LIFTING COMMUTING OPERATORS
R. G. Douglas, P. S. Muhly, and Carl Pearcy

1. INTRODUCTION

All Hilbert spaces considered in this paper are assumed to be complex, and all
operators under consideration are assumed to be bounded and linear. The algebra of
all (bounded, linear) operators on a Hilbert space & will be denoted by Z (), and
if Se€ () and A C o is an invariant subspace for S, then the operator in Z(.)
obtained by restricting S to .# will be denoted by S | ..

It is known [5] that if T is a contraction (that is, | T|| < 1) acting on a Hilbert
space &, then there exists a unique minimal co- 1sometry V acting on a Hilbert
space o D o such that T = V| #. Sarason showed in [4] that in case V* is the
unilateral shift of multiplicity one, then for every X in £ (#) commuting with T,
there exists a Y in £(x) such that YV = VY, Yowrc o, Y| =X, and
¥l = [X]|. Sarason’s proof makes use of duality techniques and other properties
of HP-spaces. More recently, Sz.-Nagy and Foiag generalized Sarason’s result to
the case that T is an arbitrary contraction [7, Theorem 2]. Their proof is based on
the structure theory for contractions as set forth in [5].

In this paper we give an alternate and somewhat simpler proof of the above-
mentioned lifting theorem of Sz.-Nagy and Foiags. Our proof is matricial in charac-
ter, and it employs an interesting generalization of a result of Douglas [1]. We then
use [7, Theorem 2] to characterize the commutant of a contraction in terms of the
commutant of its minimal strong unitary dilation.

Actually, in [7] Sz.-Nagy and Foias treat the more general case of two contrac-
tions T; and T, and an intertwining operator X satisfying the equation XT; = T, X.
However, we show in Section 5 that this more general result can easily be derived
from the special case T; = T, by the use of a matricial device.

2. ON OPERATOR EQUATIONS

The basic tool for our attack on the lifting theorem is a generalization of the fol-
lowing lemma, which is contained in [1, Theorem 1].

LEMMA 2.1. Suppose that 9, K, and K ave Hilbert spaces, that A is an oper-
ator mapping ¢ into A, and that B is an opervator mapping # into K. Then there
exists a contraction Z mapping G into H# and satisfying A = BZ if and only if
AA* < BB*.

The following generalization is of interest in its own right.

THEOREM 1. Let Ky, H), #H,, and K be Hilbert spaces, and for 0 <i <2
let A; be an opevator mapping o¢; into K . Then theve exist opevators 2, and Z,
that map Hy into Ky and K, , 'respectwely, and that satisfy the two conditions
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(1) A1Z1+Ap7Z, = Ay,

(2) SRR A PP

if and only if

(3) A AT +A,AY > A AY.

Proof. Consider the operator from ¢, ©) H, to H @ o defined by the 2 x 2
matrix ( 131 %2) and the operator from &# o (P #y to o @ A defined by

(%0 g) . If there exist operators Z;: #y — #; and Z,: #y — H, satisfying (1)
0 0 Z, O 0 0
*
Zz, O Zz, 0O 1., 0
( ( < ( ° ) :
ZZ 0 ZZ 0 0 1!%0

where the matrix (;1 g ) denotes the obvious operator from &y @ #, to
2

Z)
Z, 0

and (2), then clearly

and

H) @D, . The inequality (2) implies that ( is a contraction, and hence by

Lemma 2.1 we have the inequality
* *
A, A, A A, A, 0 Ay O
0 0 0 0 0 0 0 0
which immediately yields (3).

