# LINEAR PERTURBATIONS OF CONNEXIONS

## N. Hicks

This study was motivated by the following natural question. If one takes the second fundamental form on a convex surface to be a new Riemannian metric, then how are the new connexion and curvature related to the usual ones? The question leads to the definition of a natural connexion associated with a smooth nonsingular linear-transformation-valued tensor on a Riemannian manifold, and to related invariants. In particular, the relation between all semi-Riemannian structures and one fixed Riemannian structure can be studied. Our methods are applied to the Weingarten map of a hypersurface in a Riemannian manifold, and to the natural linear operator associated with a vector field on a Riemannian manifold. The meaning of the invariants in the latter case is not yet clear.

All terms that are not explicitly defined can be found in reference [1].

### 1. THE ASSOCIATED CONNEXIONS

Let M be an n-dimensional  $C^{\infty}$  manifold with connexion D. Let L be a function that assigns to each p in M a linear map  $L_p$  on the tangent space at p,  $M_p$ . Let L be  $C^{\infty}$  in the sense that for each  $C^{\infty}$  vector field X with domain U, the field  $L(X)_p = L_p(X_p)$  is  $C^{\infty}$  on U. Let L be nonsingular on each tangent space, and define two connexions D" and D' by

$$D_{X}^{"}(Y) = L^{-1}D_{X}L(Y),$$

(2) 
$$D_{X}'(Y) = \frac{1}{2} [D_{X'}Y + D_{X'}''Y],$$

where X and Y are smooth  $(C^{\infty})$  vector fields on M. One verifies easily that D' and D' satisfy the conditions of a covariant differentiation operator. Recall that for any connexion D, the torsion  $Tor_D$  and curvature  $R_D$  are defined by

(3) 
$$Tor_D(X, Y) = D_X Y - D_Y X - [X, Y],$$

(4) 
$$R_D(X, Y)Z = D_X D_Y Z - D_Y D_X Z - D_{[X,Y]} Z,$$

where X, Y, and Z are smooth vector fields on M. For each smooth, linear-map-valued tensor L, we define

(5) 
$$\operatorname{Tor}_{L}(X, Y) = D_{X}LY - D_{Y}LX - L[X, Y],$$

(6) 
$$R_{L}(X, Y)Z = D_{X}LD_{Y}Z - D_{Y}LD_{X}Z - D_{[X,Y]}LZ,$$

where  $Tor_L$  is always a tensor but  $R_L$  is not necessarily a tensor (see Theorem 1). Notice that  $Tor_L$  and  $R_L$  are really functions depending upon L and D. The following proposition follows easily from the definitions.

Received February 9, 1965.

This work was supported by NSF grant GP 1815.

PROPOSITION 1. Letting  $Tor = Tor_D$ ,  $R = R_D$ ,  $Tor' = Tor_{D'}$ ,  $R' = R_{D'}$ ,  $Tor'' = Tor_{D''}$ , and  $R'' = R_{D''}$ , one gets

(7) 
$$\operatorname{Tor}^{\mathbf{u}}(X, Y) = L^{-1}\operatorname{Tor}_{L}(X, Y),$$

(8) 
$$R''(X, Y)Z = L^{-1}R(X, Y)LZ,$$

(9) 
$$\operatorname{Tor}^{"}(X, Y) = \frac{1}{2} \left[ \operatorname{Tor}(X, Y) + \operatorname{Tor}^{"}(X, Y) \right],$$

(10) 
$$R'(X, Y)Z = \frac{1}{4}[R(X, Y)Z + R''(X, Y)Z + L^{-1}R_L(X, Y)Z + R_{L^{-1}}(X, Y)LZ].$$

In particular, this proposition implies that

(11) 
$$S_{L}(X, Y)Z = \frac{1}{2} [L^{-1}R_{L}(X, Y)Z + R_{L^{-1}}(X, Y)LZ]$$

is a tensor.

THEOREM 1. The following assertions are equivalent:

(a) 
$$D = D''$$
, (b)  $D = D'$ , (c)  $D' = D''$ , (d)  $LD_X = D_X L$  for all fields  $X$ ,

- (e)  $\triangle L = 0$ , where  $\triangle$  is the general covariant derivative associated with D,
- (f) R<sub>L</sub> is a tensor.

