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1. INTRODUCTION

The problem of representing a finite group G by matrices over an integral
domain R can be studied through the classification of finitely generated RG-modules
that are torsion-free over R. (By an RG-module, we mean a finitely generaged RG-
module that is torsion-free over R.) However, such classification is rather difficult,
since several powerful theorems (such as the Jordan-HSlder Theorem, the Krull-
Schmidt Theorem, and Maschke’s Theorem) do not hold for RG-modules in general.

For the case where G is a cyclic group of prime order p and Z is the ring of
rational integers, a complete set of nonisomorphic indecomposable ZG-modules was
determined by Diederichsen [2] and Reiner [6]. Recently, M. P. Lee [5] obtained a
full set of indecomposable ZG-modules for any dihedral group G of order 2p. The
present work gives a complete classification of the integral representations of non-
abelian groups of order pq, p and q being distinct primes. In this case, the defin-
ing relations for G are as follows:

at=pP =1 and ab=1b"a,

where p > q, q divides p - 1, and r is a primitive qth root of unity modulo p. The
results of this paper include Lee’s as a special case.

For any rational prime ¢, define Z, = {t/s:t,s € Z, (s, £)=1}. W1th each
ZG-module M we associate a Z'G-module M' = Z' X, M, where

z'=2,NZ, = {t/s:t,s € Z, (s, pq) = 1}.

Then, since p and q are the only primes dividing (G: 1), M is indecomposable as a
ZG-module if and only if M' is 1ndecomposab1e as a Z'G-module [8]. We first de-
termine a full set of 2+ q + 24-1 4 24 nonisomorphic 1ndecomposa.b1e Z'G-modules.
Using these, we obtain a full set of indecomposable ZG-modules. We compute the
number of such modules in terms of the class number of certain algebraic number
fields and the indices of certain unit groups.

Finally, using the resulis of M. Rosen [9], we establish a homomorphism ¢
from the projective class group of ZG onto the direct product of two ideal class
groups. We then give a necessary and sufficient condition for this homomorphism
to be an isomorphism, and we show that ¢ is not always an isomorphism.
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2. Z'G-MODULES
Let M be a Z'G-module, and let
2,(b) = 1+Db+b° + - +bP! € 2'G,

Define M, = {m e M: &p(b)m = 0}. Then My is a Z'G-submodule of M, and the
short exact sequence of Z'G-modules

0> M, > M — M/M, — 0

splits over Z'.

Since ®p(b)(b - 1)m = 0 for all m € M, we see that (b - 1)m € Mgy. Hence b
acts trivially on M/M,, and we can determine the structure of M/M, as a Z'G-
module by simply considering it as a Z'<a> -module ( (a} denotes the cyclic
group generated by a). By the results of Reiner [6], the only indecomposable
7' <a) -modules are 7', Z'[6], and Z'<a> , where 0 is a primitive qth root of
unity.

Next, let {m = bm for m € M. Then Mg can be considered as an S'-module,
where S'= Z'[¢]. Since ab = b%¥a and r? =1 (mod p), we have the relations
a-fm =abm =b*am = ¢{*am for m € My. Hence a acts as a semilinear trans-
formation on the S'-module Mg, with the induced Z'-automorphism ¢ on S' given
by 0: £ — ¢~

Definition 1. Let A be the free S'-module generated by the elements of <a> .
Define multiplication in A by

gat-ga = £ &, am 't (&), &, €8');

then A is the twisted group ving of < a) with coefficients in S'.

By a A-module, we mean a left A -module that is finitely generated and torsion-
free over S'. Each A-module may be considered as a Z'G-module (annihilated by
&p(b)) on which b acts as multiplication by £. The converse is also true, since
Z'G/(®p(b)) and A are isomorphic to each other as rings.

Therefore the problem of determining all indecomposable Z'G-modules is now
reduced to finding all nonisomorphic indecomposable Z'G-extensions of A-modules
by Z' <a> -modules, after the A-modules themselves are determined.

Definition 2, Let K = Q(£); an S'-ideal A of K is said to be ambiguous if and
only if A% = A,

Let A be an ambiguous S'-ideal in K, and define a-§ = 3;’0 for all £ € A. Then
A is an irreducible A -module, and every irreducible A -module is of this type.
Since every A-module is A -projective [9], a A-module is indecomposable, if and
only if it is irreducible. Also, it is easy to see that two indecomposable A -modules
A and B are A-isomorphic if and only if there exists a nonzero p € K such that
p% = p and B = pA.

We note that the only prime ideals in S' are those lying over p or q. Moreover,
pS' = (¢ - l)p'IS' and ¢S'= Q) *Q; *** Qp-1, where the Q; are distinct prime ideals
in S'. Hence P = (£ - 1)S' is the only prime ideal of S' fixed under o, that is,

PY = p. Since p? and S' are A-isomorphic, it is easily seen that S', P, P%, --- pa-1
constitute a complete set of nonisomorphic indecomposable A -modules [9].



