A PROOF OF A STATEMENT OF BANACH ABOUT THE WEAK* TOPOLOGY

O. Carruth McGehee

Let B be a Banach space, and let Γ be a linear manifold in the dual space B*. Let Γ^1 be the manifold consisting of all the points in B* that are weak* limits of sequences in Γ . By induction, for every ordinal number ξ we define Γ^{ξ} as follows (with $\Gamma^0 = \Gamma$):

$$\Gamma^{\xi} = \left(\bigcup_{\sigma < \xi} \Gamma^{\sigma}\right)^{1}.$$

Then $\Gamma \subset \Gamma^1 \subset \Gamma^2 \subset \cdots$, and if ξ has a predecessor, then $\Gamma^{\xi} = (\Gamma^{\xi-1})^1$. If B is separable, there exists a first countable ordinal ξ_0 such that Γ^{ξ_0} is the weak* closure of Γ ; ξ_0 is called the *order of* Γ . Banach, in his discussion of this [1, pp. 208-213], proves that for every positive integer n there exists a linear manifold in ℓ^1 of order n. He then states, but does not prove, that there exist linear manifolds in ℓ^1 of arbitrarily high countable orders. He refers to a paper at this point, but the paper never appeared. The corresponding statement for the space H^{∞} has been proved by Sarason [6], [7]. In this paper we shall prove the following.

THEOREM. If ξ is a countable ordinal, there exists an ideal in ℓ^1 of order ξ .

Let c_0 denote the Banach space of all the complex-valued functions on the integer group that vanish at infinity, with the supremum norm. Then $\ell^1 = (c_0)^*$; let $\ell^{\infty} = (\ell^1)^* = (c_0)^{**}$. Each of the Banach spaces c_0 , ℓ^1 , ℓ^{∞} can be realized as a space of distributions on the circle group (considered as the real numbers modulo 2π), by the correspondence

$$\left\{ \boldsymbol{\hat{S}}(n) \colon -\infty < n < \infty \right\} \iff \left\{ \boldsymbol{S}(\boldsymbol{x}) \sim \sum_{n=-\infty}^{\infty} \boldsymbol{\hat{S}}(n) \, e^{in\boldsymbol{x}} \colon 0 \leq \boldsymbol{x} < 2\pi \right\}.$$

Corresponding to c_0 , ℓ^1 , ℓ^∞ , respectively, are the space PF of *pseudofunctions*; the space W of functions with absolutely convergent Fourier series; and the space PM of *pseudomeasures* (see [3, Appendices I to III]).

Under convolution, ℓ^1 is a group algebra; and W, under pointwise multiplication, is its Gel'fand representation. When we refer to a topology in W, we mean the norm topology unless we say otherwise. If I is an ideal (not necessarily closed) in $W \cong \ell^1$, its hull is the closed set

$$h(I) = \{x: f(x) = 0 \text{ for every } f \in I\}.$$

The hull h(I) is empty if and only if I = W. If E is a closed set, then the maximal ideal whose hull is E is the closed ideal I(E) = $\{f \in W: f^{-1}(0) \supset E\}$. The minimal ideal whose hull is E is

Received February 13, 1967.

This work was partially supported by the National Science Foundation. The author thanks the referee for helpful criticisms.

$$J(E) = \{f \in W: f^{-1}(0) \text{ is a neighborhood of } E\}.$$

A closed set E is a set of *synthesis* (see [3, Chapter IX]) if the condition h(I) = E determines a unique closed ideal I, or, equivalently, if I(E) equals the closure of J(E).

We shall prove the theorem by constructing a closed set E whose maximal ideal I(E) has the desired order ξ and is furthermore weak*-dense in W, so that $I(E)^{\xi} = W$. Note that for an arbitrary set E, I(E) is weak*-dense in W if and only if $I(E)^{\perp} \cap PF = \{0\}$, where $I(E)^{\perp}$ denotes the annihilator of I(E) in PM.