On the other hand, (3) implies (4), and thus by Lemma 2.1 there exists a contrac-

gl 81) from #o@ K¢ into # ;@ #, satisfying the equation
2 v
0 0 z, C, 0 0
.. . . Z7 Ci . .
this implies that A} Z; + A, Z, = A;. Moreover, since 7, Cs is a contraction,

*
Z, C; Z, C; 1‘%0 0
< ;
z, C, Z, C, 0

1(750

tion

and it follows immediately that Z} Z, + 252, < 1 -

Similarly, one can prove the following theorem by using n X n matrices.
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THEOREM 2. Let #y, #,, ", #n,and A be Hilbert spaces, and for
0 <i<n,let A; be an operator mapping ; into K, A necessary and sufficient
condition that theve exist opevators Zy , Zp , +=+, Z, (Z;: Hy — ;) satisfying

2 AZy= Ay and 2 7F7; < Lo,

is that 217=1 A;AT > AgA%.
The next result, which we shall use in the proof of the main theorem, is due to

Sz.-Nagy and Foiag [6]. Here we present a somewhat simpler proof based on Lemma
2.1.

PROPOSITION 2.2. For i=1, 2, let T; be a contvaction on a Hilbert space K,
and let X be an opevator mapping H, into H| . A necessary and sufficient condi-

tion that the opevator on K| (D H» defined by the matrix (gl }'I(‘
2

tion is that there exist a contraction C mapping H, into K| such that

) be a contrac-

= * k
X = V14 -T T} CVly -TET,.

Proof. The operator defined on ) (P) ¢, by the matrix (gl }'I(‘ ) is a con-
2
traction if and only if

* *
= = ’
0 0 o T,/ \x* T} 0 T,/ \x* T} 0 10,

or equivalently, if and only if

*

0 X \/0 X 1, -T,T] O
®) I§ <( ).
0 TZ 0 TZ 0 1%2

By Lemma 2.1, the last inequality is equivalent to the existence of a contraction

(Kll KIZ)
Ky1 K

acting on | D ¢, and satisfying

0 X Vig -T;TF 0 K;; Ki»
0 T, 0 1o,/ \K21 Kz

If (6) holds, then clearly K,, = T, and K,; = 0, and it is therefore not difficult to

see that (5) is equivalent to the existence of a contraction M = g 1;12 ) in
2
Z(#) @D o,) such that «/lgf1 -T, TV K, =X.
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If M is such a contraction, then M*M < 1 from which it follows that
, K\ ®H 3’
Ki,K;, L1 H, " T3 T,. Thus by Lemma 2.1 there exists a contraction C mapping

o, into ¢, and satisfying K;, = C w/l%z - T’Z'< T, ; hence

2

— x* x
X =1y -T TICYV1, - T;T,,

as desired. On the other hand, if X = V14 - T TCV1y, - T3 T,, where C isa

contraction that maps o, into &, , then, setting K,, =C V1 H, " T’g T, , we have
by Lemma 2.1 the inequality K}, K;, <1 s, - T3 T - This implies that

¥ . . . .
MTM<K1 H\DH and thus that M is a contraction. The proof is complete.

3. THE COMMUTANT OF A PARTIAL ISOMETRY

It is easy to see that if Q is a partial isometry acting on a Hilbert space &,
then o can be decomposed as a direct sum A = H @ % in such a way that the
2 X 2 matrix for Q corresponding to this decomposition of & has the form

Q= (g ﬁ), where T is a contraction on &, S maps ¢ into &, and

SS™ + TT* = 14-. (Take o to be the range of Q.) The following theorem relates
the commutant of such a partial isometry Q to the commutant of the contraction T,
and it plays the key role in our proof of the lifting theorem.

THEOREM 3. Suppose that G and # ave Hilbert spaces, that T is a contrac-
tion on K, and that S is an opevator mapping % into H such that SS* + TT* =1 4.