NON-ABELIAN GROUPS OF ORDER pq 233

Throughout this section,let My be a A-module, and M; a Z'<{a) -module. For
simplicity, we write Ext for Extl,.. Then

Ext (M;, My) € Hom:(Z'G, Hom,: (M, My)).
If f € Ext(M;, M), then
fp'r(ml) = pf,r(ml)+fp('rm1)

for all p, 7 € G and all m; € M;. Each f € Ext(M;, Mj) determines a Z'G-
extension module M, denoted by (Mg, M;; f), such that M and My @®z: M; are Z'-
isomorphic with the action of p € G given by p(mg, m;) = (omy + f,(m;), pm,).
Hence to find all extensions of Mg by M;, we must first determine Ext (M, My).
However, since Ext is an additive functor, it suffices to determine Ext(M;, M,)
explicitly for indecomposable Mg and M, .

Consider the exact sequence

(1) 01> 2G5 2Z — 0
of Z'G-modules, where j(a) = j(b) =1 and I is the augmentation ideal in Z'G. One
easily finds that I=Z'G(b - 1)+ 2'<{ad (a - 1).

THEOREM 1. Let S'=2Z'[¢], P=(¢ - 1)S'. Then

(i) Ext(Z', P) =S'/P,
(ii) Ext(Z', S') =0,
(iii) Ext(Z', P™ =0 for 2<m <q - 1.

Proof. Let % denote the A-module P™ for some m (0<m <q -1, PO =§'"),
Then it follows from (1) that

.* .*
0 — Homy g (Z', %) Hom 5 (Z'G, %)= Hom,,; (I, %) — Ext(Z', %) — 0

is an exact sequence of Z'-modules. Clearly, the i*(Hom (Z'G, %)) are isomorphic
to % as Z'-modules, the isomorphism being given by i*(f) — £(1). Let

A* = oA ®ZIQ;

then A* £ K = Q(¢) (as QG-modules). Further, the augmentation ideal I* in QG is
I1® 71 Q. Thus, for each f € Hom(I, %), {® 1 lies in Hom (I*, %*) and can be ex-
tended uniquely to f* on QG, since A* is an injective QG-module. Let f*(1) = ay.
Then a; € A*, f(x) = xa; for each x € I, and a, is uniquely determined by f. Now
define u'={a e y*: (@ -1)a e ¥ and (b -1)a € A }; then Hom (I, %) and o'
are Z'-isomorphic. Indeed, f — a¢ is the desired isomorphism. Thus,

(2) Ext(Z' ) £ %'/% as Z'-modules .

Now we shall show that %' =S' for m=1 andthat A'= %A for m #1
(0<m < q -1). To this end, we recall that ac = % and ba = {a for each @ € A'.
Thus %«/(€ -1)D A' D A. Further, for ¢ € A /(¢ - 1), a € A' if and only if
a% -o e . But @ € /(¢ - 1) implies a = (£ - 1)m'1uO for some u, € S'. Thus
a € %' if and only if
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(€ - )™ p™u] = (¢ - 1)™quy (mod P,

where n = (¢ - 1)0"1 =1+&+ C2+---+ ¢*. Hence o € %' if and only if
7™ uf§ =nuy (mod P). Now uf =u; (mod P) for each u, € S', and 5 =r (mod P).
Thus @ € %' if and only if (r™ - r)uy = 0 (mod P).

If m # 1, then since r is a primitive gqth root of unity (mod p), r™ - r ¢ P.
This implies upg € P, and thus o € %' if andonly if o € %, that is, %A'=< Q.

If m=1,then r™ -r=r -r=0¢€ P. Thus in this case uy is arbitrary in S',
and %' =S'.

Using (2), we have the desired result.

Similarly, using the fact that the different of K/Kg is (¢ - 1)q'1 S', where Kg is
the field of fixed elements under ¢, we may obtain the following results, where, as
before, 6 denotes a primitive qth root of unity:

Ext(z'[6], P) = 0,

Ext(Z'[0], 8') = s'/P,
(3)
Ext(z'[6], P7) £ S/P (2<m<q-1),

Ext(z'<a), P™) E£8/P (0<m<q-1).

Remark 1. Theorem 1 and (3) remain valid when Z' is replaced by Z, or
Z.. We further note that since p is a unit in Z, Ext] (M;, My) = 0 for any
q q ZqG 0

Aq -module My and Zg {a) -module M), where Aq = A @1 Zq.
Remark 2 (Reiner [1, (81.8)]). Let Mg, M; be indecomposable, and let

f, g € Ext(M;, Mp).

