A PROOF OF A STATEMENT OF BANACH
ABOUT THE WEAK* TOPOLOGY

O. Carruth McGehee

Let B be a Banach space, and let T be a linear manifold in the dual space B*.
Let T'! be the manifold consisting of all the points in B* that are weak* limits of
sequences in I'. By induction, for every ordinal number £ we define ¢ as follows

(with TO0 = T);
1
ré = ( U r") .
o<¢&

Then ' c Tl c T2 c ..., and if £ has a predecessor, then I'é = (I'é-1)!. K B is

separable, there exists a first countable ordinal £, such that 1"50 is the weak™
closure of T; £, is called the order of I'. Banach, in his discussion of this [1, pp.
208-213], proves that for every positive integer n there exists a linear manifold in
2! of order n. He then states, but does not prove, that there exist linear manifolds
in ¢! of arbitrarily high countable orders. He refers to a paper at this point, but
the paper never appeared. The corresponding statement for the space H* has been
proved by Sarason [6], [7]. In this paper we shall prove the following.

THEOREM. If £ is a countable ovdinal, theve exists an ideal in 21 of ovder &.

Let cy denote the Banach space of all the complex-valued functions on the inte-
ger group that vanish at infinity, with the supremum norm. Then ¢! = (cy)*; let
£° = (21)* = (co)**. Each of the Banach spaces cg, ¢!, £° can be realized as a
space of distributions on the circle group (considered as the real numbers modulo
27), by the correspondence

{8(n): -0 <n <} <—>{S(x)~ 22 §(n)eim‘:0§x<21r}.

n=-co

Corresponding to cg, el ¢ , respectively, are the space PF of pseudofunctions;
the space W of functions with absolutely convergent Fourier series; and the space
PM of pseudomeasures (see [3, Appendices I to I ]).

Under convolution, ¢! is a group algebra; and W, under pointwise multiplication,
is its Gel’fand representation. When we refer to a topology in W, we mean the norm
topology unless we say otherwise. If I is an ideal (not necessarily closed) in W = ¢!,
its hull is the closed set

h(I) = {x: f(x) = 0 for every f € I}.
The hull h(I) is empty if and only if I= W, If E is a closed set, then the maximal

ideal whose hull is E is the closed ideal I(E) = {f € W: £-1(0) > E}. The minimal
ideal whose hull is E is
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136 O. CARRUTH McGEHEE
J(E) = {f € W: £71(0) is a neighborhood of E} .

A closed set E is a set of synthesis (see [3, Chapter IX]) if the.condition h(I) = E
determines a unique closed ideal I, or, equivalently, if I(E) equals the closure of
J(E).

We shall prove the theorem by constructing a closed set E whose maximal ideal
I(E) bhas the desired order £ and is furthermore weak*-dense in W, so that
IE) = W. Note that for an arbitrary set E, I(E) is weak*-dense in W if and only
if I(E)X N PF = {0}, where I(E)* denotes the annihilator of I(E) in PM.

We need five lemmas. We postpone their proofs to the end.
LEMMA 1. Let

lim Sllpln]_:)oo IS(n)l :Se I(E)i} .
sup, |S(n)|

7(E) = inf{

Then IE) =W if and only if n(E) is positive.

LEMMA 2. For N=3, 4, .-, let EN be the closed, perfect set consisting of all
the points in [0, 1] whose N-ary expansion vequives no 1°s:

[>e]

Ey = { Zi g;NJ:g;=10,23, +,N-2 00 N-1,forj=1,2, }
J:

Then 1 (Ep) > 0, but limy_, ., 1 (Eyn) = 0.

LEMMA 3. If x€ E, € > 0, and & is an ordinal number, then x € h(I(E)g) if
and only if x € h[I(E N (x - €, x + £))¢].

LEMMA 4. If {F\} is a sequence of sets of synthesis such that
Fy C (1/N + 1, 1/N), then the set F= {0} y U;OH FN is also a set of synthesis.
LEMMA 5. If I is an ideal whose hull is a set of synthesis F, then 11 =I(F)! .

