MULTIPLICATIONS ON SO(3)
C. M. Naylor

1. INTRODUCTION

A multiplication on a space X (with base point *) will be defined to be a map
: X X X — X such that p(x, *) = p(*, x) = x for all x. Two multiplications p; and
p will be said to be homotopic if 1] is homotopic to p, relative to X v X. The
problem of enumerating the homotopy classes of multiplications that a given space
may possess has been studied by James [3] for spheres, and by Arkowitz and Curijel
[1] for finite CW-complexes. We shall prove the following theorem.

THEOREM 1.1. There exist precisely 168 distinct homotopy classes of multi-
plications on SO(3).

2. RESTATEMENT OF THE PROBLEM

S0O(3) is homeomorphic to 3-dimensional real projective space P3, Weuse K
to denote the reduced product P3 A P3 = P3x P3/P3 v P3. By[1], P3 has as many
multiplications as there are elements of [K, P3], the set of homotopy classes of
base-point-preserving maps from K to P3; since K is simply connected, the latter
is clearly equivalent to [K, S3].

The space K has a standard CW-structure (see Section 5). If we write K(n) for
the n-skeleton, then K is obtained from K(5) by attaching one 6-cell by means of a

h
map of its boundary S° = k(). By [5], the following is an exact sequence of groups
(we write = for suspension):

[s5, s3] 25 [k®), 83] — [K, s3] — [, 3] 22 [zk(®), §3] —— ...

Since [Sé’, S3] =~ 1T6(S3) =~ Z1,, Theorem 1.1 is a consequence of the following three
propositions.

PROPOSITION 2.1. h* = 0.
PROPOSITION 2.2. Sh* = 0.
PROPOSITION 2.3. [K(5) | $3] has order 2°.

3. PROOFS OF PROPOSITIONS 2.1 AND 2.2

Proposition 2.1 asserts that gh is null-homotopic for each g: K(5) — s3, Denote
K/K(Z) by L, and the natural projection K — L by p. Then the following implies
2.1,

PROPOSITION 3.1. Let g: L(5) — 83 be any map. Then gph ~ *,
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Proposition 3.1 is proved by determining completely the structure of L as a
CW-complex. This structure is described in Proposition 3.2, which we shall prove
in Section 5.

PROPOSITION 3.2. a) L{5) has the homotopy type of =3P% v A v £3P2 = M(5),
where A = (S% Y s%) Ua e*, and wheve in turn a: S° — Si’ \ Sg is of type (2, 2).

b) The homotopy equivalence of part a) extends to a homotopy equivalence
L ~ M, where the attaching map for e® in M maps S° into S”;’ \% Sg .

c) We denote the attaching map for €® in M by (ph)'. Then (ph)' is a multiple
of the univevsal Whitehead product in (S V S3).

Assuming Proposition 3.2, we now prove Propositions 3.1 (thus also 2.1) and 2.2.

Proof of Proposition 3.1. Let g: L(5) - S3 bea map. We denote the corres-
ponding map from M(5) to S3 by &'. By Proposition 3.2, §'(ph)' = (&' | A)(ph)' is a
Whitehead product in S3, and therefore null-homotopic. This implies that gph is
null-homotopic, which proves Proposition 3.1.

Pyroof of Proposition 2.2. As before, we must show that g(Zh) ~ * for each
g: K(5) - $3. The 4-skeleton of ZK(5) consists of an S with two 4-cells at-
tached, each by a map of degree + 2. We may thus take g to be trivial on the 3-
skeleton S3. In this case there is a map & rL(5) — 83 such that

g(Zh) = g(Zp)(Zh) = g(Zph) ~ *.

The last relation follows from the fact that the suspension of a Whitehead product is
trivial. This proves Proposition 2.2,

4, k), g3

To determine the order of [K(5), 3], we first show that this group is isomorphic
to each of the cohomotopy groups 70+3 anK(5)) (n>1). When n > 2, the order of
gnt3(zn K(5)) can be computed to be 2° by means of the cohomotopy spectral se-
quence. For an explicit description of the filtration of 72*3 that one obtains, see
[4, p. 116]. The differentials in EZ2 of the spectral sequence are Steenrod opera-
tions, and they are easily computed. The only differential in E3 that affects the
computation is the Adem operation &, which is defined on a subgroup of

Hn+2(En K(S) s 7).

Since H*2(znK(5) ; Z) is zero, this presents no difficulties. Thus the following
implies Proposition 2.3:
PROPOSITION 4.1. [K(3), §3] ~ a2*3(32K(5)) for all n > 1.
Proof. 83 has as classifying space PQ™, infinite-dimensional quaternion pro-
jective space; thus S3 is homotopy-equivalent to QPQ™. Therefore
(k) s3] ~ [zx(®), PQ™].

As a cell complex, PQ™ ~ S% U e8 U ---. Since ZK(5) has dimension 6, we have the
isomorphism [K(5), 83] ~ [ZK(5) | S4]. We are now in the stable range:
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[zk(5), 84 & [22k(5), g5] & ...

are isomorphisms, and 4.1 is proved.