Since Homgz g (M1, Mg) = 0, we have the isomorphism (Mg, M;; f) £ (Mg, M;; g)
if and only if there exist ¥ € Homy:(M;, My) and automorphisms ¢, and ¢, of
M; and M, , respectively, such that

¢ofp(m1) - gp(fi)l(ml)) = py(m,) - Y(pm,)

for all pe G and m; € M;.

Now, suppose Mg, M; are indecomposable; using the relation ab = b*a, we
obtain
(4) (Cr = 1)fa(m]_) = (fb(ml)c - nfb(aml) (ml € Ml)’

where 1 = (¢ - 1)0'1 . Since a and b form a basis for G, it is clear from (4) that
fp is completely determined by f},. Let f, g € Ext(M,, M) satisfy the condition in
Remark 2 for p=b and all m; € M;. Then clearly the condition is satisfied for all
p < G; and (M09 M] 3 f);(MO; Ml; g)-

If M; is cyclic with generator m, we obtain from (4) the relation

f (am) = n~ ' (£,(m))° (mod PM,).
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Hence f(m;) is determined modulo PM o by fy(m), for each m; € M,, if
M; =2 <a> ‘m. In the case where M; is indecomposable, M; is cyclic with gen-
erator 1. (We recall that the only indecomposable Z'{a) -modules are Z', Z'[6],

and z2'{a).)

With the above discussion, the following proposition follows immediately, since
Homgy 1 (Ml 5 Mo) = 0.

PROPOSITION 1. Let f, g € Ext(M,, MO). Then (MO, M,;; )= (MO, M,; g) if
and only if therve exist automorphisms ¢gand ¢ of My and M, respectively, such
that

¢ fp(my) - gi(¢1(m;)) = 0 (mod PM,)
for all m; € M; . Fuvther, if M, is cyclic with genevator 1, then
(Mg, Mp; f) & (Mp, M;; g)
if and only if
b (£, (1)) - g (¢,(1)) = 0 (mod PM,)).

Again, let My, M; be indecomposable. Then any automorphism of M, is a
multiplication by a unit in Ry = K5 N S'. We recall that Ext (M;, Mg) is either
Z/pZ or 0. Further, each nonzero element in Z/pZ is represented by a unit in
Z' C Rj . Thus by Proposition 1, the following result is clear.

PROPOSITION 2. Suppose Mg, M; are indecomposable and Ext (Ml s MO) # 0;
then there exists a unique indecomposable Z'G-extension of Mg by Mj.

Now let Zp be the ring of p-adic integers in Q, Qp the p-adic completion of Q,
and Zi'; the p-adic valuation ring in Qp. Then, since q divides p - 1 and (by
Hensel’s Lemma) Z’f, contains every qth root of unity. Further, by Swan [10] or
Reiner [7], the Krull-Schmidt Theorem holds for Z}G-modules.

Definition 3. A Z;G—module N is induced from a Z,G-module M if and only
if N and Z; ®zpM are isomorphic as ZﬁG—modules.

Remark 3 (A. Jones [4]). A ZpG-module M is indecomposable if and only if
Z; ®ZP M has no induced direct summand.

Thus we should like first to determine all indecomposable Z%XG-modules. Let
K* = Q,(¢), and let SI”; = Z§ [¢] be the ring of integers in K*. Then clearly

*

Sp,

P* = (¢ - 1)sf, P2, -, PR
form a complete set of indecomposable Zi';G—modules on which b acts as multiplica-
tionby £ and a actsas o: £ = €T,

Let 69 =1, 61, *=-, 64_1 be the gth roots of unity in Zg, ordered so that
6; =r' (mod p). We denote by W; the Zi‘;G—module Z§ on which b acts trivially
and a acts as multiplication by 6;. It is easily found that {Wi: 0<i<q- 1} is a
complete set of indecomposable Z;G-modules on which b acts trivially.

Remark 4. Let H = <b> , bP = 1. Since the Krull-Schmidt Theorem holds for
ZXG-modules and since p does not divide (G: H), it follows [3] that every indecom -
posable Z;G—module is isomorphic to a direct summand of LG for some inde-
composable Z;H—module L. Let M be an indecomposable Z;G—module such that
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M|HZ L)@ @ L,
where each L; is an indecomposable Z*H module. Then M is a direct summand of
some L

Smce Z; z3[¢], and Z;H form a full set of indecomposable Z*H modules, Re-
mark 4 yields the Z*G -isomorphisms
*G ~
(5) Zp EWoOW, @ OWyy,
G ~ 2 -
{zi[t}” 2 sf@Pr@ P @ - @ P!,

As in the proof of Theorem 1 we have for each e (0 < e <q - 1) the relations

Ext(W,_,, P*¢) = s§/P* = Z/pzZ,
(6)
Ext(W;, P**) = 0 foreachiz#e-1 (0<i<q-1).