Let Q be the partial isometry Q = (g g on Jf@ G, and let X be an operator on |

H that commutes with T. Then theve exists an operator Y = (f)( g on #® Y
such that Y commutes with Q and ||Y|| = |X]|.
Proof. We may assume without loss of generality that | X| = 1. It follows from

an elementary matrix calculation and Proposition 2.2 that to produce a matrix Y
with the desired properties, we need only prove the existence of a contraction B in
Z(9) and an operator A mapping ¢ into o such that

(1) TA + SB = XS,
and such that
(8) A= +V1,-Xx*CVigz - B*B

for some contraction C mapping ¥ into o#. We first seek an A of the form
A = V1, - XX*K, where K is an operator from ¢ into &; thus (7) becomes

(9) T+V1, - XX*K+8B = XS.
Since 14, > XX* and SS* + TT* = 1, we deduce that
T(1yp - XX®)T* + 8S* > TT* - TXX*T* + S8* - (14 - XX¥)

= XX* - XTT*X* = XSS*X*,
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and Theorem 1 implies the existence of operators K: ¥ — o and B: ¥ — ¢ satisfy-
ing (9) and K*K + B¥*B < 1g . This latter inequality implies that B is a contraction
and that K*K < 1¢ - B*B. An application of Lemma 2.1 yields a contraction C*
mapping ¢ into o such that K* = v1g - B*BC*. Thus K=C V14 - B¥B, so that
(8) is satisfied and the proof is complete.

4. THE MAIN THEOREM

We begin this section by reminding the reader of certain relations between a con-
traction and its associated unique minimal co-isometric extension. It is proved in
[5] that if T is a contraction on a Hilbert space <, then there exists a co-isometry
V acting on a Hilbert space o# D & suchthat Vo# C o and V | H = T. If the
smallest reducing subspace for V that contains & is & itself, then V is said to be
a minimal co-isometyric extension of T, and such a V is unique up to isomorphism
[5]. The minimal co-isometric extension of a contraction T on & may be realized
matricially as follows. Let P, be the Hilbert space that is the closure of the range
of 14 - TT*, and denote by D, the operator v 1, - TT*, regarded as an operator
from @, into o¢. It follows (see [5, pp. 16-17]) that the unique minimal co-iso-
metric extension V of T is given matricially as the operator

(TD*OO... N
0

1, 0
j*
0
1
Dy
0

(10) \'

acting on the Hilbert space # = # D 2, (D @, (D ---. Note that this matrix is es-
sentially the lower right-hand corner of the Schiffer matrix for the strong unitary

dilation of T [5].

With these preliminaries out of the way, we now offer our proof of the very pretty
lifting theorem of Sz.-Nagy and Foias.

THEOREM 4. Lef T be a contraction on the Hilbevt space #, and let V be the
unique minimal co-isometric extension of T acting on the Hilbert space K contain-
ing H. For every operator X in Z(H) that commutes with T, there exists an
operator Y in L(K) such that

YV=VY, Ywxcooe, Y|x=Xx, |¥]|=|x].
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Proof. As noted above, V can be realized as the matrix (10) acting on the Hilbert
space H =H (P D, @ D, @ «++ . We begin the argument by defining an increasing
sequence of subspaces of < as follows. Let

Hy = DO)DO0)D -,

and for n> 1, let

J(n = Jf@@*®® @* @(0)® .
N~

n-1 copies

Observe that each &, is an invariant subspace for V, and define V, =V |, . We |
can then regard the operator V, as the n X n matrix

/TD* \

Observe that for n > 0, &¢,, is an invariant subspace for the operator |
Vi1 € L(#,,1). We may write o, = #, (D 2, , and relative to this decomposi- |

tion, the operator V,;; can be written as a 2 X 2 matrix Vp4) = (Xn gn), where

Sp is an operator mapping 9, into o, . An easy matricial calculation shows that

for each n > 0, VnV’:l—i- SnS’I"1 =1,, . This implies that V  is a partial isometry for
n
n > 1 and that Theorem 3 is applicable. By induction, we define a sequence

{Yn}:zo of operators as follows. Let Y, =X, and apply Theorem 3 with V, in ,
place of Q to obtain an operator Y, € Z(#)) suchthat YV, =V,Y,, ,
Y, HgC #y, Y| #9=Yp, and |Y,]| = ||X]||. Suppose now that for 1 <k <n, we
have defined an operator Y, in & ( &f(k) such that

