l - |z])| - log R - 21og cap A(R, p).
This inequality holds for p <1 and y > 0. By (2.9), there exists a sequence {pﬂ}
such that p, — 1 and such that ¢(z, R, py) — ¢(z, R) locally uniformly in |z| <1.
Let p=py — 1 in (2.10). We find that
(2.11) 2y |o(z, R)| < 2¢% |log (1 - |z|)| - 2 log[VR cap A(R)]
for |z| <1, y> 0. By making y — 0, we see that YR cap AR) < 1, and this proves
(1.2). This part of the proof could have been simplified substantially if the aim had
only been to prove (1.2) (compare [8]).

2.4. We shall now assume that (1.3) does not hold. Then there exists a sequence
{R;} such that R; — « and

w/ﬁj cap ARj) > @ >0 (j=1,2, ).
Hence (2.11) implies that
(2.12) 2y |z, R;)| < 2¢%|log(1 - |z|)] +21og 1/ (|2} <1).

Therefore we may assume that ¢(z, R; ) — ¢(z) locally uniformly in |z| < 1. We let
j — o in (2.12). After dividing by Zy, we find that

|#(z)] < ¥ |log( - |z])| +y llog 1/c.
Finally, the choice ¥ = {|log @|/|log(1 - |z|)|}!/? gives the inequality
(2.13) |o(z)| < 2{|1og a|-|log(1 - |z|)|}}/? = K|10g( - |z|)]/2  (|z| <1).
2.5. We now have to show that
(2.14) #(z) = log[g(z)/f(2)],

where g(z) = z + -+ is analytic and starlike in |z| < 1. From (1.1) and (2.7) we
deduce that ¢,(0) = 0. It follows that ¢(0) =0
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Let |z] <r <1. We can choose an Ry such that |f(z)| <Rg for |z| <r. Then
]Zv| >r for z, € A(R, p) if R> Rg and 0 < p < 1. By (2.7),

' _1 . zf'(z) zf'(z) Zp T2 1+z =z
qun(z)_ﬁ Zz; £(z) - £(z,,) = £(z) +2(z —z)+2(1—2VVz))

Because |z| <r < |z,| for R >Ry, it follows that

. zf'(z) z1'(z) |£'(z)]
9t|:z¢n(z)+ @ |23 E " @) ) 2 TR ]

We keep z fixed and let n =n, — « and then p = py — 1, as in Section 2.3. We
find that, for R > Ry and |z| <r,

zf'(z) ) |£'(z)]
[ng(z R) +——3* ") :IZ - i) |f(z)| .

Now let R = Rj — «. Then it follows that
(2.15) | 2@+ 258 | > o,
f(z) | =
and this inequality holds for |z| <r for each r < 1, hence for all |z| < 1. We put

g(z) = f(z) exp ¢(z). Then g(z) is analytic in |z| <1, and g(z) = z + **+ because
#(0) =0 and £'(0) = 1. Also, (2.15) implies that

% 2 ((z)) >0 (|z] <1).

Hence g(z) is starlike and univalent in |z| <1, and (2.14) follows.

3. PROOF OF THEOREM 2

3.1. LEMMA. Let E (k=1, -+, m) be compact plane sets with mutual dis-
tances at least b > 0. Let E=E; U - U E,,, and cap E <b. Then

1 1
(3.1) log (b/ cap E) 2 Z) ].Og (b/ cap Ek)

This lower estimate is the converse of the well-known upper estimate for the
capacity of the union [6, p. 127].

Proof. Let n, (k =1, :=-, m) be positive integers, and let z,,, -, Zhen, be
n, th Fekete points of Ei. Let n=n; + - +n, . Then (2.1) implies that

AD.(E)Z H H(H ].—.[ |Zk“_Z,QV|) (H H Izku-zkvi)
k=1 0=1 ‘=1 p=l —1 p=1 p=1
) LY
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m
-n, (n, -1)
> bn(n—l) II [b k'\k Ank(Ek)]°
k=1

It follows that

m
1 ny(ny - 1) 1 )
my— log Ap(E) - logb > El -1 \ o - 1) log Ank(Ek) -loghb ).
If we let nx — « so that nx/n — 6 (k=1, =, m) with &; + *** + 6, = 1, then we
see from (2.2) that
m
20 82 '
log cap E - logb > o, (log cap E; - log b).
k=1
The choice
m -1
5 = 1 1
k ™ log(b/cap Ey) 4oy L8 (b/ cap Ej)
gives (3.1).
3.2. Let § (k=1, .-, m) be any points for which (1.6) is satisfiedon C.. If R
is large enough, we can choose s, (k =1, ---, m) so that §,(1 - s )—Olk =R. Let Cy

be orientated towards ¢, , and let z;, be the last point of C; with zkl =8k. If Ey
is the arc of C between z; and ¢, then |z| > sy for z € Ey, hence, by (1.6),