Further, we may easily show (as in Proposition 2) that for each e there exists a
unique indecomposable extension of P*¢ by W, _;, which we denote by V..

Let Ay, = Z, @z A. Then (see [9] ) the sequence of Z,G-modules
0— Ap — Z,G — Z,{a) — 0

is exact, and

Ap S, @P@PP @ - @B,
where P = ¢ - 1)Sp . From this and Remark 1 we obtain
(7) {Z3H}C 2 2= Vi@V @ @DV, .

By Remark 4,the following collection of Z*G modules is a complete set of inde-
composables:

{wi:0<i<q-1}, {P*:0<e<q-1, P*°=gf}, {v.:0<e<q-1}.

Let {Nt: 1<t < Zq} be the set of all distinct direct sums (including zero) of
subsets of {P?, P!, P2 ... Pa-l} arranged so that none of N;, N,, -+, N,q - 1
contains P! as a direct summand.

THEOREM 2. For eacht (1 <t< 291y there exists a unique indecomposable
Z ,G-extension of Ny by Z,[0].

Proof. Let X = (N, ZP[G]; f) be an extension of N, by ZP[O]. Then (say)

k @ k
N,= 2 DP°% and f= 21,

i=1 i=1

where f; € Ext(Z,[6], P°l) (1 <i< k). If some f; is 0, then clearly P®i splits off
as a d1rect summand of X. On the other hand, suppose f; # 0 for each i; tensoring

with ZI";, we have the isomorphism
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k
x* = (N}, 2, [6]%; 271®¢%).

i=1

Since 1 ® f; # 0 for each i (1 <i <k), the following is a decomposition of X* into
indecomposable summands:

*es @
X XU @ Lw, 10602, W,
i=1 i-1 ’ ro

where j ranges over all integers between 1 and q - 1 distinct from each e;. If X
is decomposable, then, since Zj, [9}! is irreducible, some P i must split off as a

direct summand. It follows that P °i is a direct summand of X*. However, this
contradicts the Krull-Schmidt Theorem for Z;G-modules, so X is indecomposable.

To show the uniqueness of the extension for each e # 1, we recall that

1 _ey ~
EthpG(zP[e], P® = Z/pZ.

Assume, for fixed t, that X is indecomposable, so that f; # 0 for each i; then,
since 1 € ZP[G], we see that

1

(f;),(1) = s;m;  for some m; and some s; (m; € peL m; ¢ peit 1<s, <p-1).

By Proposition 1, to determine the isomorphism class of X one need only consider
the behavior of f;, at 1. Define ¢: N, — N, by

= i 5Ci
qs(al,az,---,ozk)— (slozl,szozz, ,skozk) (ozieP ).

Since s; is a unit in Z, for each i, ¢ is clearly an automorphism of N,. Let
X, = (N, ZP[B]; g), where

k k @ o-

g= Zg in 2 Ext(z,[0],B)
i=1 i=1

and (g;),(1) = m; . Then obviously ¢gy(1) - £,(1) =0 (mod ﬁNt). Thus, by Proposi-

tion 1, X £ X,. This proves the theorem.

Consider the set & of ZPG—modules
~ o~ ~ag-1 ~
g = {ZP?SP’P’ PZ;".JPq ’ [P7 ZP]! Xl)“.;XZq"l}y

where [ﬁ, ZP] denotes the unique indecomposable Z._G-extension of P by Z,. So
far we have shown that each module in & is indecomposable. Clearly no two
modules in 4 are Z,G-isomorphic. Further, with the repeated use of Remark 3,
we can easily (although with some tedium) obtain the following theorem.

THEOREM 3. The set J of 2a-1 4 q -+ 2 distinct ZpG-modules is a complete
set of nonisomovphic indecomposable ZpG-modules.

This completes the investigation of the localization at the prime p.
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When localized at q, p is a unit in Z; . Using Remark 1, we can then easily
show that

{zq, 24l0], 2,<a>, 54 = 2,[¢]}

forms a complete set of indecomposable Z 4G-modules.

Remark 5 (Reiner [8] ). A Z'G-module M is decomposable if and only if there
exist nontrivial decompositions

ZPM=LP(-DX and ZqM=Lq@Y

such that Q® 7z, L, = QX 74 L.

Let {N,: 1<t<2%} ve defined as before, with P = (¢ - 1)S' replacing P. Re-
call that N, does not contain P for 1 <t < 2971 and write

k
@ ..
N, = 2 P,

i=1

-1
THEOREM 4. For each t (1 <t < 2% ") there exists a unique indecomposable
Z'G-extension X of N; by Z'[0]. Furthermove, for each t (1 <t < 29) there
exists a unique indecomposable Z'G-extension Yy of N; by Z'{a.

