CONCERNING UNCOUNTABLE FAMILIES OF n-CELLS IN En

J. L. Bryant

Bing has shown [1] that if $\{S_{\alpha}\}_{\alpha\in A}$ is an uncountable family of mutually exclusive closed surfaces in euclidean 3-space E^3 , then all except countably many of the S_{α} are tame. Moreover, Stallings has given an example showing that the hypothesis that each S_{α} is closed cannot be deleted [6]. It is natural to conjecture that an analogous situation exists in higher-dimensional space; that is, that there do not exist uncountably many mutually exclusive wild closed (n - 1)-manifolds in euclidean n-space E^n .

We consider this conjecture for the case where each of the (n-1)-manifolds in question is a topological (n-1)-sphere in E^n . As one might rightfully deduce from the title of this paper, we are not prepared to solve the general problem. However, a recent result of Černavskii [4] enables us to obtain a partial solution.

THEOREM 1. Suppose that $\{B_{\alpha}\}_{\alpha \in A}$ is an uncountable collection of n-cells in E^n (n \geq 5) such that Bd $B_{\alpha} \cap$ Bd $B_{\beta} = \emptyset$ if $\alpha \neq \beta$. Then all but countably many of the B_{α} are tame.

We shall let d denote the standard metric on E^n . The space of continuous functions from the (n-1)-sphere S^{n-1} into E^n (with the supremum metric) is denoted by M. Since S^{n-1} is compact and E^n is separable, M is a separable metric space. Thus, if $\{h_{\alpha}\}_{{\alpha}\in A}$ is an uncountable family of embeddings of S^{n-1} into E^n such that $h_{\alpha}(S^{n-1})\cap h_{\beta}(S^{n-1})=\emptyset$ for $\alpha\neq \beta$, then for almost all $\alpha\in A$ (that is, for all except countably many $\alpha\in A$),

$$h_{\alpha} = \lim_{m \to \infty} h_{\alpha_m} = \lim_{m \to \infty} h_{\beta_m},$$

where each $h_{\alpha_m}(S^{n-1})$ is contained in one complementary domain of $h_{\alpha}(S^{n-1})$ and each $h_{\beta_m}(S^{n-1})$ is contained in the other. (Otherwise, one could produce uncountably many mutually exclusive open subsets of M.) If X is a subset of E^n and if $\epsilon > 0$, then $f: X \to E^n$ is an ϵ -mapping provided that $d(x, f(x)) < \epsilon$ for each $x \in X$. Given $X \subset Y \subset E^n$, we say that X is an ϵ -retract of Y if there exists an ϵ -retraction of Y onto X.

I would like to thank the referee for many helpful criticisms.

PROPOSITION 1. Suppose that S is an (n-1)-sphere in E^n and $\epsilon>0$. Then there exists an open set V containing S and a positive number η such that if h: $S\to V$ is an η -homeomorphism, then h(S) is an ϵ -retract of V.

Proof. By induction, it is easy to produce positive numbers δ_0 , δ_1 , \cdots , $\delta_n \leq \epsilon$ and η with $\delta_{i-1} < \delta_i/4$ ($i=1,\cdots,n$) such that if $h\colon S \to E^n$ is an η -homeomorphism and X is a subset of h(S) of diameter less than $5\delta_{i-1}$, then X is contained in a cell C in h(S) of diameter less than $\delta_i/2$.

Let T be a triangulation of E^n with mesh less than δ_0 , and let N be the union of all simplexes σ in T that meet S. Let V be the interior of N, and let η be

Received June 12, 1968.

chosen as above. Assume that η is sufficiently small so that for each η -homeomorphism h: $S \to E^n$, N is contained in $N_{\delta_{\Omega}}(h(S))$, the δ_0 -neighborhood of h(S).

Given such a homeomorphism h: $S \rightarrow V$, we shall produce the desired retraction r: $V \rightarrow h(S)$, basically as it is done in [2].

Let N^k denote the polyhedron of the k-skeleton of N. Define a retraction \mathbf{r}_0 : $N^0 \cup h(S) \to h(S)$ by taking $\mathbf{r}_0(v)$ to be any point of h(S) within δ_0 of v, if $v \in N^0$ - h(S). Inductively, assume that we have a δ_k -retraction

$$r_k: N^k \cup h(S) \rightarrow h(S)$$
.

Let σ be a (k+1)-simplex of T in N^{k+1} . Then

$$\text{diam}\left[\left(\sigma\,\cap\,h(S)\right)\,\cup\,\mathbf{r}_{k}(Bd\,\,\sigma)\right]\,<\,2\delta_{0}+3\delta_{k}\,<\,\,5\delta_{k}^{\cdot},$$

so that $(\sigma \cap h(S)) \cup r_k(Bd \sigma)$ lies in a cell C in h(S) of diameter less than $\delta_{k+1}/2$. By Tietze's Extension Theorem, $(r_k \mid Bd \sigma) \cup (1 \mid \sigma \cap h(S))$ extends to a map $r_{\sigma} \colon \sigma \to C$. Combining all the r_{σ} for (k+1)-simplexes σ in N^{k+1} , we obtain a δ_{k+1} -retraction $r_{k+1} \colon N^{k+1} \cup h(S) \to h(S)$. The retraction $r = r_n$ restricted to V has the required properties.

The next proposition follows immediately from Proposition 1.