-a
]f(z)] > Bl - sy) kKR (ze¢ E).
Consequently E; C A(R). Since Ej is connected,

1
4

-1/ak

: 1 1 1 1 -
(3.2) cap E, > Zdiam E, > Z[ck- zy| > (1 - 8) = 7B /R) loy BI!'R

with some constant B, .
We apply the lemma to E;, -, E,,,. The mutual distance is at least

b =% min ¢, - §g| if R is sufficiently large. Therefore (3.1) and (3.2) imply that
k#0

m
1 E oy
log (b/cap[E; U -+ U E

Hence we see from (1.2) that

-1/
(3.3) R™'/2 > cap A(R) > cap(E, U - UE,,) > (BsR) =~ =@ F,

Making R — «, we thus find that a; + - + @, < 2. Since this inequality holds for
any m (in case there are infinitely many points ¢ ), we obtain (1.7). This proves
part (i) of Theorem 2.
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3.3. We shall now prove part (ii). Let us first turn to the lower estimate in

(1.8). Suppose this is false, say for k=1, £; =1. Then (1 - r)*! |f(r,)| — 0 for
some sequence r, — 1 - 0, Applying the distortion theorems to the derivative of the
function

f,(z) = l:f(lri—:nz—z> - f(rn):l/[(l - rrzl)f'(rn)] =z + e,

we infer that, for any o <1,
o
1-1z])7t|t@z)] - 0 (ze Hy o), n— =),

Z-rT
~1 <o } . It follows from (1.6) that C; does not meet

where H (o) = § z: 1—_?11—2

H_ (o) for any ¢ <1 and n > ny(o).

We now proceed as in Section 3.2. Let z; =z, be the last point of C; with
|21 | =, and let E| = E,); be the arc of C; between z,; and 1. We choose

R=R,=8;(1- rn)—a1 . Again, E;; C A(R,). Because H,(c)N E,; =9 for 0 <1
and n > ny(o), geometric considerations show that diam E,_; /(1 - r,)) — « as
n — o, Hence we find instead of (3.2) that

-1/«
cap Eln > An 1’ An — %,

while (3.2) holds for k = 2, +*+, m. Therefore the lemma implies that
cap A(R,) > My R;Y2, with !, — =

in contradiction to (1.2).
Next, we prove the upper estimate in (1.8). Let again k=1, ¢; = 1. Suppose

a-ry)*! |£(r,)| = A, — = for some sequence {r,} (r, — 1 - 0). We choose

R, = |f(r,)| and then zy, (k =2, -+, m) as before, whereas z;, = r,,. Then

z1n € A(R,). By the maximum principle, there exists a continuum E;, ¢ A(R,) that
connects zj, with the circle |z| = 1. Then, instead of (3.2),

1 1. 1/ay -
Z(l'rn)zzkn an

cap Ey, > %diam Ei, >
Reasoning as in Section 3.2, we deduce that cap AR,) > A}, R;ll/ 2 with A — o,
contrary to (1.2).

3.4. Finally, we have to prove (1.9) together with (1.10). It follows from (3.3)
that (1.3) does not hold, so that (1.4) is valid. We have to prove that the starlike
function g(z) has the form (1.10).

Every starlike function g(z) = z + **- can be represented [7, Lemma 1] in the
form

27

(3.4) g(z) = z exp| - S log (1 - e it z)dp(t):|,
0

where p(t) increases and has variation 2. It follows that



ON THE GROWTH OF UNIVALENT FUNCTIONS 493

g(z) = z H. (1- e—wkz)_pkyl/(z).
k

Here 6y and pyr > 0 are the locations and the heights of the jumps, and
p; +p, + e < 2; furthermore

|w(z)| = ot - |z])8) (|z] - 1)

for every ¢ > 0. Hence the left-hand inequality (1.8) shows that p, > o (elek = &)
if the numbers are suitably ordered. Since

2 = al+"‘+am_<_ pl+"'+pm_<_ 2,
it follows that o) =p, (k =1, -=-, m). But p; + - +p,, =2 implies that g(z) bas

the form (1.10), because the function p(t) in (3.4) becomes a jump function with
01, -, 0, as the only discontinuities.

3.5. Proof of the Corollary. Suppose (1.11) does not hold. Then
M(r,) > A, (1 - 1)"2/™ with A, — o
for some sequence {r,} (r, — 1 - 0). We choose
R, = BM(r,), B =min(By, =, Bm)
and proceed as in Section 3.2 to show that
cap ARR_) > AL/2(B, R )"1/2,

in contradiction to (1.2).

The second part follows immediately from Theorem 2, because of (1.12) and the
definition of points of maximal growth.

REFERENCES
1. G. M. Golusin, Geometrische Funktionentheorie. VEB Deutscher Verlag der
Wissenschaiften, Berlin, 1957.

2. W. K. Hayman, The asymplotic behaviouy of p-valent functions. Proc. London
Math. Soc. (3) 5 (1955), 257-284.

3. , Multivalent functions. Cambridge Tracts in Math. and Math. Phys. No.
48. Cambridge Univ. Press, Cambridge, 1958.

, Les fonctions multivalentes. Séminaire de Mathématiques Supérieures,
Montréal, 1967.

5. W. K. Hayman and P. B. Kennedy, On the growth of multivalent functions. J.
London Math. Soc. 33 (1958), 333-341.

6. R. Nevanlinna, Eindeutige analytische Funktionen. Second Edition. Grundlehren
math. Wiss. Vol. 66, Springer-Verlag, Berlin-Gé&ttingen-Heidelberg, 1953.



494 CH. POMMERENKE

7. Ch. Pommerenke, On stavlike and convex functions. J. London Math. Soc. 37
(1962), 209-224.

8 , On the logavithmic capacity and conformal mapping. Duke Math. J. 35

(1968), 321-326.

Technische Universitit Berlin