Proof. Use Remark 5 and the fact that each nonzero element in Z/pZ is repre-
sented by a unit in Z'.

Let [P, Z'] denote the unique indecomposable extension of P by Z'.
THEOREM 5. The set of Z'G-modules

Y, -, ! }

-1
{Zly S" P, '":Pq 3[P’ Z']’ Xll: e, X 1> 29

1
2a-17

is a complete set of nonisomorphic indecomposable Z'G-modules. The number of
indecomposables is thus 2+ q+ 2971 + 29,

Proof. Use Remark 5 and the information we obtained on the indecomposable
ZPG- and Zq G-modules. We omit the details.

3. ZG-MODULES

Let S = Z[¢], where ¢ is a primitive pth root of unity; further, let o be the Q-
automorphism of K = Q(¢) of order q defined by the relation o: £ — ¢*, where
r9 =1 (mod p). Let A be the twisted group ring of {a ) with coefficients in S (we
note that the A in Section 2 has coefficients in S'). Let K denote the field of fixed
elements in K under o, and let Rog=KgNS. Let P=({ - 1)S (the P in Section 2
is (£ -1)8"), P =P NRy. Let K'=Q(6), let 6 be a primitive qth root of unity,
and let R' be the ring of algebraic integers in K'. Finally, let hy and h' denote the
ideal class number of Ry and R', respectively. Then the following three results are
obtained as in Section 2.

(I) Each ZG-module is a ZG-extension of a A-module by a Z <a> - module.
(I) Let A} =Ry, A,, *-+, Aho be a setl of vepresentatives for the ideal classes
in Ry ; let P® be consideved as a N-module by a-§ = £9 (¢ € P®). Then
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{P°A;1<e<q-1, 1<j<hg}

is a complete set of nonisomovrvphic indecomposable N -modules.

(III) Let Cy, C,, **+, Cy,1 be a set of representatives for the ideal classes of
R' = Z[0]. Each C; is considered as a 7 {a) -7nodule by a-£ = 6 (£ € C;).
Fuythey, for each i, fix v; € C; such that y; ¢ (6 - 1)C;. Denote by (C;, v;) the
7 {a -module C; ® Z, wheve a(, n) = (0¢ +v;, n) for each & e C; and each
ne 7. Then, since ( a> is a cyclic group of prime order q,

{Z7 C] b CZ; T Chla (C]_ ’ 71)3 (Czy 72); ."’ (Ch" 'yhr)}

is a complete set of nonisomovrphic, indecomposable Z < a> -modules.

Now let {Nt: 1<t<L Zq} be defined as in Section 2, with P = (£ - 1)S. Write

k@ ..
N, = 20 Pel. Let B,, B,, -, Bk vbe a set of Ry-ideals, and let [B] denote the
i=1
k
R, -ideal class of Il B;. Let
i=1

k@
N, (8] = .E P

i=]

€5 B,

1

Then by a result of M. Rosen [9], a full set if invariants of the isomorphism class
of Ni [p] consists of e, -, e, and [B].

PROPOSITION 3. For each t (1 <t < 2%7!), each Ry-ideal class [Bl, and each
R'-ideal class [C], theve exists an indecomposable ZG-extension of Nt’[B] by C.
Fuvther, for each t (1 <t < 29) there exists an indecomposable Z.G-extension of
N [B] by (C, y), wheve y € C and v ¢ (8 - 1)C.

Proof. A ZG-module M is indecomposable if and only if Z' ® M is indecom-
posable as a Z'G-module [8]. From this and our results for Z'G-modules we can
easily show, for each Rg-ideal class [B], the existence of an indecomposable ZG-
extension of Ny [g] by Z[6] for each t (1 <t < 29-1) and the existence of an in-
decomposable extension of N; [g] by Z a) for each t <t < 2%. For any other
ideal class [C] in R', we may take the representative C to be an integral ideal such
that CN Z = (s) and (s, p) = 1. I f € Ext, ;(Z[0], N, [p]) is such that
(Nt’ B] Z[6]; f) is indecomposable, then, using the restriction of f to the above
chosen ideal C, we find that (N; [g], C: f|C) is also indecomposable. Furthermore,
since (s, p)=1, (C, v) and (C, ’sg are isomorphic as Z<{a > -modules. Define
p: (C, s) — Z<a.> such that p(c, n) = (c, ns) for all ¢c € C and all n € Z. Then p
isa Z <a> -map, embedding (C, s) in Z <a> . Using this embedding p, we may
easily show the existence of an indecomposable ZG-extension of N¢ [B] bY (C, s).