PROPOSITION 2. Suppose that U is a complementary domain of an (n-1)-sphere S in E^n . Then for each $\epsilon > 0$ there exist an open set V containing Cl(U) and a positive number η such that for each η -homeomorphism $h: S \to U$, the closure of the component of E^n - h(S) contained in U is an ϵ -retract of V.

A subset X of E^n is said to be 1-ULC if for each $\epsilon>0$ there exists a $\delta>0$ such that every mapping $f\colon S^1\to X$ with diam $f(S^1)<\delta$ extends to a mapping g of the 2-cell B^2 into X with diam $g(B^2)<\epsilon$.

PROPOSITION 3. Suppose that U is a complementary domain of an (n-1)-sphere S in E^n such that for each $\eta>0$ there exists an η -homeomorphism h; S \to U. Then U is 1-ULC.

Proof. Given $\epsilon>0$, choose an open set V containing Cl(U) and a positive number η corresponding to $\epsilon/3$ as in Proposition 2. Let $\delta>0$ ($\delta\leq\epsilon/3$) be chosen so that $N_{\delta}(\text{Cl}(U))\subset V$. Suppose that $f\colon S^1\to U$ is a mapping with diam $f(S^1)<\delta$. Let $h\colon S\to U$ be an η -homeomorphism such that $f(S^1)\subset U_h$, and let $r\colon V\to \text{Cl}(U_h)$ be an $\epsilon/3$ -retraction, where U_h denotes the component of E^n - h(S) contained in U.

Since diam $f(S^1) < \delta$, there exists an extension $g' \colon B^2 \to E^n$ of f with diam $g'(B^2) < \delta$. Thus $g'(B^2)$ is contained in V, and so the composition $g = rg' \colon B^2 \to Cl(U_h) \subset U$ is the desired extension of f.

As a consequence of Proposition 3 and [5, Theorem 4], we see that if $\{S_{\alpha}\}_{\alpha \in A}$ is an uncountable family of mutually exclusive (n-1)-spheres in S^n , then almost all the S_{α} have complementary domains that are open n-cells.

Proof of Theorem 1. Given an uncountable family $\{B_{\alpha}\}_{\alpha\in A}$ of n-cells in E^n $(n\geq 5)$ with mutually exclusive boundaries, let $\{h_{\alpha}\}_{\alpha\in A}$ be a collection of embeddings of S^{n-1} into E^n such that $h_{\alpha}(S^{n-1})=\operatorname{Bd} B_{\alpha}$ for each $\alpha\in A$. Then for almost all $\alpha\in A$, $h_{\alpha}=\lim_{m\to\infty}h_{\alpha_m}$, where

$$h_{\alpha_m}(S^{n-1}) \subset E^n - B_{\alpha}$$
 for $m = 1, 2, \dots$

Hence, E^n - B_{α} is 1-ULC for almost all $\alpha \in A$.

In a recent paper [4], Černavskiĭ has shown that a compact k-dimensional manifold M with boundary in E^n ($n \ge 5$) is locally flat in E^n (see [3]) provided M is locally flat at each of its interior points and E^n - M is 1-LC at each point of Bd M. Hence, almost all the B_{α} are locally flat in E^n , and so, by [3], almost all the B_{α} are tame.

In view of the result of Černavskii stated above, it is clear that a more general statement holds.

THEOREM 2. Suppose that M is a compact n-manifold with boundary, that $\{M_{\alpha}\}_{\alpha\in A}$ is an uncountable family of n-manifolds in E^n (n \geq 5), each homeomorphic to M, and that Bd $M_{\alpha}\cap Bd$ $M_{\beta}=\emptyset$ if $\alpha\neq\beta$. Then all but countably many of the M_{α} are locally flat in E^n .

As for (n - 1)-manifolds with boundary in E^n , the situation in higher dimensions is the same as that described by Stallings in [6] for n = 3. As the title of [6] indicates, Stallings constructs uncountably many mutually exclusive wild 2-cells in E^3 . For an (n - 1)-cell D in E^n , let D' = D × [-1, 1] in $E^n \times E^1 = E^{n+1}$. Observe that if E^{n+1} - D' is 1-ULC, then the same is true for E^n - D. This proves that if $\left\{B_{\alpha}\right\}_{\alpha \in A}$ is an uncountable collection of mutually exclusive wild 2-cells in E^3 , then the same is true for the collection $\left\{B_{\alpha} \times I^{n-3}\right\}_{\alpha \in A}$ in $E^n = E^3 \times E^{n-3}$, where I = [-1, 1].

REFERENCES

- 1. R. H. Bing, E³ does not contain uncountably many mutually exclusive wild surfaces. Abstract 801 t, Bull. Amer. Math. Soc. 63 (1957), 404.
- 2. ——, Retractions onto spheres. Amer. Math. Monthly 71 (1964), 481-484.
- 3. M. Brown, Locally flat imbeddings of topological manifolds. Ann. of Math. (2) 75 (1962), 331-341.
- 4. A. V. Černavskii, Locally homotopically unknotted embeddings of manifolds (to appear).
- 5. D. R. McMillan, Jr., A criterion for cellularity in a manifold. Ann. of Math. (2) 79 (1964), 327-337.
- 6. J. R. Stallings, *Uncountably many wild disks*. Ann. of Math. (2) 71 (1960), 185-186.

The Florida State University Tallahassee, Florida 32306