We need five lemmas. We postpone their proofs to the end.

LEMMA 1. Let

$$\eta(\mathbf{E}) = \inf \left\{ \frac{\lim \sup_{|\mathbf{n}| \to \infty} |\hat{\mathbf{S}}(\mathbf{n})|}{\sup_{\mathbf{n}} |\hat{\mathbf{S}}(\mathbf{n})|} \colon \mathbf{S} \in \mathbf{I}(\mathbf{E})^{\perp} \right\}.$$

Then $I(E)^1 = W$ if and only if $\eta(E)^t$ is positive.

LEMMA 2. For $N=3, 4, \cdots$, let E_N be the closed, perfect set consisting of all the points in [0, 1] whose N-ary expansion requires no 1's:

$$E_{N} = \left\{ \sum_{j=1}^{\infty} \varepsilon_{j} N^{-j} : \varepsilon_{j} = 0, 2, 3, \dots, N-2, \text{ or } N-1, \text{ for } j = 1, 2, \dots \right\}.$$

Then $\eta(E_N) > 0$, but $\lim_{N\to\infty} \eta(E_N) = 0$.

LEMMA 3. If $x \in E$, $\varepsilon > 0$, and ξ is an ordinal number, then $x \in h(I(E)^{\xi})$ if and only if $x \in h[I(E \cap (x - \varepsilon, x + \varepsilon))^{\xi}]$.

LEMMA 4. If $\{F_N\}$ is a sequence of sets of synthesis such that

 $F_N \subset$ (1/N + 1, 1/N), then the set $\,F$ = {0} $\,\bigcup\, \bigcup_{N=1}^\infty\, F_N\,$ is also a set of synthesis.

LEMMA 5. If I is an ideal whose hull is a set of synthesis F, then $I^1 = I(F)^1$.

Proof of the theorem. It follows from Lemmas 5 and 1 that every ideal whose hull is a one-point set $\{x\}$ has order 1, since $\{x\}$ is a set of synthesis ([3, Theorem IV, p. 123]) and $\eta(\{x\}) = 1$.

We proceed by induction, considering first the case in which ξ is a limit ordinal. Let $\sigma(n)$ be a one-to-one map of the positive integers onto $\{\sigma\colon\sigma<\xi\}$. Let

$$\begin{split} &E = \left\{0\right\} \, \cup \, \, \bigcup_{n=1}^{\infty} \, H_n \,, \text{ where } \, I(H_n) \text{ has order } \, \sigma(n) \text{ and } \, H_n \subset (1/(n+1), \, 1/n). \text{ Using } \\ &\text{Lemma 3, we find that } \, h \left(\, \bigcup_{\sigma < \xi} \, I(E)^{\sigma} \right) = \left\{0 \,\right\}, \text{ and thus } \, I(E) \text{ has order } \, \xi. \end{split}$$

Now consider the case $\xi=2$. Let $F_N=\{rx+s\colon x\in E_N\}$, where E_N is the set of Lemma 2, and where r and s are positive reals chosen so that $F_N\subset (1/(N+1),\ 1/N)$. As the proof of Lemma 2 shows, dilation and translation do not affect the stated properties of E_N . Let $F=\{0\}\cup\bigcup_{N=3}^\infty F_N$. Then $\eta(F)=0$, and therefore, by Lemma 1, $h(I(F)^1)\neq\emptyset$; by Lemmas 1 and 3 and the fact that $\eta(F_N)>0$ for each N, we see that $h(I(F)^1)=\{0\}$. Hence $I(F)^2=W$ and I(F) has order 2.

To deal with the case of an ordinal number $\xi > 2$ that has a predecessor, we make use of the set F, which has several useful properties. By a theorem of C. S.