Let Z = Z/pZ, Z" =7 - {0}. Let U be the set of units in Ry . Then, since
Ry=Ry/PyZ7Z, U is a multiplicative subgroup of Z*,

PROPOSITION 4. For each Rg-ideal class [B), theve exist exactly (Z*: U)
nonisomovrphic indecomposable ZG-extensions of PB by Z.

Proof. We may assume B to be integral and relatively prime to Py = P N Ry .
Let f € EthIG (Z, PB), and let M¢ BT (PB, Z; f). Then clearly M, [B] is inde-
composable as a ZG-module if and only if f # 0.
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Let £,(1) = m, where m, € PB, m, ¢ P®B, and ¢ € Z*. Let

g € Extl 7z (Z, PB)
be such that gb(l) = sm, for some s € Z*. We shall show that then
(PB, Z; f) = (PB, Z; g)

if and only if there exists u € U such that s =uf (mod p). By Proposition 1,
My, [B]— Mg B %n? and only if there ex1st automorphisms ¢g of PB and ¢; of Z
such that qbofb(l g,(¢1(1)) is in P2B. However, the only ZG-automorphisms of
Z are the identity map and the map ¢: ¢(1) = - 1. The ZG- automorphlsms of PB
are given as multiplications by units in Ro. Hence Mg [B]= M, | [B] if and only if
there exists a unit u € Ry such that

ufy (1) - g,(¢(1)) = ufm; + smg € PZB.

That is, Mg, [B] Mg,[B] if and only if ul =+s (mod p). Since +1 € U, there are
exactly (Z*: U) nonisomorphic indecomposable ZG-extensions of PB by Z.

Define 5 = (£ - 1)1-0 (note that this is the reciprocal of the value assigned to 7

: 2 eee 4 gi-1
in (4) of Section 2). Then 7 is a unit in S. Further, let p) = pltotoft e toi=t

Using (4), we obtain for My a A-module,
() £,(05-1) = f,(al-1) = nDalf (1) (mod PM,),
(8) where f € Ext(Z[6], M)
(ii) £ (at-1) = 1M alf, (1), where £ € Ext(z <{aD, M,).

Now let
q-2 q-1
B:E z; 67 (or{%:Eziai,zieZ)
i i=0
be a unit in Z[8] (or in Z < a », respectively). Then by (8) we have the congruence
£ (8-1) = Z)zin(i) a’f (1) (mod PM,).
1

Suppose M= P®B for some e (0<e<q - 1) and suppose B is an Rj-ideal
relatively prime to P; then al acts on My as ¢'. Thus

£.(8+1) = Dz, 4@ (£, (1)°" (mod P B).

Since P’E/Pe+1 S/P =7, o induces the identity map on P¢/P¢t! | Hence
(£, (1)) % = £,(1) (mod p°*1B) and
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qg-1
fb(ﬁ' 1) = ?1 z; ’r;(i)) fb(l) (mod Pe"_l B).

Define
q-2
Uy = {uB € Z*: ug = 27 zin(i) (mod P),
i=0
q-2
where g = 27 z; 0 is a unit in Z[6]}.
i=0
Also, define
q-1
ﬁa = {uB € —Z-*: u’B = E Zi'r}(i) (mod P),
i=0

-1 i — —_
where B = E?zo z; a' is a unit in Z <a > }. Then clearly Up and U, are multiplica-
tive subgroups of Z*. The following Lemma can easily be obtained.

k
@D ey
LEMMA 1. LetM=2, P ', where 0<e; <q-1 foreach i. Let ¢ be a
i=1
Z2G-automovphism of M. Then there exist aj , a,, **+, @ in Ry and a unit u € R

such that
(1) u=0oy o, -y (mod Py), wheve Py=P N R,

(ii) ¢(xy, x5, ==+, X)) = (@1 %), @ X, , ***, o % ) (mod PM) for each
(Xl, Xpy "0 Xy ) € M.

_ LEMMA 2. Let diag By, B, ***, B) be a k Xk diagonal matrix over
Ry =Ry/Py. Let B; be a coset vepresentative of B; for each i. Suppose there

exists a unit in Ry such that Hli(=1 B; =u (mod P,). Then the matrix

diag(El ’ EZ’ "ty _B—k)
can be lifted to a nonsingular matrix (aij)l <i, j<k over Rg such that

(i) a@;; =B; (mod Py) for each i (1 <i<Kk), and
(ii) ;= 0 (mod P) for each (i, j) with j <i.
Again the proof is rather straightforward, and we omit it.

We remark that by the proof of Lemma 1 the matrix (« ij) defined in Lemma 2
represents a ZG-automorphism of M. Thus Lemma 2 gives us the converse to
Lemma 1.

For each positive integer n, define

U,}.