*Proof.* The first four are trivial. If we consider L as a tensor of type 1, 1, then  $\triangle L$  is the tensor of type 1, 2 with

$$\begin{split} (\triangle L)(\omega, \ X, \ Y) &= \ (D_Y L)(\omega, \ X) = \ Y \omega(LX) - (D_Y \omega)(LX) - \omega(LD_Y X) \\ \\ &= \ Y \omega(LX) - Y \omega(LX) + \omega(D_Y LX) - \omega(LD_Y X) = \omega(D_Y LX - LD_Y X), \end{split}$$

where  $\omega$  is a  $C^{\infty}$  1-form on M. Thus  $\triangle L = 0$  if and only if  $D_Y L = LD_Y$  for all Y.

If (d) holds, then  $R_L(X, Y)Z = LR(X, Y)Z$  is a tensor. Let f be a  $C^{\infty}$  real-valued function on M, and notice that

$$R_{I}(X, fY)Z = fR_{I}(X, Y)Z + (Xf)[LD_{Y}Z - D_{Y}LZ].$$

Thus, if  $R_L$  is a tensor, one may choose X and f on a neighborhood with Xf = 1, so that  $LD_Y = D_Y L$ , which proves (d).

For the rest of this paper, suppose M is Riemannian with metric tensor  $\langle , \rangle$  and Riemannian connexion D.

THEOREM 2. Let  $\langle X, Y \rangle$ " =  $\langle LX, LY \rangle$  define a new Riemannian metric on M. Then D" is  $\langle , \rangle$ " metric-preserving, and D" is the Riemannian metric associated with  $\langle , \rangle$ " if and only if  $Tor_L = 0$ .

Proof. For fields X, Y, and Z,

$$\langle D_{X}^{"}Y, Z \rangle^{"} + \langle Y, D_{X}^{"}Z \rangle^{"} = \langle D_{X}LY, LZ \rangle + \langle LY, D_{X}LZ \rangle$$

$$= X \langle LY, LZ \rangle = X \langle Y, Z \rangle^{"},$$

since D is Riemannian for  $\langle , \rangle$ .

By Proposition 1, Tor'' = 0 if and only if  $Tor_L = 0$ .

THEOREM 3. If L is self-adjoint (symmetric) with respect to  $\langle$ ,  $\rangle$ , define the semi-Riemannian metric  $\langle$  X, Y $\rangle$ ' =  $\langle$  X, LY $\rangle$  =  $\langle$  LX, Y $\rangle$ . The connexion D' is  $\langle$ ,  $\rangle$ ' metric-preserving, and D' is the Riemannian connexion associated with  $\langle$ ,  $\rangle$ ' if and only if Tor  $_{\rm L}$  = 0.

Proof. Clearly,

$$\begin{split} \left\langle D_{\mathrm{X}}^{\prime} \, \mathbf{Y}, \, \mathbf{Z} \right\rangle^{\prime} &+ \left\langle \mathbf{Y}, \, D_{\mathrm{X}}^{\prime} \, \mathbf{Z} \right\rangle^{\prime} \\ &= \frac{1}{2} \left[ \left\langle D_{\mathrm{X}} \, \mathbf{Y} + \mathbf{L}^{-1} \, D_{\mathrm{X}} \, \mathbf{L} \mathbf{Y}, \, \mathbf{L} \mathbf{Z} \right\rangle + \left\langle \mathbf{L} \mathbf{Y}, \, D_{\mathrm{X}} \, \mathbf{Z} + \mathbf{L}^{-1} \, D_{\mathrm{X}} \, \mathbf{L} \mathbf{Z} \right\rangle \right] \\ &= \frac{1}{2} \left[ \left\langle D_{\mathrm{X}} \, \mathbf{Y}, \, \mathbf{L} \mathbf{Z} \right\rangle + \left\langle \mathbf{Y}, \, D_{\mathrm{X}} \, \mathbf{L} \mathbf{Z} \right\rangle + \left\langle D_{\mathrm{X}} \, \mathbf{L} \mathbf{Y}, \, \mathbf{Z} \right\rangle + \left\langle \mathbf{L} \mathbf{Y}, \, D_{\mathrm{X}} \, \mathbf{Z} \right\rangle \right] \\ &= \mathbf{X} \, \left\langle \mathbf{Y}, \, \mathbf{Z} \right\rangle^{\prime} \, . \end{split}$$

