ON THE DIAMETER OF A GRAPH

J. W. Moon

A graph G_n consists of a set of n nodes, some pairs of which are joined by a single edge. The degree of a node x is the number d(x) of edges joining it to other nodes. A graph is connected if it cannot be represented as the union of disjoint smaller graphs. The diameter of a connected graph G_n is the least integer k such that any pair of nodes of G_n can be joined by a sequence of at most k edges, consecutive ones of which have a node in common.

In what follows, n and k denote integers satisfying the inequality n-1>k>2. Let g(n,k) be the least integer r such that if $d(x) \ge r$ for every node x of a connected graph G_n , then the diameter of G_n is at most k. The object of this note is to prove the following result (here [x] denotes the largest integer not exceeding x).

THEOREM.

$$g(n, k) = \begin{cases} \left[\frac{n}{t}\right] & \text{if } k = 3t - 4, \\ \left[\frac{n-1}{t}\right] & \text{if } k = 3t - 3, \\ \left[\frac{n-2}{t}\right] & \text{if } k = 3t - 2. \end{cases}$$

Proof. Let us suppose that k = 3t - 3, where t is an integer greater than 1. We first show that

$$g(n, k) \leq \left[\frac{n-1}{t}\right].$$

To accomplish this we assume the contrary, namely, that there exists a connected graph G_n , the degree of each of whose nodes is at least $\left[\frac{n-1}{t}\right]$ and whose diameter exceeds k. From this we shall deduce a contradiction.

It is easy to see that by introducing additional edges, we can transform G_n into a graph G_n^{I} of the form

$$\langle 1 \rangle - \langle a_{1} \rangle - \langle a_{2} \rangle - \cdots - \langle a_{3t-3} \rangle - \langle 1 \rangle$$

(here $\left\langle j\right\rangle$ denotes a (nonempty) complete subgraph with j nodes and ${j\choose 2}$ edges, and two nodes in different indicated subgraphs are joined by an edge if and only if the two subgraphs are adjacent in our representation), in such a way that the diameter of G_n^{\prime} is k+1 and the degree of each node of G_n^{\prime} is at least $\left[\frac{n-1}{t}\right]$.

Consider such a graph. Clearly, the degree of the first node on the left is a_1 . The degree of any node in $\langle a_3 \rangle$ is $a_2 + (a_3 - 1) + a_4$. Continuing in this fashion,

Received March 6, 1965.

we obtain the following set of inequalities, since by hypothesis the degree of every node is at least $\left\lceil \frac{n-1}{t} \right\rceil$.

$$a_1 \geq \left[\frac{n-1}{t}\right],$$

$$a_2 + (a_3 - 1) + a_4 \geq \left[\frac{n-1}{t}\right],$$

$$a_5 + (a_6 - 1) + a_7 \geq \left[\frac{n-1}{t}\right],$$
...

$$a_{3t-7} + (a_{3t-6} - 1) + a_{3t-5} \ge \left[\frac{n-1}{t}\right],$$
 $a_{3t-3} \ge \left[\frac{n-1}{t}\right].$

Upon adding and simplifying, we conclude that

$$n-t-a_{3t-4}\geq t\left[\frac{n-1}{t}\right]>n-1-t.$$

But this is false, since $a_{3t-4} \ge 1$; hence, the above upper bound for g(n, k) is established.

If we can exhibit a connected graph G_n the degree of each of whose nodes is at least $\left[\frac{n-1}{t}\right]$ - 1 and whose diameter is k+1, then it will follow that

$$g(n, k) \geq \left[\frac{n-t}{t}\right].$$

To do this, consider a graph of diameter $\,k+1\,$ whose structure is as illustrated above. Let

$$a_2 = a_4 = a_5 = a_7 = a_8 = \cdots = a_{3t-5} = a_{3t-4} = 1$$
.

If the remaining nodes can be distributed in such a way that a_1 and a_{3t-3} are at least as large as $\left[\frac{n-1}{t}\right]$ - 1, and each of the remaining t - 2 integers a_i is positive and at least as large as $\left[\frac{n-1}{t}\right]$ - 2, then it is clear that the degree of each node in the resulting connected graph will be at least $\left[\frac{n-1}{t}\right]$ - 1. Upon counting the number of nodes needed in the 3t - 1 classes, we see that these requirements can be satisfied if

$$(2t-1)+2\left(\left[\frac{n-1}{t}\right]-1\right)+(t-2)\left(\left[\frac{n-1}{t}\right]-2\right)=t\left[\frac{n-1}{t}\right]+1\leq n$$

when $k \le n-4$, or if $3t-1 \le n$ when k=n-3 or n-2. But these inequalities are certainly true, and hence the lower bound for g(n, k) holds.

The required result for the case k=3t-3 now follows if we combine these bounds for $g(n,\,k)$. The proofs for the remaining two cases involve only minor modifications in the above argument, and therefore we omit them.

University of Alberta Edmonton, Alberta