THEOREM 6. Let [B] be an Ry-ideal class such that [B] = [Illf=l B.]. For
each t (1 <t<29°1) let

ﬁ(gn) = {":5s €Uy} and ﬁ‘,(:l) = {s":s ¢
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k

€j
Nt,[B] = El P Biio.
l=

Then for each Z[6]-ideal class [Cl, there are exactly (Z*: -ﬁﬁg{) ) nonisomovphic
indecomposable Z.G-extensions of Nt, [B] by C.

Proof. Let (Ng [B] Z[6]; £) be indecomposable. By the result of (8), if

g=21" 2z 6" isaunit in Z[6], then
q-2
£(8-1) = Z)O 2,7 a'f,(1) (mod PN, [5]).
1:

We may assume B; to be relatively prime to Pp = PN R for each i. Furthermore,

—_ e: e;+1
£,(1)=(s;m;,s,m,, -=-, s, m ), where s; € Z* and m; e P *, m;y ¢ P ' . We
recall that o induces the identity map on Pei/ Pei+1 for each i, and that a acts as
the automorphism o on Nt, [B] Thus

q-2
f,B-1) = 20 zin(i)) f,,(1) (mod PN, [B])'
i=0

1]

: e ygi-l
(Recall that 7 = (¢ - 1)} and 5{}) = pl+o+=- 07 r! (mod P).) Let

-2
sg =28y z;n'". Then

q-2
sge Ug, sg =2 zir' (modP), f,(p-1)= s fy(1) (mod PN, [g]).
i=0

Moreover, suppose (Nt,[B]’ Z[0]; g) is also an indecomposable extension. Then
gp(1) = (¢ m,, *+-, £, my ), where ¢, € Z* for each i. By Proposition 1 the two
extensions are isomorphic if and only if there exists an automorphism ¢ of N t, [B]
such that ¢g (1) - f,(B+1) € PNt’[B]. But by Lemmas 1 and 2, ¢ is a ZG-auto-
morphism of Ng, [BL if and only if there exist o, a,, -, @ in Ry and a unit

u € Ry such that I'_; @, =u (mod PO) and

¢g,(1) = (@, 4,m;, a, 0, m,, -, & ¢ m) (mod PNt,[B])‘

Hence the two extensions are isomorphic if and only if there exist sg € Ug, u € T,
oy, 05, *++, ;. in Ry such that

() Eiﬂi = sg-s; € Z* for each i (1<i<k) and
k

@ II o, = u.
i=1

We shall show that the above conditions are satisfied if and only if

k k
II 2, = I s; (modﬁ'—ﬁ(gk)).
i=1 i=1
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The “only-if” part is trivial. To show the sufficiency, suppose

k k
g; = s; (mod U -ﬁ(k) );

i=1 i=1

then there exist u € U and sg € Uy such that
k k
- =k
.]._.I::l ’Qi = U'SB H Si'
1:

Let a; € Ry be such that a; = 53 85 -ﬂi'l for each i (2 < i<Kk). Further, let
a1 € Ry be such that

k -1
_ --1 —
Oll=u '(II ai .
i=2

A simple calculation shows that conditions (I) and (II) are satisfied by the choice of
the ai.

Hence we have exactly (Z*: ﬁ-—ﬁgk)) indecomposable extensions of N, [g) by
z[o]. '

For each ideal class [C] in Z[#], choose C as in Proposition 3 and use the
natural embedding of C in Z[60] to get the desired result.

PROPOSITION 5. For eacht (1<t <2%) let N, 1g5] #0 be defined as in
Theovem 6. Then for each ideal class [C] in Z[8], theve ave exactly (Z*: U ngk) )
nonisomorphic indecomposable ZG-extensions of N; [B] by (C, s), wheve s € C and

s ¢ (6 - 1)C. (We recall that (C, s) denotes the Z {a) -module C + Z such that
a(¢, y)=(6f+s,y) for £ e Cand y € Z.)

The proof is similar to that of Theorem 6.

Now let n = (Z*: U), n(gk) = (Z*: ﬁ-ﬁgk)), and ngk) = (Z*: U-TY). Let hy be the
class number of Ry and h' that of Z[6]. Then we observe that there are

(1) 1+ qhy +h' irreducible ZG—nﬁodules,

(2) h' indecomposable ZG-modules of the form (C, s),

(3) nhg indecomposables, from Proposition 4,

q-1
(4) E (qI;I) hoh‘ n(él,() indecomposables, from Theorem 6,
k=1

q
(5) 27 (E ) hoh'ngk) indecomposables, from Proposition 5.
k=1

These form a complete set of nonisomorphic indecomposable ZG-modules.