Herz [3, p. 124], the sets F_N are sets of synthesis. Therefore, by Lemma 4, F is a set of synthesis. Finally, F contains a countable dense subset F_0 such that for every $x \in F_0$ there is a nonempty interval $(x, a_x]$ with $(x, a_x] \cap F = \emptyset$. For each $x \in F_0$, let G_x be a set such that $G_x \subset [x, a_x]$, $I(G_x)$ has order ξ - 1, and

$$h\left(\bigcup_{\sigma < \xi - 1} I(G_x)^{\sigma}\right) = \{x\}.$$

Let $E = F \cup \bigcup_{x \in F_0} G_x$. Clearly, $h\left(\bigcup_{\sigma < \xi - 1} I(E)^{\sigma}\right)$ contains F, and by Lemma 3 it equals F. By Lemma 5, since F is a set of synthesis, $h(I(E)^{\xi - 1}) = \{0\}$. Therefore I(E) has order ξ . The theorem is proved.

Remark. A set E is a set of uniqueness if $J(E)^{\perp} \cap PF = \{0\}$, or, equivalently, if J(E) is weak*-dense in W. Pyateckiĭ-Šapiro [5, p. 91] mentioned the set F discussed above and pointed out that it is a set of uniqueness with $\eta(F) = 0$. Sections 1 and 3 of his paper [5] prove the remarkable result that there exists a set E that is not a set of uniqueness even though $J(E) \cap PF$ contains no nonzero measures. For an English account of this result, see [4].

It remains to prove the lemmas. Lemma 1 is essentially a remark of Dixmier. To prove it we need the following result.

THEOREM (Banach and Dixmier). Let B be a separable Banach space, and let Γ be a weak*-dense linear manifold in B*. Let j: B \rightarrow B** be the canonical identification. Let Γ^{\perp} be the annihilator of Γ in B**. Then Γ^{l} = B* if and only if the projection p_{1} : jB + Γ^{\perp} \rightarrow jB is bounded.

For a proof of this theorem and related results, see [2, Sections 1 to 6]. We apply it now to the case B = PF, $\Gamma = I(E)$. Lemma 1 will follow when we show that, in fact,

(I)
$$\|\mathbf{p}_1\| = \frac{1 + \eta(\mathbf{E})}{\eta(\mathbf{E})}$$
 (possibly = ∞).

Let $\varepsilon > 0$. Then there exists $T \in I(E)^{\perp}$ and an integer m_0 such that

$$\sup_{\left|n\right|>m_{0}}\left|\mathbf{\hat{T}}(n)\right|\leq\left(\eta\left(E\right)+\epsilon\right)\sup_{n}\left|\mathbf{\hat{T}}(n)\right|.$$

For $m > m_0$, let $S_m \in PF$ be defined by

$$\hat{S}_{m}(n) = \begin{cases} -(1 + \eta(E) + \epsilon) \hat{T}(n) & \text{for } |n| \leq m, \\ 0 & \text{for } |n| > m. \end{cases}$$

Then we see that

$$\|\mathbf{p}_1\| \geq \frac{\|\mathbf{\hat{S}}_m\|_{\infty}}{\|\mathbf{\hat{S}}_m + \mathbf{\hat{T}}\|_{\infty}} \geq \frac{(1 + \eta(\mathbf{E}) + \epsilon)(\sup_{\mathbf{n} \mid \leq m} |\mathbf{\hat{T}}(\mathbf{n})|)}{(\eta(\mathbf{E}) + \epsilon)(\sup_{\mathbf{n} \mid \mathbf{\hat{T}}(\mathbf{n})|)}.$$

Since m is arbitrarily large and ε is arbitrarily small, it follows that

$$\|p_1\| \geq \frac{1 + \eta(E)}{\eta(E)}$$
.