Proof of the theorem. It follows from Lemmas 5 and 1 that every ideal whose
hull is a one-point set {x} has order 1, since {x} is a set of synthesis ([3, Theo-
rem IV, p. 123]) and 5({x}) = 1.

We proceed by induction, considering first the case in which £ is a limit ordinal.
Let o(n) be a one-to-one map of the positive integers onto {o: 0 < £}. Let

E={0}u U::I H_, where I(H ) has order ¢(n) and H, < (1/(n+ 1), 1/n). Using
Lemma 3, we find that h U0<§ I(E)? )= {0}, and thus I(E) has order &.

Now consider the case § = 2. Let Fy= {rx+s:x € EN}, where Ey; is the set
of Lemma 2, and where r and s are positive reals chosen so that
Fyy € (1/(N + 1), 1/N). As the proof of Lemma 2 shows, dilation and translation do

not affect the stated properties of Ey. Let F= {0} U U?I:_o, Fy - Then 7(F) =0,
and therefore, by Lemma 1, h(I(F)!) # ¢; by Lemmas 1 and 3 and the fact that
n{(Fy) > 0 for each N, we see that h(I(F)!) = {0}. Hence I(F)2=W and I(F) has
order 2.

To deal with the case of an ordinal number £ > 2 that has a predecessor, we
make use of the set F, which has several useful properties. By a theorem of C. S.
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Herz [3, p. 124], the sets Fyp are sets of synthesis. Therefore, by Lemma 4, F is a
set of synthesis. Finally, F contains a countable dense subset Fg such that for
every x € F( there is a nonempty interval (x, a ] with (x, a ] N F =¢. For each

x € Fy, let G be a set such that G C [x a ] I(G ) has order £ - 1, and

h( U I(GX)") = {x}.
oc<&-1

Let E=FU UxeF G, . Clearly, h (Ll(I <E-1 I(E)U) contains F, and by Lemma

3 it equals F. By Lemma 5, since F is a set of synthesis, h(I(E)s-1) = {0}. There-
fore I(E) has order £. The theorem is proved.

Remark. A set E is a set of uniqueness if J(E)X N PF = {0}, or, equivalently,
if J(E) is weak*-dense in W. Pyateckii-Sapiro [5, p. 91] mentioned the set F dis-
cussed above and pointed out that it is a set of uniqueness with 7 (F) = 0. Sections 1
and 3 of his paper [5] prove the remarkable result that there exists a set E that is
not a set of uniqueness even though J(E) N PF contains no nonzero measures. For
an English account of this result, see [4].

It remains to prove the lemmas. Lemma 1 is essentially a remark of Dixmier.
To prove it we need the following result.

THEOREM (Banach and Dixmier). Let B be a separable Banach space, and let
I' be a weak*-dense linear manifold in B*., Let j: B — B** be the canonical identi-
fication. Let TL be the annihilator of T' in B**, Then T'! = B* if and only if the
projection p,: jB+ T't — jB is bounded.

For a proof of this theorem and related results, see [2, Sections 1 to 6]. We ap-
ply it now to the case B = PF, I" = I(E). Lemma 1 will follow when we show that, in
fact,

1+7n(E) .
I ossibly = =),
( ) " 1“ 77(E) (p 101y )
Let € > 0. Then there exists T € I(E)* and an integer m, such that

sup |’i‘(n)| < (n(E)+¢€)sup |"i‘(n)| X

n >m0 n
For m > mg, let S € PF be defined by

—(1+n(E)+s)'f‘(n) for |n|§m,

Snm) =
0 for |n| >m.
Then we see that
" " "ém"w (1+?7(E)+8)(Sup|n|£m |’f‘(n)|)
o= ISm+ Tlle = (n(E) + ) (sup,, | T(0)])

Since m is arbitrarily large and ¢ is arbitrarily small, it follows that

1+n(E)
o, 2~ (E)
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By a similar argument, the norm of the projection p,: jB+ I't — 't is at least
1/7(E); but since clearly

I ]| |7} L1
[§+ %] = lim sup|,| . [F@] = 7 (&’

a] oo

Se PF, Te I(E)t =

we see that ||p,|| = 1/9(E) and hence that ||p, | <1+ 1/5(E); (I) follows, and
Lemma 1 is proved.

