LINEAR PERTURBATIONS OF CONNEXIONS

N. Hicks

This study was motivated by the following natural question. If one takes the
second fundamental form on a convex surface to be a new Riemannian metric, then
how are the new connexion and curvature related to the usual ones? The question
leads to the definition of a natural connexion associated with a smooth nonsingular
linear-transformation-valued tensor on a Riemannian manifold, and to related in-
variants. In particular, the relation between all semi-Riemannian structures and
one fixed Riemannian structure can be studied. Our methods are applied to the
Weingarten map of a hypersurface in a Riemannian manifold, and to the natural
linear operator associated with a vector field on a Riemannian manifold., The mean-
ing of the invariants in the latter case is not yet clear.

All terms that are not explicitly defined can be found in reference [1].

1. THE ASSOCIATED CONNEXIONS

Let M be an n-dimensional C® manifold with connexion D. Let L be a function
that assigns to each p in M a linear map L, on the tangent space at p, Mp. Let L
be C* in the sense that for each C® vector field X with domain U, the field
L(X)P = p(Xp) is C* on U. Let L be nonsingular on each tangent space, and define
two connexions D" and D' by

(1) DL(Y) = L' D L(Y),
(2) D, (Y) = —;:[DX(Y+D‘)'<Y],

where X and Y are smooth (C*) vector fields on M. One verifies easily that D"
and D' satisfy the conditions of a covariant differentiation operator. Recall that for
any connexion D, the torsion Torp and curvature R are defined by

(3) Tor (X, Y) = DyY - Dy X - [X, Y],

(4) Rp (X, Y)z = DyDyZ -DyDy7Z - D[X’Y]Z s

where X, Y, and Z are smooth vector fields on M. For each smooth, linear-map-
valued tensor L, we define

(5) Tor (X, Y) = Dy LY - Dy LX - L[X, Y],
(6) Ry (X, Y)Z = DyLDy Z - Dy LDy Z - D[y y]LZ,
where Torp, is always a tensor but Rp, is not necessarily a tensor (see Theorem 1).

Notice that Tor;, and Ry, are really functions depending upon L and D. The follow-
ing proposition follows easily from the definitions.
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PROPOSITION 1. Letting Tor = Torp, R=Rp, Tor' =Torpi, R'=Rps,
Tor" = Torpn, and R" = Rpu, one gets

(7) Tor" (X, Y) = L™ ! Tor, (X, Y),
(8) R"(X, Y)Z = L -1 R(X, Y)LZ,
9) Tor' (X, Y) = 2 [Tor (X, ¥) + Tor" (X, Y)],

(10) R'(X,Y)Z = 'AII[R(X’ Y)Z +R"(X, Y)Z + L1 R; (X, Y)Z + RL'I (X, Y)LZ].
In particular, this proposition implies that
(11) S.(X, Y)Z = %[L‘IRL(X, Y)Z +R__; (X, Y)LZ]

is a tensor.
THEOREM 1. The following assertions are equivalent:
() D=D", (b) D=D' (c) D'=D", (d) LDx = DxL for all fields X,
(e) AL = 0, where A is the geneval covariant devivalive associated with D,
(f) Ry, is a tensor.

Proof. The first four are trivial. If we consider L as a tensor of type 1, 1,
then AL is the tensor of type 1, 2 with

]

(AL)(w, X, Y) = (DyL){w, X) = Yo(LX) - (Dyw)(LX) - o(LDyX)

Yo (LX) - Yo (LX) + w(Dy LX) - (LDyX) = w(DyLX - LDyX),

where w is a C* 1-form on M. Thus AL = 0 if and only if Dy L = LDy for all Y.

If (d) holds, then R; (X, Y)Z = LR(X, Y)Z is a tensor. Let f be a C* real-
valued function on M, and notice that

Ri(X, fY)Z = fR1 (X, Y)Z + (Xf)[LDy Z - DyLZ].

Thus, if Ry, is a tensor, one may choose X and f on a neighborhood with Xf = 1,
so that LDy = Dy L, which proves (d).

For the rest of this paper, suppose M is Riemannian with metric tensor < , >
and Riemannian connexion D.

THEOREM 2. Let {X, Y)"= {LX, LY ) define a new Riemannian metric on
M. Then D" is ( , )" metvic-preserving, and D" is the Riemannian metric asso-

ciated with < R >“ if and only if Torp = 0.
Proof. For fields X, Y, and Z,

(pry,z)"+{Y,Dtz)" = (DyLY, LZ) + (LY, Dy LZ)

x{LY, Lz) = x{¥, z)",
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since D is Riemannian for < s >
By Proposition 1, Tor" = 0 if and only if Tor;, = 0.

