SMOOTHNESS CONDITIONS ON CONTINUA
IN EUCLIDEAN SPACE

Morton L. Curtis

Dedicated to R. L. Wilder on his seventieth birthday.

One would like an easy way to identify manifolds in the set of topological spaces,
and as a step in this direction one may restrict attention to continua in euclidean
spaces and use properties of their imbedding as well as intrinsic topological proper-
ties. This note is a report on efforts to identify (n - 1)-manifolds in R™ on the
basis of both intrinsic and positional properties.

1. FREE CONTINUA

In 1933, Borsuk [5] defined a subset M of R™ to be free if for each &€ > 0 there
exists a continuous map f: M — R such that each point is moved a distance less
than ¢ and f(M) N M = @. He asked whether a
free locally contractible continuum M that sepa- N
rates R™ must be an (n - 1)-manifold. It is m m
clear that local contractibility (or some form of
local connectedness) is needed, because the War-
saw Circle (Figure 1) is free in RZ but is surely
not a manifold.

In the same year, Wilder [19] showed that
such an M in R% or R? is a manifold (of dimen- U U
sion one or two, respectively). For the higher
dimensions he proved that M is an (n - 1)-
dimensional generalized closed (homology) mani-
fold. This means that homologically it has the Figure 1
local properties of a manifold. Here is Wilder’s
original definition (in which the geometrical meaning of the definition is more appar-
ent than in more recent definitions based on cohomology and sheaf theory).

We use Cech homology with coefficients in a field F. The space X (assumed to
be separable and metric, for convenience) is an n-dimensional generalized manifold
if it has covering dimension n and satisfies the following four conditions.

(i) H(X; F) 2 F, but if Y is any proper closed subset of X, then H, (Y; F) = 0.
(ii) All sufficiently small cycles bound.
(iii) For each x € X and each ¢ > 0, there exist 6 and 7 such that
0 <n <6 <& and each i-cycle (1 <i<n - 2) onthe “sphere”
S(x, 6) = {y| p(x, y) = 6}

bounds in the “annulus” B(x, £) - B(x, 7).
(iv) An (n - 1)-cycle on S(x, 6) bounds in X - B(x, 7).
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A pinched torus (Figure 2) is
not a generalized manifold, since
it violates (iii). In particular, the
points a and b in the figure con-
stitute a 0-cycle that does not
bound in B(x%, €) - x. In general,
this condition eliminates “local
cut points” that cut cycles of any
dimension. Condition (iv) implies
that a torus pinched by the reduc-
tion of a meridian into an arc

(Figure 3) is not a generalized
manifold.

It is easy to verify that tri-
angulated generalized n-manifolds
have the property that the link of
each vertex is an homology
(n - 1)-sphere. It is known that
separable metric generalized
manifolds of dimensions one and
two are topological manifolds [22],
and that generalized manifolds
that are simplicial complexes of
dimension three are topological
manifolds [15], [9]. The 4-dimen-
sional simplicial complex obtained
by suspending the dodecahedral
space [17, p. 215] is a generalized
manifold, but is not a topological

a manifold.
Wilder’s result cited above on

locally contractible free continua
Figure 3 is the “best possible”. There
exists an example, due to Newman
[16], of a free 4-dimensional generalized manifold M that separates S° but is not a
manifold (it is not even locally simply connected). Similar examples in S* are given
in [8], and higher-dimensional examples follow easily from these.

2. UNIFORM LOCAL CONNECTEDNESS

Instead of imposing the condition of freeness on the continuum M in R, one
may impose conditions on the domains complementary to M, in the hope of guaran-
teeing that M be a manifold. Brouwer [6], [7] showed that each (n - 1)-manifold M
in R™ separates R™ into two domains, and that each point of M is arcwise accessi-
ble from each domain. It turns out that the converse is true in R2; namely, if M is
a continuum separating R2 into two domains and each point of M is arcwise acces-
sible from each domain, then M is a l-sphere. However, the Ann Arbor Sphere S
(Figure 4) in R3 shows that the result does not generalize, because S is not a
manifold.

Wilder [18] noted that the bounded domain of R3 - S is not uniformly locally
connected (0-ulc), and he proved that if M is a common boundary of two domains in
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R3 and these domains are O-ulc, then M is a 2-manifold. He showed [20], [21] that
the generalization to higher dimensions again leads to generalized (homology) mani-
folds: If the complementary domains Dj and D, are i-ulc for 0 <i<ny (k=1, 2),
where nj +n, =n - 3, then M is a generalized manifold. (In addition, we must re-
quire that small (n; + 1)-cycles in D; bound in D .)

3. HOMOTOPY MANIFOLDS

A continuum M separating S" is free by deformation into a complementary do-
main A if there exists a homotopy h: M X I — S™ such that hg is the identity and
hy(M) Cc A for t > 0. Wilder [19] showed that in this situation M is a closed (n - 1)-
generalized manifold. Eilenberg and Wilder [11] showed that M is free by deforma-
tion into A if M =9A and A is uniformly locally contractible (ULC). Newman’s
example cited in Section 1 shows that even A being ULC is not sufficient to make M
a manifold, for M may fail to be locally simply connected. Therefore it seems natu-
ral to require that M be locally contractible and A be ULC. This is still insuffi-
cient to make M a manifold. Curtis and Wilder [10] showed that collapsing a wild
arc ¢ in S3 can give a locally contractible generalized manifold that is not a mani-
fold. It follows from results of Andrews and Curtis [1] that S3/a X R is a manifold,
and the complementary domains of S3/a X 0 are surely ULC.

The trouble with S3/a is that it is not like a manifold homotopically. H. B.
Griffiths [12] defined homotopy manifolds by imposing a condition saying roughly that
the annular region about each point must have the homotopy type of a sphere (of the
appropriate dimension). Homotopy manifolds are also homology manifolds. But
Curtis and Wilder [10] showed that the Bing dog-bone space B [2] is such a homotopy
manifold, whereas Bing [2] had shown it is not a manifold. Also, Bing [3] showed that
BXR= R4, so that M being a homotopy manifold and the complementary domains
being ULC is still insufficient to ensure that M is a manifold.

This about ends the story on homotopy manifolds. Eilenberg and Wilder [11]
asked whether M being free by deformation into a complementary domain A implies
that A is ULC, and this question remains unanswered in general. Hempel [13] has
proved that for 3-space the answer is affirmative. Other kinds of homotopy mani-
folds have been defined [14], [9], but they are about the same as those of Griffiths.
No example is known of a polyhedral homotopy manifold that is not a manifold.
Three-dimensional polyhedral homotopy manifolds are manifolds (since they are
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homology generalized manifolds), and four-dimensional ones are manifolds if the 3-
dimensional Poincaré conjecture is true.

4. PARTIALLY FREE CONTINUA

In 1959, Bing [4] proved that any 2-sphere S2 in 3-space is almost free in the
sense that it can be g-transformed by a homeomorphism into a complementary do-
main, except that it may leave a Cantor set T in S2 fixed. Wilder [23] showed that
each locally connected continuum M in 3-space having this almost-free property
is a 2-manifold. He generalized this to n-space, showing that M is an (n - 1)-
generalized manifold. In the generalization, T may be much more general than a
Cantor set; it is simply required to satisfy some homology conditions. Also, the g-
transformation need not be a homeomorphism. The most general form of these re-
sults was given by Wilder in 1961 [24].
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