ON THE FIBRE HOMOTOPY TYPE OF NORMAL BUNDLES

Morris W. Hirsch

1. INTRODUCTION

It was proved by Atiyah [1] that the fibre homotopy type of the stable normal
sphere bundle of a manifold M is an invariant of the homotopy type of M. Theorem
A below (discovered before I learned of Atiyah’s proof) gives an elementary proof of
this fact, and also applies to nonstable cases. (See [5], for example. One purpose of
the present work is to supply item 6 in the bibliography of [5].) The situation con-
sidered is a homotopy-commutative diagram

f
Mo _"Ml

go N /&1

U,

with f a homotopy equivalence, g;: M; — V embeddings (i = 0, 1), and U; a closed
tubular neighborhood of g;(M;). Theorem A implies that the normal sphere bundles
of gg and g; are fibre-homotopically equivalent. Theorem B applies Theorem A to
the problem of choosing gg (given f and g) so that it will have as many independent
normal vector fields as g;.

The proof of Theorem A in the case dim V > dim M + 3 depends on Lemma 2,
due to Milnor, which states that if Ug is a closed tubular neighborhood of gu(Mj)
inside int U;, then U; - int Uy is an h-cobordism between the boundaries bU,; and
bUg. This Lemma is no longer universally true if dim V = dim M + 2; Theorem C
(which is independent from Theorems A and B) exhibits a special case where it is
true. An immediate corollary is that if Mg X RX is diffeomovphic to M X RK, then
Mg % Sk-1 is h-cobordant to M, x Sk-1_, (The interesting case is k = 2.)

All manifolds, immersions, and embeddings are smooth.

Throughout the paper, Mg and M; are compact unbounded manifolds of dimen-
sion m, and V is a Riemannian manifold of dimension v.

2. FIBRE HOMOTOPY TYPE

If @ and B are bundles, then o ~ 8 indicates that @ and B are isomorphic,
while o ~ 8 means that ¢ and B have the same fibve homotopy type. For this con-
cept, the reader is referred to Dold [3].

Let f: M — V be an immersion. If p is the normal vector space bundle of f,
then © will denote the normal sphere bundle of f, and conversely.

THEOREM A. Let g;: M; — V be embeddings (i=0, 1). Let U; CV bea
closed tubular neighborhood of g,(M;) such that go(Mgy) € U,. Letf: My — M; be
a homotopy equivalence making a homotopy-commutative diagram
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f

go\ Se&
U;

Let ¥; be the normal sphere bundle of g;. Then
(a) £* 171 ~ ﬁo; .
(b) Py, ~yy ifv-m<2

Remark. I v > g(m + 1), and {, g, are given, then g, always exists, by Hae-
fliger [4].

The proof of Theorem A occupies the rest of this section.

In Lemma 1, all the spaces involved are to be CW-complexes.

LEMMA 1. Let p;: E; — B; be fibve spaces (i=0, 1). Amap ¢: Eg— E; isa
Sfibre-homolopy equivalence provided

(a) ¢ is a homotopy equivalence,
(b) ¢ covers a homotopy equivalence By — Bj.
Proof. See Dold [3].

Now let Ug C int U; be a closed tubular neighborhood of go(My). (We may as-
sume g,(M,) C int U;.) Put N, = bU, .

LEMMA 2 (Milnor). If v> m + 3, then Ny and N, ave deformation vetvacts of
U, -int U
1 0-

Proof, See Lemma 2 of [6].

LEMMA 3. If Ny and N, are deformation vetvacts of U, - int U, then
Proof, Consider the diagram

The maps are defined as follows:
(i) Unlabelled maps are inclusions, and so is j.

(ii) Identify U; with the normal disk bundle of g;. Then q;: U; — M; is the
bundle projection, and p; = q; | N; is the bundle projection of the normal sphere bun-
dle ﬁi'

(iii) r is a homotopy inverse to the inclusion N; — U; - int Uy, which exists by
hypothesis.

Each triangle is homotopy-commutative.

The covering homotopy property of the fibre space p;: N; — M; implies that
rj: Ng — N; is homotopic to a map covering f: My — M, . By hypothesis rj is a
homotopy equivalence; consequently Lemma 1 implies Lemma 2.



ON THE FIBRE HOMOTOPY TYPE OF NORMAL BUNDLES 2217

Part (a) of Theorem A is proved by the lemmas. To prove part (b), first observe
that

(iv) iHwi(vy) = wilvg);

f# is the induced homomorphism of cohomology, and w; denotes the first Stiefel-
Whitney class. This follows from the homotopy commutativity of the diagram in
Theorem A, the Whitney sum theorem, and the fact that £ #wl(M 1) =wi(Mp). X

v =m + 1, then (iv) suffices to prove that f* v, ~ v,.

There remains the case v=m + 2.

Let T" be a local system of groups on a space Y. For eachmap f: X — Y there
is an induced local system f-!T on X. Let

fu: Hy(X; 1) o H;(Y; T) and £, Hi(Y; ) — Hi(X; f'll")

be the induced homomorphisms. If f is the inclusion of the open subset X into Y,
and & denotes homology based on infinite chains, there exists an induced homo-
morphism f' 1 #;(Y; T) — oi(X; £- 1 1),

Let F; be the local s#'stem on M; determined by orientations of the fibres of v;.
As was shown earlier, fTw, (1)) = Wl( vo). Equivalently, f-1F; = Fy. It is known
that f* v; ~ vy provided that f#Xl = Xo, where X; € H2(M;; F;) is the Euler class
of v;. We proceed to prove the last equality.