THEOREM 3. If L is self-adjoint (symmetvic) with vespect to  , ), define
the semi-Riemannian meitvic <X, Y>' = (X, LY) = <LX, Y). The connexion D'
is < R >' metric-presevving, and D' is the Riemannian connexion associated with
( , >' if and only if Tor = 0.

Proof. Clearly,
(D%Y, z)" +{Y,DLZ)

= 1[(Dx Y + L7 Dy LY, LZ) + (LY, Dy Z + L~ ! Dy L2 )]

Il

.;-.[(ny, LZ) + (Y, Dy LZ) + (D4 LY, Z) + {LY, D, Z )]

=x{y,z)".
Thus D' preserves ( , )'. Since Tor = 0,
Tor'= 0 <> Tor" = 0 <& Tor; = 0.

We can now iterate the above procedure for defining D' and D" in terms of D
to obtain the semi-Riemannian connexion associated with the metric tensors
<Lr X, L* Y> (for arbitrary nonsingular L) and (Lr X, Y) (for symmetric non-
singular L) for each integer r > 0. In addition, the one-to-one correspondence be-
tween semi-Riemannian metrics and nonsingular self-adjoint maps shows that each
semi-Riemannian connexion D' is related to D by equation (2).

We shall now use the above analysis to relate various “plane” curvatures (Rie-
mannian curvatures of two-dimensional subspaces of a tangent space).

PROPOSITION 2. Let B be a C* veal-valued tensoy on M of type 0, 4 such
that for all X and Y in Mp

(12) B(X,Y,X,Y) = -B(Y, X,X,Y) = -B(X, Y, Y, X).

If P is any two-dimensional subspace of Mp and X, Y a base for P, then the plane
curvaturve of P relative to B and the melvic tensor ( , > defined by

(13) K(P) = B(X, Y, X, Y)/A(X, Y)

is independent of the base X, Y, where A(X, Y) = <X, X) (Y, Y) - <X, Y>2 .

The proof is a simple exercise involving the use of (12). Now define
(14) K(X, Y, 2, W) = (X, R(Z, wY ),
(15) K'(X, Y, 2, W) = {X, R'(Z, W)Y )',

QUX, Y, Z, W) = %[(LX, R(Z, WY ) + {X, R(LZ, W)Y )

(16)
+ (X, R(Z, LW)Y) + {X, R(Z, W)LY )],
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(17) S(X, Y, 2, W) = {(LX, S; (Z, WY ).

PROPOSITION 3. The tensors K and Q each satisfy (12). If L is symmetric,
then K' and S satisfy (12).

Proof. That K and K' satisfy (12) is clear, since they are the classical
Riemann-Christoffel tensors of type 0, 4. Then Q satisfies (12), since K does.
Actually K, K', and Q each satisfy the equation
(18) B(X,Y,Z, W)= B(Z, W, X,Y),
but S may not. To show that S satisfies (12), notice that

R(X, Y) LY + R(LY, X)Y + R(Y, LY)X = 0

by the first Bianchi identify for the connexion D. Hence

{R(X, Y)LY, X ) = {R(X, LY)Y, X )

and

QAUX, Y, X, Y) = %[(LX, R(X, Y)Y ) + { X, R(X, Y)LY )].

Then, by Proposition 1,

K'(X, Y, X, Y) = {X, R(X, Y)Y )

(19) = (LX, %R(X, Y)Y + %L‘l R(X, Y)LY +

1

3SL(X, Y)Y )

]

SQX, Y, X, ¥) +38(X, ¥, X, ¥),

which shows that S satisfies (12), since K' and Q satisfy (12).

Combining Propositions 2 and 3, one defines the plane curvatures K'(P), Kn(P),
and Kg(P) belonging to a nonsingular self-adjoint smooth L by

K'(P) = KX, Y, X, Y)/A'(X,Y), KpP)=QX, Y, X Y)/A(X,Y),
KS(P) =8(X, Y, X, Y)/A'(X, Y),
where X and Y are a base for P,
THEOREM 4. For each plane section P,

(20) K'(P) = 3 [Ko(P) + Kg(P)].

Proof. This follows from (19).

Theorem 4 gives a natural decomposition of the (semi-) Riemannian curvature
K'(P) of the metric in Theorem 3 when Tor;, = 0. It is also true that both Ry, and
S;, satisfy the first Bianchi identity if Tor; = 0.
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2. APPLICATIONS AND EXAMPLES

First consider the situation where L is the Weingartern map for a hypersurface
M of a flat Riemannian manifold M with metric tensor , and Riemannian con-

nexion D, If we let N be a unit C® normal field on M (whi_gh always exists locally),
then L(X)=DxN for X in M, (see reference [1]). Since M is flat, the Codazzi-
Mainardi equation implies Tor; = 0, and the Gauss curvature equation becomes

(21) R(X, V)Z = {LY, Z ) L(X) - {IX, Z) L(Y)

for X, Y, and Z tangent to M.