(P Y Vi = Vi Yy, Y o C oy, Yyloe =Y, (Yl =X

Applying Theorem 3 with V,;; in place of Q and Y,, in place of X, we obtain an
operator Y., in Z(s#,+) that satisfies (pn+1). Thus, by induction, we obtain a
sequence {Yn}il such that for each n, the operator Y, belongs to Z(,) and
satisfies (p_). We may consider each Y, as an operator on & by defining Y, ,x=0"

for x in A HG) #p, and it follows easily that for vectors x in the linear manifold j
=0}
n=1 o, which is dense in ¥, the sequence {Y,x} is strongly Cauchy. Since

| Y] = | X]| for all n, the sequence {Y,} must be strongly convergent—say to the
j .
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operator Y in Z(o¢). It is obvious from the properties of the sequence {Y,} that
YH Cor, and Y | o, =Y for each n. In particular, Y l Hy = X, as was to be
proved. Furthermore, it is clear that | Y| = ||X||, and since the sequence {V,}

(regarded as a sequence of operators on & in the obvious way) converges strongly
to V, we see that YV = VY. This completes the proof.

The following corollary of Theorem 4 removes the restriction of minimality on V.

COROLLARY 4.1. Let T be a contraction on a Hilbert space ', and let V be a
co-isomeltric extension of T acting on the Hilbert space K& containing . For every
operator X in Z(s¢) that commutes with T, there exists an opevator Y in L(HK)
such that

Yv=vy, vYwcow, Y|loe=Xx, |¥Y|]|=|x|.

Proof. Let A} C & be the smallest reducing subspace for V that contains &,
and let V; =V l . Then V) is a minimal co-isometric extension of T, and by
virtue of the uniqueness of such an extension, Theorem 4 is applicable. Thus there
exists on operator Y; in £(o) suchthat Y V) =V,Y;, Y| H C KX,

Y; |o¢ =X, and ||Y1] = ||X]|. Let Y be the operator in £() defined by setting
Yx=Y;x for x € &) and Yx=0 for x € & (O) o, . It follows easily that Y has
the desired properties, and the proof is complete.

5. INTERTWINING OPERATORS

Theorem 4 takes a somewhat more general appearance if we consider two con-
tractions T; and T, acting on Hilbert spaces & and &, , respectively, and an
operator X mapping &) into &, and satisfying XT; = T,X. Such an operator X
is called an intertwining opevator between T and T, and the problem is to extend
X to an intertwining operator between the minimal co-isometric extensions of T
and TZ .

THEOREM 5 (Sz.-Nagy and Foiag). Suppose that for i =1, 2, T; is a contraction
acting on a Hilbevt space #;, and Vi is the unique minimal co-isometvic extension
of T; acting on the Hilbert space K D ;. Let X be an opervator that maps #
into Hp and satisfies the equation XT 1 = T,X. Then there exists an operator Y
mapping K| info A, such that

YV, =V, Y, Yoyco, Y|l =X, |Y]|=][x].

Proof. A simple matricial calculation using the fact that XT; = T,X shows that

the operators
T, O R 0 0
T = and X = ( )
0 T X 0

on #| (@ o, commute. It is easy to see that the minimal co-isometric extension of
T is the operator V = (Zl 3 ) acting on the space ;@ ,. An application of
2
Theorem 4 yields the existence of an operator ¥ = (31 ;2 ) on & (@ #, such
3

that YV = \7'3?, Y | o7 = X, and ”f(" = “}72” . It follows immediately that the operator
Y has the desired properties, and the proof is complete.
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6. THE MINIMAL UNITARY DILATION

If T is a contraction on a Hilbert space &, and U is a unitary operator on a
Hilbert space & D o such that T = Py U™ | # (1 < n < =), where Py € Z(H)
is the projection onto <, then U is said to be a strong unitary dilation of T. Every :
contraction T has a strong unitary dilation U, and if U is assumed to be minimal in
the sense that the smallest reducing subspace for U containing # is & itself, then
U is unique up to isomorphism [5]. The relation between the unique minimal co- ,
isometric extension of T and the unique minimal unitary dilation of T is given by |
the following known lemma, which we prove without appealing to the structure theory |
for contractions. !