By a similar argument, the norm of the projection p_2 : $jB + \Gamma^{\perp} \rightarrow \Gamma^{\perp}$ is at least $1/\eta$ (E); but since clearly

$$S \in PF, T \in I(E)^{\perp} \Rightarrow \frac{\|\mathbf{\hat{T}}\|_{\infty}}{\|\mathbf{\hat{S}} + \mathbf{\hat{T}}\|_{\infty}} \leq \frac{\|\mathbf{\hat{T}}\|_{\infty}}{\lim \sup_{|\mathbf{n}| \to \infty} |\mathbf{\hat{T}}(\mathbf{n})|} \leq \frac{1}{\eta(E)},$$

we see that $\|p_2\| = 1/\eta(E)$ and hence that $\|p_1\| \le 1 + 1/\eta(E)$; (I) follows, and Lemma 1 is proved.

Proof of Lemma 2. The quantity $\eta(E_N)$ is positive because E_N is a set of type H (see [3, proof of Theorem III, p. 58]). To show that $\eta(F_N) = O(N^{-1})$, it suffices to show that

(II)
$$\frac{\lim \sup_{t \to \infty} |\hat{\mu}_{N}(t)|}{\sup_{t} |\hat{\mu}_{N}(t)|} = O(N^{-1}) \quad \text{as } N \to \infty,$$

where μ_N is the *Lebesgue measure on the set* E_N (see [3, pp. 14, 19]), which is the measure supported by E_N and defined as follows. Fix N. For $n=1, 2, \cdots$, let λ_n be the measure assigning mass 1/(N-1) to each of the N-1 points

$$0, \frac{2}{N^n}, \frac{3}{N^n}, \cdots, \frac{N-1}{N^n}.$$

Then $\|\hat{\lambda}_n\|_{\infty} = \hat{\lambda}_n(0) = 1$ for every n. Let $\mu_{N,n} = \lambda_1 * \lambda_2 * \cdots * \lambda_n$; this measure is supported by the set

$$\left\{ \sum_{j=1}^{n} \epsilon_{j} N^{-j} : \epsilon_{j} = 0, 2, 3, \dots, \text{ or } N-1 \text{ for } j = 1, \dots, n \right\}.$$

Let $\mu=\mu_N$ be the weak*-limit of $\{\mu_{N,n}\colon n=1,\,2,\,\cdots\}$. Then μ is supported by E_N , $\|\hat{\mu}\|_{\infty}=1$, and

$$\hat{\mu}(t) = \prod_{k=1}^{\infty} \hat{\lambda}_k(t) = \prod_{k=1}^{\infty} \hat{\lambda}_1(t/N^k) = \hat{\lambda}_1(t)\hat{\mu}(t/N) = \hat{\lambda}_1(t)\hat{\lambda}_2(t)\hat{\mu}(t/N^2)$$

for all real t. Since $|\hat{\mu}(-t)| = |\hat{\mu}(t)| \le |\hat{\mu}(t/N)|$, we can prove (II) by showing that there exists an interval of the form [a, Na], with a > 0, on which the quantity

$$|\hat{\lambda}_1(t)\hat{\lambda}_2(t)| = \frac{1}{(N-1)^2} \prod_{k=1}^2 \left(\frac{1 - e^{-it/N^{k-1}}}{1 - e^{-it/N^k}} - e^{-it/N^k} \right)$$

is bounded by a constant times N^{-1} . We can do this by taking a = $2\pi/(N+1)$. Lemma 2 is proved.

Proof of Lemma 3. Let g be a function in W that equals 1 at x and vanishes off $(x - \varepsilon, x + \varepsilon)$. It is easy to prove by induction that

$$f \in I(E \cap (x - \varepsilon, x + \varepsilon))^{\xi} \implies fg \in I(E)^{\xi}$$
 and $(fg)(x) = f(x)$.

For an arbitrary ideal I, $x \notin h(I)$ if and only if there exists $f \in I$ such that $f(x) \neq 0$. Using these two facts, we can easily prove that

$$x \notin h[I(E \cap (x - \varepsilon, x + \varepsilon))^{\xi}] \Rightarrow x \notin h(I(E)^{\xi}).$$

The converse is obvious. Lemma 3 is proved.

