ON THE COEFFICIENTS OF UNIVALENT FUNCTIONS
J. Clunie and Ch. Pommerenke

1. STATEMENT OF RESULTS

We shall show that the trivial estimates a, = o(1/vn) and b, = o(1/Vn) for the
coefficients of bounded univalent functions and meromorphic univalent functions, re-
spectively, are not essentially best possible.

THEOREM 1. Let
g(z) = z+bg+ - +bz 0+ -

be analytic and univalent in 1 < lzl <, Then

2m
' i@ _l | 00
(1.1) SO |g' (e )|d9§A(1 p) (1< p <),

1
(1.2) |ba| < An 2 290,

N =

wheve A is an absolute constant.

The only previously known estimate, lbn| < n'l/ 2 , follows immediately from
the area theorem. In the opposite direction, the first nontrivial result was due to
Clunie [1], who constructed a univalent function for which |by| > n0-02-1 for in-
finitely many n. This was recently improved [8] to |bp| > n0.139-1,

Let v be the smallest number such that
lbn| < A(e)n¥e-1
for every & > 0. The estimates above imply that
(1.3) 0.139 < y < 0.497.

The true value of y is unknown.

Remark. We can prove an estimate that is slightly stronger than (1.2): For
5 <A< oo,

18

a A |
(1.4) Z Mo <amn® 2 MY m=1, 2, ),

k=1

Ly
2

where A(A) is independent of g.
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For 1 <p <, let &, denote the family of functions £(z) = z + -*+ that are
analytic in |z| < 1, satisfy the condition f'(z) # 0, and assume every value at most

p times [7, Section 1.3]. In particular, ©; is then the family of normalized uni-
valent functions in |z| < 1.

THEOREM 2, Let
f(z) = z+ - +a 2z + -
be a function in &, (1 <p <), and let
(1.5) f(z) =0((1-r)® (x—1-0)

with o < 1/2. Then there exists n =n(a, p) > 0 such that

1
. -5 tn
(1.6) Smlf'(releﬂ dé = o((1 -r) 2 ) (r—1-0)
0
and
1
-5-1
(1.7) an=0(n 2 ) (n — ).

This estimate no longer holds for areally mean p-valent functions. For these
functions,

(1.8) anp = o(n'l/z)

is the best possible estimate for every a < 1/2 [6], [9], [3, p. 49]. Hayman [4, p.
392] has raised the question whether (1.8) is best possible also for bounded univalent
functions. As Theorem 2 shows, this is false.

In the opposite direction, Littlewood [5] has given an example of a bounded uni-
valent function for which Ianl > n%-1 for some positive ¢ and infinitely many n. It
is possible to choose o = 0.139 [8].

The paper [4] of Hayman gives a recent survey of the theory of coefficients of
univalent and multivalent functions. As Hayman points out [4, p. 401], one of the con-
ditions satisfied by univalent functions but not by all multivalent functions is
f'(z) # 0, and we use this condition in the proof of Theorem 2.

2. PROOF OF THEOREM 1
1. Throughout this section, we write z = r-} eif (0<r<1). By A;, A, -~ we

denote absolute constants. Let 0 < 6 < 1/4 and r = 1/p. From the Schwarz in-
equality, we obtain the bound

1/2 1/2
(2.1) ‘S\Zwlg'(z)|1'HS do < (SZW |-g'(z)|2d8> (5217 [g'(Z)IzadB)
0 0

0

By the area theorem,
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1
2w

A
|g'(z)|2 de = 1+ Z) v2|pb, |2 r2v+z < !

(2.2) 1-r°
v=1

2. To estimate the last integral in (2.1), we write
[e o]
0] -
(2.3) [g'(=2)]° = 27 ¢, z7%  (|z] > 1),
k=0

where Co = 1. Then

[~)
1 27
(2.4) Wr) = 5 S lg'@)]2% a0 = T fei|?r?*  (0<r<1).
0 k=0
[>0]
It follows that ry'(r) =2 22 k|c, |?r?k and
k=1
(2.5) ryt(r) < ryt(r) +i(r) = 4 20 k% |e, |2r2k-l
k=1

A result of Golusin [2, p. 132] shows that

g"(z)

. 8lzl% -2 3
g'(z)

<
= lzff -1 = fz] -1
where rg is some absolute constant (0 <ry < 1). (This inequality, with slightly

worse constants, also follows from elementary distortion theorems.) From (2.3) and
(2.6), we deduce that

+8 (1< |z| <1/ry),

(2.6)

n 2
%.(—%) lgr(z)| 2% a6

O
1
? k2 |c |2 r2kt2 = o

d ol2 . &> (27
EZ'[g'(Z)] I a6 ——2?‘5;

2 2w
<r252 (—1—3—-—+8) —21;7- S Ig'(z)|26d9
0

Using (2.4) and (2.5), we find that

3 +§)2w(r).

- T I

pi(r) < 46 (5

An application of Hblder’s inequality to (2.4) together with (2.2) and 6 < 1/2 now
gives the estimate

Z

Yyur) < —— ( )2 Y(r) +ﬁ)3§,

for r, < r < 1. Therefore, integrating by parts, we see that
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T 2 A
v < v+ § G vty ——
r, (1-r)

Y(t)dt.

Ay 3662 T 3662
< + r) - S
-——(l_r)l/z 1—r”b() I,01-1:

By (2.5), the last term is negative. Since Y(r) > Ico | 2 = 1, it follows that

Y (r) Ay 3662
o) S /2 17

and consequently

Yr) < Ag(1-1)7360%  (0<r<).