Proof of Lemma 2. The quantity 7n(Ey) is positive because Ey is a set of type
H (see [3, proof of Theorem I, p. 58]). To show that n(Fy) = O(N-1), it suffices to
show that

lim sup|;| e | ﬁN{t)|
sup, | Ay (t)]

(1) =O(N") as N-ow,

where py is the Lebesgue measuve on the set Ey (see [3, pp. 14, 19]), which is the
measure supported by Ep and defined as follows. Fix N. For n=1, 2, ---, let A,
be the measure assigning mass 1/(N - 1) to each of the N - 1 points

2 3  N-1

e T

0

Then ||Xn||°o = Xn(O) =1 for every n. Let py , =X * Xy * --- % A, ; this measure is
supported by the set

n
{ 20 st'j:sj =0,2,3,-,or N-1for j =1, '",n}.
j=1

Let p =y be the weak*-limit of {pynpn:n=1, 2, ---}. Then p is supported by
En, |2]lw =1, and

g = I &0 = I X /N = R0 at/N) = X ©)X,() £t/N?)
k=1 k=1

for all real t. Since |f(-t)| = [2@t)| < |A(t/N)|, we can prove (I) by showing that
there exists an interval of the form [a, Na], with a > 0, on which the quantity

2 . k-1

a4 1 f1-e-it/N e 1k
ML) = ——— 11 - e-it/N

| 1() 2()| (N - 1)2 k:l( i K © )

is bounded by a constant times N-1 . We can do this by taking a = 27/(N + 1). Lem-
ma 2 is proved.

Proof of Lemma 3. Let g be a function in W that equals 1 at x and vanishes off
(x - €,x+¢). It is easy to prove by induction that

fe(EN(x-¢,x+e)f => fge B and (fg)(x) = £(x).

For an arbitrary ideal I, x e{ h(I) if and only if there exists f € I such that f(x) # 0.
Using these two facts, we can easily prove that
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x ¢ h[I(E N (x - &, x +£))] = x § h(UE)).

The converse is obvious. Lemma 3 is proved.

Proof of Lemma 4. We must show that if f € I(F) and € > 0, then there exists
g € J(F) such that ||f - g|w <e. For each A > 0, we define the function V, on
[-m, 7] as follows:

1 if |x| <x;
Vo) = <2- |x|/A i a< x| <2
0 if 2 < x| <7.
Since f(0) = 0, we know [3, p. 170] that we may select a small enough A > 0 so that
l£Vyllw <e/2. Let fo=1(1 - V), and let M be an integer large enough so that
fo(x) = 0 for |x| <1/(M+1). We may choose hy, -*-, hyg € W so that
hy€ J(F\ Fy) for N=1, =, M

and

M
27 hy(x) =1 for 1/M+1) < |x] < 7.
N=1

M
Thus fj = ENz 1 hifp. Since each Fyy is a set of synthesis, there exist functions
£y € J(FN) such that

(2

P < —.
" 0 N"W_ oM "hN"W
M
Let g= 2J fyhy- Then g € J(F) and
N=1
M
It -elw < le-follw+ || 22 h(fy - £ <e.
. N=1

w

Lemma 4 is proved.

Proof of Lemma 5. If f € (F)!, there exist f_ € I(F) such that

weak*- lim f = f.
n —

But since F is a set of synthesis, there exist g, € J(F) such that

lim "fn_ gn"W = 0.

n— 0

Therefore

weak*- lim g, =f and fe JF)lcIl.

n-— oo

Therefore I(F)! =I!. Lemma 5 is proved.
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