Proof of Lemma 4. We must show that if $f \in I(F)$ and $\epsilon > 0$, then there exists $g \in J(F)$ such that $\|f - g\|_W < \epsilon$. For each $\lambda > 0$, we define the function V_{λ} on $[-\pi, \pi]$ as follows:

$$V_{\lambda}(x) = \begin{cases} 1 & \text{if } |x| \leq \lambda; \\ 2 - |x|/\lambda & \text{if } \lambda \leq |x| \leq 2\lambda; \\ 0 & \text{if } 2\lambda \leq |x| \leq \pi. \end{cases}$$

Since f(0)=0, we know [3, p. 170] that we may select a small enough $\lambda>0$ so that $\|fV_{\lambda}\|_W<\epsilon/2$. Let $f_0=f(1-V_{\lambda})$, and let M be an integer large enough so that $f_0(x)=0$ for $|x|\leq 1/(M+1)$. We may choose h_1 , ..., $h_M\in W$ so that

$$h_N \in J(F \setminus F_N)$$
 for $N = 1, \dots, M$

and

$$\sum_{N=1}^{M} h_{N}(x) = 1 \quad \text{for } 1/(M+1) \leq |x| \leq \pi.$$

Thus $f_0 = \sum_{N=1}^{M} h_N f_0$. Since each F_N is a set of synthesis, there exist functions $f_N \in J(F_N)$ such that

$$\|\mathbf{f}_0 - \mathbf{f}_N\|_W \leq \frac{\epsilon}{2M \|\mathbf{h}_N\|_W}.$$

Let $g = \sum_{N=1}^{M} f_N h_N$. Then $g \in J(F)$ and

$$\|\mathbf{f} - \mathbf{g}\|_{W} \leq \|\mathbf{f} - \mathbf{f}_{0}\|_{W} + \left\|\sum_{N=1}^{M} \mathbf{h}_{N}(\mathbf{f}_{0} - \mathbf{f}_{N})\right\|_{W} \leq \epsilon.$$

Lemma 4 is proved.

Proof of Lemma 5. If $f \in I(F)^1$, there exist $f_n \in I(F)$ such that

weak*-
$$\lim_{n \to \infty} f_n = f$$
.

But since F is a set of synthesis, there exist $\mathbf{g}_n \in J(F)$ such that

$$\lim_{n \to \infty} \|\mathbf{f}_n - \mathbf{g}_n\|_{W} = 0.$$

Therefore

$$\label{eq:continuous_problem} \text{weak*-} \lim_{n \to \infty} \mathbf{g}_n = \mathbf{f} \quad \text{ and } \quad \mathbf{f} \in \mathbf{J}(\mathbf{F})^1 \subset \mathbf{I}^1 \,.$$

Therefore $I(F)^1 = I^1$. Lemma 5 is proved.

REFERENCES

- 1. S. Banach, Théorie des opérations linéaires. Chelsea, New York, 1955.
- 2. J. Dixmier, Sur un théorème de Banach. Duke Math. J. 15 (1948), 1057-1071.
- 3. J.-P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques. Actualités Sci. Indust., No. 1310. Hermann, Paris, 1963.
- 4. O. C. McGehee, An account of a result of Pyateckii-Šapiro. Mimeographed, Dept. of Math., University of California at Berkeley, 1966.
- 5. I. I. Pyateckiĭ-Šapiro, Supplement to the work "On the problem of uniqueness of expansion of a function in a trigonometric series" (in Russian). Moskov. Gos. Univ. Uč. Zap. 165, Mat. 7 (1954), 79-97.
- 6. D. Sarason, Weak-star generators of H^{∞} . Pacific J. Math. 17 (1966), 519-528.
- 7. ——, On the order of a simply connected domain. Michigan Math. J. 15 (1968), 129-133.

University of California Berkeley, California