Thus D' preserves  $\langle , \rangle$ '. Since Tor = 0,

$$Tor' = 0 \iff Tor'' = 0 \iff Tor_{L} = 0$$
.

We can now iterate the above procedure for defining D' and D" in terms of D to obtain the semi-Riemannian connexion associated with the metric tensors  $\langle L^r X, L^r Y \rangle$  (for arbitrary nonsingular L) and  $\langle L^r X, Y \rangle$  (for symmetric nonsingular L) for each integer r > 0. In addition, the one-to-one correspondence between semi-Riemannian metrics and nonsingular self-adjoint maps shows that each semi-Riemannian connexion D' is related to D by equation (2).

We shall now use the above analysis to relate various "plane" curvatures (Riemannian curvatures of two-dimensional subspaces of a tangent space).

PROPOSITION 2. Let B be a  $C^{\infty}$  real-valued tensor on M of type 0, 4 such that for all X and Y in  $M_{\,\rm D}$ 

(12) 
$$B(X, Y, X, Y) = -B(Y, X, X, Y) = -B(X, Y, Y, X).$$

If P is any two-dimensional subspace of  $M_p$  and X, Y a base for P, then the plane curvature of P relative to B and the metric tensor  $\langle \ , \ \rangle$  defined by

(13) 
$$K(P) = B(X, Y, X, Y)/A(X, Y)$$

is independent of the base X, Y, where  $A(X, Y) = \langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2$ .

The proof is a simple exercise involving the use of (12). Now define

(14) 
$$K(X, Y, Z, W) = \langle X, R(Z, W)Y \rangle,$$

(15) 
$$K'(X, Y, Z, W) = \langle X, R'(Z, W)Y \rangle',$$

(16) 
$$\begin{cases} Q(X, Y, Z, W) = \frac{1}{4} \left[ \langle LX, R(Z, W)Y \rangle + \langle X, R(LZ, W)Y \rangle + \langle X, R(Z, W)LY \rangle \right], \end{cases}$$

(17) 
$$S(X, Y, Z, W) = \langle LX, S_{L}(Z, W)Y \rangle.$$

PROPOSITION 3. The tensors K and Q each satisfy (12). If L is symmetric, then K' and S satisfy (12).

*Proof.* That K and K' satisfy (12) is clear, since they are the classical Riemann-Christoffel tensors of type 0, 4. Then Q satisfies (12), since K does. Actually K, K', and Q each satisfy the equation

(18) 
$$B(X, Y, Z, W) = B(Z, W, X, Y),$$

but S may not. To show that S satisfies (12), notice that

$$R(X, Y) LY + R(LY, X)Y + R(Y, LY)X = 0$$

by the first Bianchi identify for the connexion D. Hence

$$\langle R(X, Y)LY, X \rangle = \langle R(X, LY)Y, X \rangle$$

and

$$Q(X, Y, X, Y) = \frac{1}{2} \left[ \left\langle LX, R(X, Y)Y \right\rangle + \left\langle X, R(X, Y)LY \right\rangle \right].$$

Then, by Proposition 1,

(19) 
$$K'(X, Y, X, Y) = \langle X, R'(X, Y)Y \rangle'$$

$$= \langle LX, \frac{1}{4}R(X, Y)Y + \frac{1}{4}L^{-1}R(X, Y)LY + \frac{1}{2}S_{L}(X, Y)Y \rangle$$

$$= \frac{1}{2}Q(X, Y, X, Y) + \frac{1}{2}S(X, Y, X, Y),$$

which shows that S satisfies (12), since K' and Q satisfy (12).