LEMMA 6.1. Suppose that T is a contraction on a Hilbert space #, and let V
be the unique minimal co-isometric extension of T acting on a Hilbert space
H, D H. Let W* be the unique minimal co-isometric extension of V* acting on the |
Hilbert space K. Then W* is unitary, and W is the minimal stvong unitavy dilation l
of T. |

Proof. To show that W* (and therefore W) is unitary, it suffices to show that w*
has no null space. Regard W* as the matrix (10) with V* replacing T. Since
1 H, " V*V is the projection on the orthocomplement of the range of V*, it follows

that the only vectors x and y in &4 for which V*x + v IJ{ - V¥Vy =0 are ;
+

x =y = 0. That W* has no null space follows immediately. We next show that W is
a strong unitary dilation of T. From the hypotheses we see that T™ = V*|# and

that V*® = (W*)* |or, . It follows immediately that V" = P o WO | o ,» Where
+

P‘y{+ € 2(H) is the projection onto o ,; therefore |
™ = P%,(Py{+wn|w+)|yf = P, W' |,

where Pay € Z( ) is the projection onto &#. This proves that W is a strong uni-
tary dilation of T. To prove minimality, we must show that the smallest reducing
subspace & for W that contains o¢ is <¢ itself. To this end, note that & must t
contain the linear manifold 4/ consisting of all vectors of the form

N
Eo“fknxn (NZO, X0 "',XN€gf). |
n=

Since V*™ = W*™| o it follows that the closure of . is the smallest reducing
subspace for V containing ¢, and thus, by the minimality of V, the closure of .# is
A . Thus & contains &, and since ¥ is a reducing subspace for W*, the min-
imality of W* implies that & = &, as desired. The proof is complete.

The following lemma is contained in [3, Lemma 0].

LEMMA 6.2. If T is a contraction on the Hilbert space & and W is the mini-
mal strong unitary dilation of T on the Hilbert space A, then there exist invaviant
subspaces M C K and N C K for W such that M D> N and H =M O N . Further-
move M can be taken to be the smallest invariant subspace for W that contains ‘.

We have discussed the minimal strong unitary dilation of a contraction because
we wish to relate the commutant of a contraction to the commutant of its minimal
strong unitary dilation. (By the commutant of an operator A € Z (o) we mean the
algebra {X € #(s¢): XA = AX}.) The connection is given by the following theorem,
which we believe to be new.

i
i
1
i
|
|
!
!
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THEOREM 6. Suppose that T is a contraction on a Hilbert space K and that W
is the unique minimal stvong unitary dilation of T on the Hilbert space K D H,
Write o = M (D) N, wheve M is the smallest invariant subspace for W containing
H, and W C N, Then the commutant of T consists of all operators of the form
PoyY ] H, whereY € L(HK) is in the commutant of W and satisfies YA C M and
Y C N. Furthermore, if X is in the commutant of T, then X can be written as
X = Py Y | #, where Y has the propervties descvibed above and also satisfies the
condition ”Yl[ = ”X“

Proof. We first show that if Y € 2() is in the commutant of W and has
and # for invariant subspaces, then PgrY | ¢ is in the commutant of

T = PgpeW l . This follows from an imposing but easily verified equation, valid for
any two operators A and B in Z(<¢) having .# and 4 for invariant subspaces:

P,y AB| o = Pyp(AB |.u)| o# = [Py(AB | u0)* | ¥

[(AB | )* | T = [{(A|0)B|a)}* | #]*
= (Bl (A |#]* = [(A] )| HF[(B| )|}
= [Poyp(A| )| #][Pyp(B | M) | ] = (P A| ) (PyeB| #) .

To complete the proof, it suffices to show that if X € Z(#) is in the commutant
of T, then there exists Y € Z(x') in the commutant of W such that

@) [v] =[x,
(b) X = Py Y | o#, and
(c) A and ¥ are invariant subspaces for Y.