5. STRUCTURE OF THE COMPLEX L =~ (K/Kz)

P3 has the usual CW-decomposition * = Plcplcpic P3; therefore P3x p3
has a CW-structure with cells Pi X Pi. The homology of P3 is determined by
dpP3 = 0, dP2 = 2P!, dP! = 0; this gives an induced differential on P3 X P3, in the
usual fa.sh1on. The Z-cohomology ring of P3 has a 1-dimensional generator u
with u? = 0. One finds that Hl(P3 X P3 Z,) is spanned by uixul (j, i - j < 3), so
that the Steenrod operations in P3 X P3 can be computed from the Cartan formula.
The following is obvious:

LEMMA 5.1. Let U and V (U C V) be subcomplexes of P3x P3. Let
q: V — V/U be the natural projection. Then H*(V; ZZ) is a divect summand of
H*(P3 X P3; Z,), and q*: H¥(V/U; Z,) — H¥(V; Z,) is a monomorphism.

We also recall the following well-known fact concerning spaces X and Y:

LEMMA 5.2, 7,(X Vv YY)~ 71,(X) ® 71,(Y) ® 1,1(X XY, X v Y), where the third
summand is embedded by the homotopy boundary operator.

We now study the complex L = K/K(2) . A cell in L will be denoted by Pi x PJ
if it is the image of P! X PJ under the projection P3 x P3 — L. Clearly, L(3) is
homotopy-equivalent to 83 v S3. The attaching maps for P! x P3 and P3 x P! have
local degree 0 and are thus trivial, since the homology differential on these cells is
0. By the same argument, we see that P2 X P2 is attached by a map a: S3 — S3 v s3

of type (2, 2). If we denote S3 \% S3 U e? by A, then L{4) is homotopy-equivalent
to S4 VAV S4

There are two 5-cells: P2 x P3 and P3 X P2, The cell P3 X P2 is attached by
a map f: sS4 —>S v A. By Lemma 5.2, f has the form f;+ £, (f; € m4(S%),
f, € m4(A)). By an argument similar to the above, we find that deg f; = 2; thus, to
complete the proof of 3.2 a), it remains to show that f, ~ *, for then, by symmetry,
L(5) is homotopy-equivalent to =3 PZV AV 23PZ, To see that f, ~ *, consider

L4 U @3 x p2)/stv s,
f

which is homotopy-equivalent to A U e®. From the homotopy exact sequence of

(A, S3 v S3), we see that f, factors through S? v 83. Let m: S3 v S3 — S? denote
the pI‘O]eCtl()n on the i-th factor (i =1, 2). Denote by T the space

L4 U (p3 x p2)/st v 3 v s2
£

e

which is homotopy-equivalent to =2 P2 U By Lemma 5.3, if 7yf, is non-

771f2
trivial, then there is v € H3(T Z,) with Sq% v # 0. By Lemma 5. 1, a similar state-

ment would be true for P3 x P3 a contradiction. Thus m;f, ~ * for i=1, 2. By
Lemma 5.2, f, ~ *, and this proves 3.2 a).
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We now turn to a proof of 3.2 b) and ¢). P3 x P3 is attached by ph, S° — L(5) .
By Lemma 5.2, ph = g + g, + g, with g; , g, € 715(23P32), g € m5(A).

LEMMA 5.3. Let f: S™2 — S0 P2 | Then f factors through (=™ P2)(ntl)

(=s8™") for n> 0. If T = = P2 Uf e™3 and v is the generator of HAYI(T, Z,),
then for n> 1, f ~ * if and only if Sq? v = 0.

Proof. The first assertion follows from the homotopy exact sequence of

(zn P2, s™*l), Assume now that £ factors through S®*! and denote S»*! Uf ent3
by U. Let i: U — T be the injection. Then the second assertion follows from the
fact that i* is a Zj;-cohomology isomorphism in dimensions n+ 1 and n + 3, and
from well-known facts about U. Lemma 5.3 leads to the following well-known result.

COROLLARY 5.4. =0P3 ~ gnt3 v 30 p2 (n > 2).

Lemmas 5.3 and 5.1 together now show that g1, g ~ *, It remaiins to show that
g factors through S% Y Sg and is a Whitehead product. We recall that the latter is

the same as saying m;g ~ * (i = 1, 2), where 7;: Si)‘ \Y Sg — Sf’.
If g is not deformable into S% Y S% , then it determines a nonzero element of
m5(A, S3 v S3). By [2, II, Theorem IIJ,
as: T5(A, STV 83) — w1 (A/ST v 83) ~ mg(s?)

is an isomorphism, where q denotes the projection, and thus qg is nontrivial.
This implies that for

L/Z3P‘;‘vsfvsgv23P§ (=S4Ue6),
qg

we have a v € H? (84 Uqg e(’; ZZ) with qu v # 0. By 5.1, this is again a contra-
diction, and 3.2 b) is proved.

It remains to show that w;g ~ * (i =1, 2). The following lemma is another ap-
plication of the triad theorem.

LEMMA 5.5. If g: S°%5 — s2*3 v §8%3 s nontrivial, then it is nontrivial as a
map S5 DA for n> 0.

Using 5.5, we see that if my g or 7, g is nontrivial, then the top-dimensional cell
of 2™ I, has a nontrivial attaching map for n > 0. If we recall that

ZXAY)2ZXAY2X AZY
(ZX is S A X = X A 81), we see that
ZHP3IAP3)~ Z2P3AZ2P3~ 810, 27TP2, Z7TP2, (Z2P2A =2P2),

by Corollary 5.4. Thus =4(P3 A P3) (and thus £% L) has its top-dimensional cell
attached by a trivial map. By the above remarks, this completes the proof of 3.2 c).
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