Let V; = 1nt U;. Since f;: V1 is a homotopy equivalence, there exist unique
local systems F on V; such that 7 1 F = F;. Let Gj; be the local system corre-
sponding to orlentatlon of the tangent planes of Mj, and let (~}i be the local system on
V; such that f;! éi = G;. Since gg ~ fg; in V;, it follows that if ¢: Ug — U; is the
inclusion, then ¢-1Gj; = G.

The local system of orientations of V; is easily seen to be f‘i® ai. Therefore
there is an isomorphism of Poincaré duality D;: o#,,(V;; G;) — H%(V;; F;); see [2,
p. 4].

It is known that the following diagram commutes:

g D gt
14 ~ 1, - 1,
H _(M,; G)) — #,(Vy; G;) — HY(V; F) — H(M; F))
; o! o o
Py | o g

Bo# ~ o 5 ~ o 5
Hm(Mo§ Go) — me(Vo; Go) — H (Vo; Fo) — H (Mo; Fo)

Let m; € H ; G;) be generators such that f#(mo) =mj;. A theorem of Thom [7]
states that g# D. gl#(mo) = X.. The commutativity of the diagram shows that

1

f#X1 = X ; it follows that f* v| = vy. Theorem A is proved.

3. NORMAL FRAME FIELDS

Let g: M — V be an immersion of a manifold in V. We say g is q-framable if
g admits g linearly independent normal vector fields.
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THEOREM B. Let a positive integey qQ satisfy the condition 2(v - q) > 3m + 1.
Let £: Mg — M be a homotopy equivalence and gy: M; — V an immersion or em-
bedding that is q-framable.

(a) If g, is an embedding and U a tubular neighbovhood of g,(M,), there exists
a q-framable embedding go: My — U that is homotopic to g, { in U.

(b) If g, is an immevrsion, there exists an immersion go: Mg — V that is homo-
lopic to g, 1.

(c) In both (a) and (b), £* 0, ~ U, wheve D, is the normal spheve bundle of g;.

Proof. (a) To say that the embedding g;: M; — V is g-framable means that the
normal (v - m)-plane bundle v, is a Whitney sum vy = 1y @ £2-1, where £9-1 is
the trivial (q - 1)-plane bundle, and the (v - m - q + 1)-plane bundle g; has a non-
zero section. Factor g; thus:

h1 e
M, - Eu,; € Evy; = U,

where E indicates total space, h; is the zero cross-section, and e is a diffeomorph-
ism. The dimension of Ep; is v - q + 1. By hypothesis, dim Eu; > 3(m + 1)/2.
Therefore the embedding theory of Haefliger [4] is applicable and says that because
the map h;f: Mg — Eu 1 is a homotopy equivalence, it is homotop1c to an embedding
hg: Mg — Ep; . Let p,o be the normal sphere bundle of hy , and {L1 that of h;. By
Theorem A, f* “1 ~ ,u.o . Since ,ul has a section, so has Ilo . Clearly the normal

(v - m)-plane bundle v, of the composite embeddmg g0, defined to be

hO e
has the form o @ el C—B £9-1, Therefore go is g-framable, and this proves (a).

Part (b) follows from (a), since an immersion g;: M; — V can be factored:
h
1 e
M, — Evy; — V, where v, is the normal (v - m)-plane bundle of g;, h; is an
embedding, and e is an immersion.

Part (c) is a consequence of Theorem A,

4, HOMEOMORPHISMS OF BUNDLES

Let E; be the total space of a smooth orthogonal k-plane bundle over Mj
(i=0,1). Let B; C E; be the corresponding unit ball bundle. For each t > 0 put
t B; {txlterl, xeBl}; let N; = bB; and tNj = b(t B;).

THEOREM C. Let y: Eg — E, be a diffeomorphism such that YBg C int Bl .
Then B; - int hBg s an h-cobordism between YN and N;.

Remavk. This theorem actually has little to do with manifolds. It can be re-
formulated so as to apply to bundles over paracompact spaces, with essentially the
same proof.

Proof. By compactness of M;, we can choose r, s > 0 such that

B; C int Y(rBg) and Y(rBy) C int sB;.
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(i) B, - int YB,, is diffeomorphic to s B, - int Y/(r B).

To prove (i), choose t < 1 sothat YyBog CinttB;. Let ¢: E; — E; be a diffeo-
morphism taking B; onto s B;j, leaving tB; fixed. Then choose u> r so that
Y(uBg) C int sB;, and let 6: Ej — E; be a diffeomorphism taking B, onto r B,
leaving Eg - int uB( fixed. Then 60y -1¢: E; — E; is a diffeomorphism taking
B; - int /By onto s B; - int Y(r Bg).

(ii) YN, is a deformation retract of B; - int ¥Bj.

This follows easily from the facts that YN is a deformation retract of
Yr B, - int YBjy, and B; is a retract of sB;. Similarly,

(iii) sN; is a deformation retract of s B; - int Y(r B;).

From (i) and (iii) it follows that N; is a deformation retract of B; - int ¥By.
This together with (ii) proves Theorem C.
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