Therefore, (2.1), (2.2), and (2.4) imply that

2 ! 1862
T -
(¥
1 ,_1__1
3. We choose & =75 B-—z 300 ° Let

E, = E|(r) = {o: lg'(r'leig)l <{1- r)_B}, E, = {6: |g'(r-1ei9)| > (1 - r)_ﬁ}.

Then, by (2.7),

2
S ﬂlgt(z)[de = ‘S‘ lgr(z)| do + S |g'(z)|de
E

0 Ey 2

IN

27 B 146
1- ' de
(1 - r)f3 +( r) SEZ lg (Z)l

-LiB6- 1862
< 2r(1 - r)—B+A6(1 - 1)

1 1 1 1 :
Since 5 B6 + 186~ = 5~ Z.73 T 300773 < B, we have proved (1.1). Applying

Cauchy’s formula with p = 1+ 1/n, we immediately obtain (1.2)

4. Finally, we prove (1.4). Let 5 <A <, The Hausdorff-Young inequality [10,

p. 190] implies that
1
pbY

1
n B N A
w . ——
2 (kb | rk)h> < (ziﬂ‘g) lrg'(r‘lelg)lh'lde)

k=1
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Let 6 =1/(A - 1). Then 0 < & < 1/4. Hence (2.7) shows that, for 1/2 <r <1,

o -1 _18/(A-1)2 qa-1
2 (kb | R < [A6(1 -r) 2 ]
k=1

AL 18/(x-1)

<A, -1) ?

We obtain (1.4) by taking r =1 - 1/2n. From (1.4), we get (1.2) by discarding the
first n - 1 terms in the left member and choosing A = 73.

3. PROOF OF THEOREM 2

1. We use B;, B,, --- to denote constants depending only on p and &, and
K,;, K,, *** to denote constants that possibly depend also on f. We choose a pair of
A 1 1
1-x <-07. Let 0< 9o <Z' From
Schwarz’s inequality, we obtain (with z = re i0 , 0 <r < 1) the bound

27
() = (S l£1z)| *7° ao
0

positive numbers A and k¥ such that 2 <A <

2

(3.1)

2T Ifr(z)lz 27 N s
PPEETYRYT St 1 ' 0
So 1+ |£z)|)* SO 1+ |#=))" |1'@)] " a

By the Holder inequality,

Sw 1+ |52) )™ |£'(=2)| 2° a6

0
1-kK K
< (52” (1+ |f<z>|)V“""de) (5“ |f=<z)|25/"de) .
0 0 .

2. The family &p is linear-invariant: that is, for every mapping w(z) of the unit
disk onto itself,

(3.2)

f(w(z)) - £(w(0))

i(z) € &, => ©'(0) T (@(0)) €6,.
Also, &, is normal [7, Satz 1.3]. Hence [7, Folgerung 1.1], [7, Lemma 1.2]
£ B
(3.3) FT(:—)) <15 ©<r<y).

(In the case p = 1 of univalent functions, this follows at once from the distortion
theorems.)
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To estimate the last integral in (3.2), we proceed as in the proof of Theorem 1.
Let

@)% = 2 ez (|z] < ).
k=0

Then
T [=e]
6
o(r) = —211; | £1( )Iz /KdB = 2J |cklz'rZk
k=0
For 1/2 <r < 1, it follows that,
s 2 (27 5/k|?
() < 4 D12 o |22z = 2 (T ) 0/
k=1 T <
B 252/,{2 ‘S‘z'ﬂ' f"(Z) ‘f( )|25/K
B m 0 f'(Z)
Hence, by (3.3),
B, 62
¢"(r) < ——— ¢(r).
— (1-1r)?
This implies
2m -B, 6°
(3.4) —21; |f'(z)|25/“ do = ¢(r) < Bs(1-1) 2
0

3. The inequality
27 r
X |f(z)|7"d9 <K;+K; S max If(z)l"')dt
0 0 lz l =t
(see [3, Theorem 3.2]) together with (1.5) shows that
2T r
S 1+ |t@) | a0 < K2+KZS (1-1 ™M) g <k,
0 ()
because A/(1 - k) < 1/¢. Therefore it follows from (3.2) and (3.4) that (with
B= B4)

2 ) . _ 2
(3.5) S T @) [r@)]2% a0 < K 1 - )P0
0

It follows from (3.1) and (3.5) that
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1 pe2 1 c2m |£Y(z)|? o
SO r(1-r) " J@)dr < Kg SO 50 T AL rdodr < K¢

(we obtain the last assertion as in [6, p. 291], using the fact that A > 2). Since J(r)
increases,

62'

1
J(r) S (-0 tat <Ky, I@) < Kt -1)"P (1/2 <r<1).

Hence, by (3.1),
1 2
_1_B 5

(3.6) Szwlf'(z)]”ﬁ 40 < Kg(l -1) 2
0

Let
E, = By() = {0: [0e'®)| <@ -07%Y, B, = {o: [p@e'®)| > -0 2)

Then as in the proof of Theorem 1, (3.6) implies that

2T 2T
50 |£'(z)| a0 < (1—_2:7/5“1 - r)6/35 l£1(2)| 17° ao

0
4 e
< 2r(l-r) " +Kg(l-r)
. 1,6 B .2 1 . .
Since -5+ 373 o4 > - 3 for sufficiently small 6 > 0, we have proved (1.6); the

estimate (1.7) follows at once.
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