For ¢q = 2, it is easy to see that the cyclotomic units u;,

+u; = /(1 -eHa-¢Ha - ta-¢h! (OSiS e 1)
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form a complete set of representatives for Z*, Thus, in this case,

n = n(el) = ngl) = ngz) =1.

Furthermore, Z[6] = Z, hence h' = 1. Thus, for a dihedral group G of order 2p,
there are exactly 7hg + 3 nonisomorphic indecomposable ZG-modules. We remark
that the result of M. P. Lee [5] coincides with this special case of our result.

We refer the readers to the example given at the end of Section 4, from which we
see that Z* is not always represented by units in Rg.

PROPOSITION 6. If o does not divide (p - 1), then ol = nt) = 1 for cach
k(1<k<q-1).

This is proved by exhibiting enough units in Ry, Z[6], and Z {a).

4, PROJECTIVE ZG-MODULES

Throughout this section we retain the notation of Section 3.

A ZG-module M is projective if and only if ExtéG (M, N) = 0 for every ZG-
module N. Let M and M' be projective modules. Define M ~ M' whenever there
exist free modules F and F' suchthat M@® F=M' @ F'. This gives an equiva-
lence relation on the set of projective modules; the equivalence classes form an
additive abelian group under direct sums, called the projective class group of ZG
and denoted by PCGF ZG}. It M is projective, then by a result of Swan [10],

M= F@® I, where F is free and I is an ideal in ZG. Thus each projective class is
represented by a projective ideal I in ZG. We note that the class containing all free
7G-modules is the identity element in PCG{ZG}.

Let I be a projective ideal in ZG. Then, by a result of Swan [10], I is inde-
composable, and

RankZ I= RankZ 72G.

Define Iy = {x e I cI:p(b)x =0} and I} £1/I,. Then I is a projective A-module
and

e=0

where the A. are ideals in Rg. By a result of M. Rosen [9, Theorem 3, Section 3,
Chap. II], A, # 0 for each e. Furthermore, I is of the form (C, v), where C is an
ideal in Z[0], v € C, and y ¢ (0 - 1)C. Let A=1J3j A_; then (see [9]) [A]

is an invariant of I, and [C] is an invariant of I 1- Thus the mapping ¢ given

by #(I) = ([A], [C]) is well-defined from the projective ideals of ZG to

ICG{Ry } XICG{Z[6]} (ICG stands for the ideal class group). Clearly, ¢ is a
homomorphism on PCG{ZG}. Furthermore, by Proposition 5, ¢ is onto.

Let I be a projective ideal in ZG. Then, as we remarked before
q-1
L= 29p%A, and 1,=(C,y)

e=0
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for some Rg-ideals A_. and some Z[6]-ideal C. Suppose ¢(I) is the identity; then
Hg;(l) A_ and C are principal ideals in Ry and Z[6], respectively. Hence I € Ker ¢
if and only if

IpSS+P+-++P¥ P 2A anda 1, 2zla).

The main object of this section is to give a necessary and sufficient condition for
the homomorphism ¢ to be an isomorphism.

For each positive integer k, let nz(ik) be defined as in Section 2.

THEOREM 7. The homomovrphism ¢ is an isomovphism from R(_ZG{Z_S}}_to
ICG{R( } X ICG{Z[ 6]} if and only if n{@) =1, that is, if and only if Z* =TG- T .

Proof. Let 1€ PCG{ZG}. Then I € Ker ¢ if and only if I is an indecompos-
able extension of A by Z <a . Hence ¢ is an isomorphism if and only if ZG is
the unique indecomposable extension of A by Z <a> . Thus by Proposition 5, ¢ is

an isomorphism if and only if (Z*: U U}Y) = 1. This proves the theorem.

Finally we give the following counter-example to show that Z* is not always
represented by units in Ry and that the homomorphism ¢ is not always an iso-
morphism.

Example. Let q = 3, p="T. The defining relations of the group G are
a3 =b’ =1 and ab = b%a. Let K= Q(¢), where ¢ is a primitive 7th root of unity.
Then o is the Q-automorphism of K sending ¢ onto €2, Let Ky be the field of
fixed elements under o. Then (Kj;: Q) = 2, and +1 are the only roots of unity in
Ry, the set of algebraic integers in Ky. Furthermore, the roots of unity form a set
of fundamental units in R . Hence U= {-1, 1}. But (Z*: 1) = 6, and thus
(Z*: U)=3>1.

Since (p - 1)/q = 2, we have the relations ﬁgq) = {+1} and ﬁ-ﬁ;(lq) = U. Hence
(Z*: ﬁ-ﬁgq)) = (Z*: U) = 3> 1. This shows that ¢ in Theorem 7 is not always an

isomorphism. In fact, in this case, using Proposition 6 in Section 3, we can show
that there are exactly 3 + 18 hy nonisomorphic indecomposable ZG-modules.
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