For C* fields X and Y tangent to M, we let
(22) A; (X,Y) = LDxY - Dy LY,
and we verify easily that Aj, is linear over the module of C* vector fields with C*
functions as coefficients, which implies that A ; is a vector-valued tensor. More-
over, since Torp = 0 and Tor;, = 0, we compute

A (X,Y) = L(Dy X +[X, Y]) - (Dy LX + L[X, Y]) = A (Y, X).

THEOREM 5. Let M be a hypersurface of a flat Riemannian manifold M with
unit novmal N on M, and suppose the total imbedded curvvature (det L) of M in M
is not zevo at m in M. Let P be any plane section of M, with ovthonovymal base

X, Y. Then

(23) K'(P) = K(P) + K, (P),
where
(24)  Ku(P) = (A (X ALY, V) -A (Y, A((X, V), LX) /4A'(X, ¥)

and

(25) Kn(P) = %((LX, x) +{LY, Y)).

Proof. Using the Gauss curvature equation, one computes
2Q(X, Y, 2, W) = { X, L?2Z) (¥, Lw) - (X, L.2w) (¥, LZ)
+{x,1z) (Y, L*w) - (X, Lw) (Y, L?Z)

(this relation holds for every Weingarten map L). To compute S;(Z, W)Y, one notes
that

R (Z, W)Y

]

Dz LDy Y - Dy LDz Y - D[z w]LY

1l

D, LDy Y - DWLDZY+R(Z, W)LY - D,Dy LY +DyD, LY

li

D, A (W,Y)-Dy A (Z,Y)+ (LW, Y) L(Z) - {L%Z, Y) LW.

A similar computation for RL_l (Z, W)LY yields the formula
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S;.(Z, W)Y = %[L’l R; (Z, W)Y + RL_l(Z, W)LY]
= %[(LZW, Y)Yz - {122, YY) W+ (1w, Y) L(Z) - { LZ, Y) L(W)
+ AL-l(Z’ AL(Ws Y)) - AL"I (W, AL(Z: Y))] .
Thus

S(X’ Y’ Z’ W) = Q(X; YJ Z; W) +%‘ <A-L-l (Z; AL(W, Y)) - AL_I(Wy AL(Zy Y)), LX >’

and (24) follows from this and Theorem 4.

For (25), we use the relation
2Q(X, Y, X, ¥) = {(L.2X, X) (LY, v) + (L2Y, ¥) {LX, X) - 2{L.2%, ¥) {LX, ¥)

and the fact that A'(X, Y) # 0 since L., is nonsingular.
COROLLARY. If M =R> and K(m) # 0, then Kn(M,_ ) =H(m)/2 and

(26) K'=H/2+K,,

wheve P = My, and H(m) is the mean curvature of M.

In one sense this corollary solves the original problem posed in the introduction,
for it relates the (semi-) Riemannian curvature K' of the nonsingular metric
X, Y¥Y)'= <LX, Y> to the mean curvature. The nature of the invariant K, is not
yet clear; however, one can obtain an expression for K, in the neighborhood of a
non-umbilic point.

THEOREM 6. Let M be a smooth surface in R3 with K(m) # 0 at a non-umbilic
point m in M. Let h and k be the principal curvatures of M on a non-umbilic
neighborhood U of m with h>k and K #0 on U. Let X and Y be C* unit-
ovthogonal principal fields on U with LY = hY and LX = kX. Then

(27) K' = §+4—1K[(Xh)x(log£) +(Yk)Y(log§-)]
on U.

Proof. The existence of U, X, Y and the C™ nature of h and k on U are shown
in [1, Chapter 3, Section 1] where one also finds the formulas

(28) DyY = aX, DyX=bY¥Y, DyX=-a¥, Dy Y=-bX
with
(29) a=(Yk)/(h-%kX) and b = -(Xh)/(h-k).

Using (28), (29), and the relations LY = hY and LX = kX, one computes:
(30) A; (Y, Y) = b(h - k)X - (Yh)Y,

(31) A (X, Y) = -a(h - KX - (XY,
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(32) (A, 1 (X, AL(Y, V), LX) = ~(¥h)(Yk)/h - (Xh)(Xk)/k,
(33) (A1 (¥, AL(X, Y)), LX) = ~(¥K)*/k - (X0)*/h.

For example, (30) follows from the equations
A;(Y,Y) = LDy Y - Dy LY = L(-bX) - Dy(hY) = -bkX - (Yh)Y + hbX .