By virtue of Lemma 6.1 and the uniqueness theorem for the minimal strong unitary
dilation of T, we may assume that there exist a Hilbert space & (o C H, C H)
and a co-isometry V € Z(A +) such that V is the minimal co-isometric extension of
T and W* is the minimal co-isometric extension of V*. Applying Theorem 4 to X,
one obtains an operator Y, € Z(o#) suchthat Y,V=VY,, Y, #C o, Y, |# =X,
and |Y,| = |X||. Clearly, Y} vV* = v* Y%, and another application of Theorem 4
yields the existence of an operator Y* € () such that Y* W* = W*Y*,

Y*o, c oy, Y¥| Hy=Y%, and |Y¥|| = | Y%||. We assert that the operator Y
satisfies (a), (b), and (c). That (a) is satisfied is obvious; to see that (b) is satisfied,
note that Y, = P‘y{+Y | o ., and thus

X =Y,|or= PW(P$+Y|%+)]J£ = P,,Y|#.

We begin the argument to show that (c) is satisfied by defining #_= A O A +, S0
that o = o, (@ .. Since V¥ C H#, we see that V¥(x, O #) C O o, and
since W* extends V*, we have the relation W*(A, O #) C #; O #. Thus

o (P A _ is an invariant subspace for W, and we prove that & ® o_ = A by show-

ing that o# (D o is the smallest invariant subspace for W that contains .
Clearly,

o0
NV whor c H_(D oH.
n=1
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Suppose that this inclusion is proper. Then some nonzero vector x in < _ is ortho-
gonal to \/:zo W2 o¢. Since

[>e] o0
NV wow =V v c A,
n=1 n=1 ;

x is also orthogonal to \/::1 w" ¢, and thus to \/::_oo w"o. But \/::_00 W
is a reducing subspace for W, and it contains 4¢’; hence, by minimality,
\/;oz-oo W, o€ = o, Thus x is orthogonal to <#, a contradiction. This proves that

\/:10:0 whor = J{"@ A _, and thus that & @ HA_ = Tt follows that & _ = A4, and
we can complete the argument by showing that &_ and &# (3 s _ are invariant sub-
spaces for Y. Since Y* is an extension of Y¥, Y*o, C &, andthus Y#_ C o _.
Finally, the inclusion Y, o# C & implies that Y¥(#, (O o#) C &, O «, and since
Y* extends Y}, we conclude that Y*(o#, O &) C #, O , which implies that

Y@ H )@ x. .

7. CONCLUDING REMARKS

(I) Let T be a contraction on a Hilbert space, and denote by T the weakly
closed algebra (not *-algebra) generated by T and 1. Let 4 denote the commu-

tant of T, and let 7 denote the commutant of /. The relations

A C AT C oAl

are elementary, and it is not difficult to provide examples of operators T such that
the above three algebras are distinct. The theorems discussed in this paper relate
A to Ay and Ly, where V and W are the minimal co-isometric extension of T
and the minimal strong unitary dilation of T, respectively. Is there a relation be-
tween /T and the algebras 3y and ¥ ?

\

(I) It would be possible to organize this paper slightly differently, so that Theo- |
rem 4 would become a corollary of Corollary 4.1 instead of vice versa. To accom- !
plish this, the operator V of Corollary 4.1 would be taken to be the matrix (10), with ‘
1,, replacing 1,5 everywhere. The operator V would then act on the Hilbert space!

%
H (P o (P ---. The alternate organization would have the advantage of requiring a
less general form of Theorem 2, and the arguments would involve fewer Hilbert
spaces. \
1

(III) Consider the class (L) of all operators V on a Hilbert space < with the
property that whenever ¢ C & is an invariant subspace for V and X € Z{¢) com-l
mutes with V | o¢, then X can be lifted to an operator on # that commutes with V. |
It follows from remark (II) above that (L) contains all of the co-isometries in !
Z( ). On the other hand, Douglas showed in [2] that not all normal operators belong'
to (L). It would be interesting to characterize the class (L).
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