ON THE DIAMETER OF A GRAPH

J. W. Moon

A graph G, consists of a set of n nodes, some pairs of which are joined by a
single edge. The degree of a node x is the number d(x) of edges joining it to other
nodes. A graph is connected if it cannot be represented as the union of disjoint
smaller graphs. The diameter of a connected graph G, is the least integer k such
that any pair of nodes of G,, can be joined by a sequence of at most k edges, con-
secutive ones of which have a node in common.

In what follows, n and k denote integers satisfying the inequality n - 1 >k > 2,
Let g(n, k) be the least integer r such that if d(x) > r for every node x of a con-
nected graph G, , then the diameter of G,, is at most k. The object of this note is
to prove the following result (here [x] denotes the largest integer not exceeding x).

THEOREM.

g(n, k) = [n;l] if k=3t - 3,

B

] if k=3t -4,

[nt-z] if k=3t -2.

Proof. Let us suppose that k = 3t - 3, where t is an integer greater than 1. We
first show that

g, k) < [2EH]

To accomplish this we assume the contrary, namely, that there exists a connected
graph G, the degree of each of whose nodes is at least [n_;_l] and whose diame-
ter exceeds k. From this we shall deduce a contradiction.

It is easy to see that by introducing additional edges, we can transform G, into
a graph G, of the form

(1) —ap — () — - —ag3) — (1)

(here <3> denotes a (nonempty) complete subgraph with j nodes and (Jz) edges,

and two nodes in different indicated subgraphs are joined by an edge if and only if
the two subgraphs are adjacent in our representation), in such a way that the diame-

ter of G; is k+ 1 and the degree of each node of G is at least [n; 1 ] .

Consider such a graph. Clearly, the degree of the first node on the left is a;.
The degree of any node in ( a3> is a, +(a; - 1) +a,. Continuing in this fashion,
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we obtain the following set of inequalities, since by hypothesis the degree of every
node is at least [n_—l] .

t
n-17
a) Z[ I
n-lw
a, +(az -1)+ay Z[ n ,
n-17
a5+(a6—1)+a.7 Z [ T 5

n-1
asg_7+(aszp g -1)+asz 5> [ ] )

t
n-1.
a3t-3 > [ i ] .
Upon adding and simplifying, we conclude that
n-1.
n-t—a3t_42t[ T ]>n—1—t.

But this is false, since as;_4 > 1; hence, the above upper bound for g(n, k) is estab-
lished.

K we can exhibit a connected graph G, the degree of each of whose nodes is at
n-1
least [

T ] - 1 and whose diameter is k + 1, then it will follow that

g, k) > [nt-t].

To do this, consider a graph of diameter k + 1 whose structure is as illustrated
above. Let

a, =ay =ag=a;=2ag= """ = az 5= az 4=1.

If the remaining nodes can be distributed in such a way that a; and a3,_3 are at
least as large as [ -nt_—l] - 1, and each of the remaining t - 2 integers a; is posi-
tive and at leasf as large as [n_;_l] - 2, then it is clear that the degree of each
node in the resulting connected graph will be at least [n t_ 1
the number of nodes needed in the 3t - 1 classes, we see that these requirements

can be satisfied if

e nea([52] 1)+ ([252] -2) = o[22 +r <

] - 1. Upon counting
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when k <n -4, orif 3t -1 <n when k=n - 3 or n - 2. But these inequalities are
certainly true, and hence the lower bound for g(n, k) holds.

The required result for the case k = 3t - 3 now follows if we combine these
bounds for g(n, k). The proofs for the remaining two cases involve only minor modi-
fications in the above argument, and therefore we omit them.
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