Combining Propositions 2 and 3, one defines the plane curvatures K'(P),  $K_Q(P)$ , and  $K_S(P)$  belonging to a nonsingular self-adjoint smooth L by

$$K'(P) = K'(X, Y, X, Y)/A'(X, Y), K_Q(P) = Q(X, Y, X, Y)/A'(X, Y),$$
  
 $K_S(P) = S(X, Y, X, Y)/A'(X, Y),$ 

where X and Y are a base for P.

THEOREM 4. For each plane section P,

(20) 
$$K'(P) = \frac{1}{2} [K_Q(P) + K_S(P)].$$

Proof. This follows from (19).

Theorem 4 gives a natural decomposition of the (semi-) Riemannian curvature K'(P) of the metric in Theorem 3 when  $Tor_L = 0$ . It is also true that both  $R_L$  and  $S_L$  satisfy the first Bianchi identity if  $Tor_L = 0$ .

#### 2. APPLICATIONS AND EXAMPLES

First consider the situation where L is the Weingartern map for a hypersurface M of a flat Riemannian manifold  $\overline{M}$  with metric tensor  $\langle \ , \ \rangle$  and Riemannian connexion  $\overline{D}$ . If we let N be a unit  $C^{\infty}$  normal field on M (which always exists locally), then  $L(X) = \overline{D}_X N$  for X in  $M_p$  (see reference [1]). Since  $\overline{M}$  is flat, the Codazzi-Mainardi equation implies  $Tor_L = 0$ , and the Gauss curvature equation becomes

(21) 
$$R(X, Y)Z = \langle LY, Z \rangle L(X) - \langle LX, Z \rangle L(Y)$$

for X, Y, and Z tangent to M.

For  $C^{\infty}$  fields X and Y tangent to M, we let

$$A_{L}(X, Y) = LD_{X}Y - D_{X}LY,$$

and we verify easily that  $A_L$  is linear over the module of  $C^{\infty}$  vector fields with  $C^{\infty}$  functions as coefficients, which implies that  $A_L$  is a vector-valued tensor. Moreover, since  $Tor_D = 0$  and  $Tor_L = 0$ , we compute

$$A_{L}(X, Y) = L(D_{Y} X + [X, Y]) - (D_{Y} LX + L[X, Y]) = A_{L}(Y, X).$$

THEOREM 5. Let M be a hypersurface of a flat Riemannian manifold  $\overline{M}$  with unit normal N on M, and suppose the total imbedded curvature (det L) of M in  $\overline{M}$  is not zero at m in M. Let P be any plane section of  $M_{\rm m}$  with orthonormal base X, Y. Then

(23) 
$$K'(P) = K_{Q}(P) + K_{A}(P),$$

where

(24) 
$$K_A(P) = \langle A_{L^{-1}}(X, A_L(Y, Y)) - A_{L^{-1}}(Y, A_L(X, Y)), LX \rangle / 4A'(X, Y)$$

and

(25) 
$$K_{Q}(P) = \frac{1}{2} \left( \langle LX, X \rangle + \langle LY, Y \rangle \right).$$

Proof. Using the Gauss curvature equation, one computes

$$2Q(X, Y, Z, W) = \langle X, L^{2}Z \rangle \langle Y, LW \rangle - \langle X, L^{2}W \rangle \langle Y, LZ \rangle$$
$$+ \langle X, LZ \rangle \langle Y, L^{2}W \rangle - \langle X, LW \rangle \langle Y, L^{2}Z \rangle$$

(this relation holds for every Weingarten map L). To compute  $S_L(Z, W)Y$ , one notes that