Substitution of (32) and (33) into (23) yields (27).
COROLLARY 1. Let M be a smooth surface in R3 with constant mean curva-
ture and nonvanishing Gauss cuvvatuve on a non-umbilic neighbovhood U. Then

. 1 1 ]
(34) K'=H [TLEZ {grad h, grad h)

on U.
Proof. Since U is non-umbilic, h and k (h > k) are C” on U. Since H=h+k
is constant, (Zh) = -(Zk) for all vectors Z tangent to U. Hence by (27)
K' = (H/2)+ (H/4K)[(Yh)?+ (Xh)?],

and (34) follows.

COROLLARY 2. On a norn-umbilic neighbovhood of a minimal surface K'= 0,
thus the second fundamental form defines a semi-Riemannian melvic with zevro
curvature.

One might suspect that the condition D'= D on a surface M in R3 is necessary
and sufficient for M to be a sphere, and this is indeed the case.

THEOREM 7. If the connexion induced on a complete connected suvface by its
second fundamental form is the usual Riemannian connexion, then the suvface is a
sphere.

Proof. The condition D = D' implies that R(X, Y)Z = R'(X, Y)Z, hence
K'= {(R(X, Y)Y, X)'/A'(X, Y) = k = {R(Y, X)X, Y )'/A'(X, Y) = h,

where X and Y are orthonormal principal vectors at any point with L(X) = kX and
L(Y) = h(Y). Thus k = h, and all points are umbilics. Since L must be nonsingular
for D' to be globally defined, the surface is a sphere.

For the second application of the theory, let M be a Riemannian manifold, and
let T be a C® vector field on M. Define the linear-map-valued tensor A on M by

(35) A_(X) = DT (all X in M_ ),

where D is the Riemannian connexion. Since D is C*, A is C™. Let G(T) be the
natural 1-form on M associated with T via the metric; that is, let

G(T)X) = {T, X).

Then T is closed by definition if dG(T) = 0, or equivalently, if A is self-adjoint
(see [2]). Whenever A is nonsingular, one can define the associated connexions D'
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and D". In addition, if A is symmetric and Tor a = 0, then the plane curvatures K',
Kn, and Kg are defined.

To begin a study of these associated curvatures, let M = R? with its usual metric
and connexion D. The following example shows that Kg and K' are not always
trivial.

Example. Let ¢ = xy%+x% and T = grad ¢ = (y2+ 2%, 2xy). K X=(g,, 8,) isa
vector on RZ, then

(36) A(X) = Dy T = (2g; +2ysg,, 2yg +2xg,).
Thus A is nonsingular if 4x - 4y% # 0; therefore let M be R? minus the parabola

where x =y2. Let X=(1, 0) and Y = (0, 1) be fields on M. Then R A(X, Y)Y = 0,
since DyY = D, Y =[X, Y] = 0. But

-1 _ [ %81 -Y8, 8,-7Y8;

(37) A (gl’ gZ) - ( zx _ zyz ’ 2X _ zyz)’
A(Y) = (2y, 2x), DyAY = (2,0), DxAY = (0, 2),

and
(38) R, 1(X VAY = (x, -y)/(x - y*)?,
while ‘
(39) A'(X, Y) = 2(2x) - (2y)? = 4x - 4y?2.
Hence
(40) Kg = 1/4(x - y*)*.

Since R=0on M, Q=0 and Kn= 0. Thus K'= 1/8(x - y%)2.
We conclude this study with a theorem that identifies the closed vector fields T
on R? for which D'=D.

THEOREM 8. A field T on R? induces a symmeltric nonsingular map A with
D'=D ifand only if T is of the form (ax+ by + c, bx+dy + €), where a, b, ¢, d,
and e ave real constants with ad - b% # 0.

Proof. Let T = (f], ), where the f; are C*® real-valued functions on R%. Let
X=(gy,82) and Y = (a;, a,), where the g; are C®. By Theorem 1, D' =D if and
only if Dy A(X) = A(Dy X) for all X and Y. Letting g, = 9g/0x, gy = dg/dy, and
taking X = (1, 0), we see that A(X) = ((f,;),, (f,),) and

Dy A(X) = (ay(f]), + az(fl)xy, a;(f,),  + a’Z(fZ)xy) .
But Dy X = 0, hence A(DyX) = 0. Since Y is arbitrary,
(fl)xx = (fl)xy = (fz)x_x = (fZ)xy = 0.
Similarly, if X = (0, 1), then (f;)yy = (f2)yy = 0. Thus f; and f; are of the linear

form stated in the theorem with the necessary conditions on the constants to assure
that A is symmetric and nonsingular.
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