$$\begin{split} \mathbf{R}_{\mathbf{L}}(\mathbf{Z},\,\mathbf{W})\mathbf{Y} &= \,\mathbf{D}_{\mathbf{Z}}\,\mathbf{L}\mathbf{D}_{\mathbf{W}}\,\mathbf{Y}\,-\,\mathbf{D}_{\mathbf{W}}\,\mathbf{L}\mathbf{D}_{\mathbf{Z}}\,\mathbf{Y}\,-\,\mathbf{D}_{\left[\mathbf{Z},\mathbf{W}\right]}\mathbf{L}\mathbf{Y} \\ &= \,\mathbf{D}_{\mathbf{Z}}\,\mathbf{L}\mathbf{D}_{\mathbf{W}}\,\mathbf{Y}\,-\,\mathbf{D}_{\mathbf{W}}\,\mathbf{L}\mathbf{D}_{\mathbf{Z}}\,\mathbf{Y} + \mathbf{R}(\mathbf{Z},\,\mathbf{W})\mathbf{L}\mathbf{Y}\,-\,\mathbf{D}_{\mathbf{Z}}\,\mathbf{D}_{\mathbf{W}}\,\mathbf{L}\mathbf{Y} + \mathbf{D}_{\mathbf{W}}\,\mathbf{D}_{\mathbf{Z}}\,\mathbf{L}\mathbf{Y} \\ &= \,\mathbf{D}_{\mathbf{Z}}\,\mathbf{A}_{\mathbf{L}}(\mathbf{W},\,\mathbf{Y})\,-\,\mathbf{D}_{\mathbf{W}}\,\mathbf{A}_{\mathbf{L}}(\mathbf{Z},\,\mathbf{Y}) + \,\left\langle\,\mathbf{L}^{2}\,\mathbf{W},\,\mathbf{Y}\,\right\rangle\,\mathbf{L}(\mathbf{Z})\,-\,\left\langle\,\mathbf{L}^{2}\,\mathbf{Z},\,\mathbf{Y}\,\right\rangle\,\mathbf{L}\mathbf{W}\,. \end{split}$$

A similar computation for  $R_{L^{-1}}(Z, W)LY$  yields the formula

$$\begin{split} \mathbf{S_L}(\mathbf{Z},\,\mathbf{W})\mathbf{Y} &= \frac{1}{2} \left[ \mathbf{L^{-1}}\,\mathbf{R_L}(\mathbf{Z},\,\mathbf{W})\mathbf{Y} + \mathbf{R_{L^{-1}}}(\mathbf{Z},\,\mathbf{W})\mathbf{L}\mathbf{Y} \right] \\ &= \frac{1}{2} \left[ \left\langle \mathbf{L^2}\,\mathbf{W},\,\mathbf{Y} \right\rangle \,\mathbf{Z} \, - \, \left\langle \,\mathbf{L^2}\,\mathbf{Z},\,\mathbf{Y} \right\rangle \,\mathbf{W} + \, \left\langle \,\mathbf{LW},\,\mathbf{Y} \right\rangle \,\mathbf{L}(\mathbf{Z}) \, - \, \left\langle \,\mathbf{LZ},\,\mathbf{Y} \right\rangle \,\mathbf{L}(\mathbf{W}) \\ &\quad + \mathbf{A_{L^{-1}}}(\mathbf{Z},\,\mathbf{A_L}(\mathbf{W},\,\mathbf{Y})) \, - \, \mathbf{A_{L^{-1}}}(\mathbf{W},\,\mathbf{A_L}(\mathbf{Z},\,\mathbf{Y})) \right]. \end{split}$$

Thus

$$S(X, Y, Z, W) = Q(X, Y, Z, W) + \frac{1}{2} \langle A_{L^{-1}}(Z, A_{L}(W, Y)) - A_{L^{-1}}(W, A_{L}(Z, Y)), LX \rangle,$$

and (24) follows from this and Theorem 4.

For (25), we use the relation

$$2Q(X, Y, X, Y) = \left\langle L^{2}X, X \right\rangle \left\langle LY, Y \right\rangle + \left\langle L^{2}Y, Y \right\rangle \left\langle LX, X \right\rangle - 2\left\langle L^{2}X, Y \right\rangle \left\langle LX, Y \right\rangle$$

and the fact that  $A'(X, Y) \neq 0$  since  $L_m$  is nonsingular.

COROLLARY. If  $\overline{M} = R^3$  and  $K(m) \neq 0$ , then  $K_O(M_m) = H(m)/2$  and

(26) 
$$K' = H/2 + K_A$$
,

where P = M<sub>m</sub> and H(m) is the mean curvature of M.

In one sense this corollary solves the original problem posed in the introduction, for it relates the (semi-) Riemannian curvature K' of the nonsingular metric  $\langle X, Y \rangle' = \langle LX, Y \rangle$  to the mean curvature. The nature of the invariant  $K_A$  is not yet clear; however, one can obtain an expression for  $K_A$  in the neighborhood of a non-umbilic point.

THEOREM 6. Let M be a smooth surface in  $R^3$  with  $K(m) \neq 0$  at a non-umbilic point m in M. Let h and k be the principal curvatures of M on a non-umbilic neighborhood U of m with h > k and  $K \neq 0$  on U. Let X and Y be  $C^{\infty}$  unit-orthogonal principal fields on U with LY = hY and LX = kX. Then

(27) 
$$K' = \frac{H}{2} + \frac{1}{4K} \left[ (Xh) X \left( \log \frac{h}{k} \right) + (Yk) Y \left( \log \frac{k}{h} \right) \right]$$

on U.

*Proof.* The existence of U, X, Y and the  $C^{\infty}$  nature of h and k on U are shown in [1, Chapter 3, Section 1] where one also finds the formulas

(28) 
$$D_X Y = aX, D_Y X = bY, D_X X = -aY, D_Y Y = -bX$$

with

(29) 
$$a = (Yk)/(h - k)$$
 and  $b = -(Xh)/(h - k)$ .

Using (28), (29), and the relations LY = hY and LX = kX, one computes:

(30) 
$$A_{1}(Y, Y) = b(h - k)X - (Yh)Y,$$

(31) 
$$A_{\tau}(X, Y) = -a(h - k)X - (Xh)Y,$$

(32) 
$$\langle A_{1,-1}(X, A_L(Y, Y)), LX \rangle = -(Yh)(Yk)/h - (Xh)(Xk)/k$$

(33) 
$$\langle A_{L-1}(Y, A_L(X, Y)), LX \rangle = -(Yk)^2/k - (Xh)^2/h$$
.

For example, (30) follows from the equations

$$A_{I}(Y, Y) = LD_{Y}Y - D_{Y}LY = L(-bX) - D_{Y}(hY) = -bkX - (Yh)Y + hbX$$
.

Substitution of (32) and (33) into (23) yields (27).

COROLLARY 1. Let M be a smooth surface in R<sup>3</sup> with constant mean curvature and nonvanishing Gauss curvature on a non-umbilic neighborhood U. Then

(34) 
$$K' = H \left[ \frac{1}{2} + \frac{1}{4K^2} \left\langle \operatorname{grad} h, \operatorname{grad} h \right\rangle \right]$$

on U.

*Proof.* Since U is non-umbilic, h and k (h > k) are  $C^{\infty}$  on U. Since H = h + k is constant, (Zh) = -(Zk) for all vectors Z tangent to U. Hence by (27)

$$K' = (H/2) + (H/4K)[(Yh)^2 + (Xh)^2],$$

and (34) follows.

COROLLARY 2. On a non-umbilic neighborhood of a minimal surface K'=0, thus the second fundamental form defines a semi-Riemannian metric with zero curvature.

One might suspect that the condition D' = D on a surface M in  $\mathbb{R}^3$  is necessary and sufficient for M to be a sphere, and this is indeed the case.

THEOREM 7. If the connexion induced on a complete connected surface by its second fundamental form is the usual Riemannian connexion, then the surface is a sphere.

*Proof.* The condition D = D' implies that R(X, Y)Z = R'(X, Y)Z, hence

$$K' = \langle R(X, Y)Y, X \rangle' / A'(X, Y) = k = \langle R(Y, X)X, Y \rangle' / A'(X, Y) = h,$$

where X and Y are orthonormal principal vectors at any point with L(X) = kX and L(Y) = h(Y). Thus k = h, and all points are umbilies. Since L must be nonsingular for D' to be globally defined, the surface is a sphere.

For the second application of the theory, let M be a Riemannian manifold, and let T be a  $C^{\infty}$  vector field on M. Define the linear-map-valued tensor A on M by

(35) 
$$A_{m}(X) = D_{X}T \quad (all X in M_{m}),$$

where D is the Riemannian connexion. Since D is  $C^{\infty}$ , A is  $C^{\infty}$ . Let G(T) be the natural 1-form on M associated with T via the metric; that is, let

$$G(T)(X) = \langle T, X \rangle$$
.

Then T is *closed* by definition if dG(T) = 0, or equivalently, if A is self-adjoint (see [2]). Whenever A is nonsingular, one can define the associated connexions D'

and D". In addition, if A is symmetric and  $Tor_A = 0$ , then the plane curvatures K',  $K_O$ , and  $K_S$  are defined.

To begin a study of these associated curvatures, let  $M=\mathbb{R}^2$  with its usual metric and connexion D. The following example shows that  $K_S$  and K' are not always trivial.

Example. Let  $\phi = xy^2 + x^2$  and  $T = \text{grad } \phi = (y^2 + 2x, 2xy)$ . If  $X = (g_1, g_2)$  is a vector on  $\mathbb{R}^2$ , then

(36) 
$$A(X) = D_X T = (2g_1 + 2yg_2, 2yg_1 + 2xg_2).$$

Thus A is nonsingular if  $4x - 4y^2 \neq 0$ ; therefore let M be  $R^2$  minus the parabola where  $x = y^2$ . Let X = (1, 0) and Y = (0, 1) be fields on M. Then  $R_A(X, Y)Y = 0$ , since  $D_Y Y = D_X Y = [X, Y] = 0$ . But

(37) 
$$A^{-1}(g_1, g_2) = \left(\frac{xg_1 - yg_2}{2x - 2y^2}, \frac{g_2 - yg_1}{2x - 2y^2}\right),$$

$$A(Y) = (2y, 2x), \quad D_Y AY = (2, 0), \quad D_X AY = (0, 2),$$

and

(38) 
$$R_{A-1}(X, Y)AY = (x, -y)/(x - y^2)^2,$$

while

(39) 
$$A'(X, Y) = 2(2x) - (2y)^2 = 4x - 4y^2.$$

Hence

(40) 
$$K_S = 1/4(x - y^2)^2$$
.

Since R = 0 on M, Q = 0 and  $K_0 = 0$ . Thus  $K' = 1/8(x - y^2)^2$ .

We conclude this study with a theorem that identifies the closed vector fields T on  $\mathbb{R}^2$  for which D' = D.

THEOREM 8. A field T on  $R^2$  induces a symmetric nonsingular map A with D' = D if and only if T is of the form (ax + by + c, bx + dy + e), where a, b, c, d, and e are real constants with ad  $-b^2 \neq 0$ .

*Proof.* Let  $T=(f_1,\,f_2)$ , where the  $f_i$  are  $C^\infty$  real-valued functions on  $R^2$ . Let  $X=(g_1,\,g_2)$  and  $Y=(a_1,\,a_2)$ , where the  $g_i$  are  $C^\infty$ . By Theorem 1, D'=D if and only if  $D_Y A(X)=A(D_Y X)$  for all X and Y. Letting  $g_x=\partial g/\partial x,\,g_y=\partial g/\partial y,$  and taking  $X=(1,\,0)$ , we see that  $A(X)=((f_1)_x,\,(f_2)_x)$  and

$$D_Y A(X) = (a_1(f_1)_{xx} + a_2(f_1)_{xy}, a_1(f_2)_{xx} + a_2(f_2)_{xy}).$$

But  $D_Y X = 0$ , hence  $A(D_Y X) = 0$ . Since Y is arbitrary,

$$(f_1)_{xx} = (f_1)_{xy} = (f_2)_{xx} = (f_2)_{xy} = 0.$$

Similarly, if X = (0, 1), then  $(f_1)_{yy} = (f_2)_{yy} = 0$ . Thus  $f_1$  and  $f_2$  are of the linear form stated in the theorem with the necessary conditions on the constants to assure that A is symmetric and nonsingular.

# REFERENCES

- 1. N. Hicks, Notes on differential geometry, Van Nostrand, Princeton, 1965.
- 2. ——, Closed vector fields, Pacific J. Math. 15 (1965), 141-151.

The University of Michigan