ON THE FIBRE HOMOTOPY TYPE OF NORMAL BUNDLES

Morris W. Hirsch

1. INTRODUCTION

It was proved by Atiyah [1] that the fibre homotopy type of the stable normal sphere bundle of a manifold M is an invariant of the homotopy type of M. Theorem A below (discovered before I learned of Atiyah's proof) gives an elementary proof of this fact, and also applies to nonstable cases. (See [5], for example. One purpose of the present work is to supply item 6 in the bibliography of [5].) The situation considered is a homotopy-commutative diagram

$$M_0 \xrightarrow{f} M_1$$

$$g_0 \setminus fg_1$$

$$U_1$$

with f a homotopy equivalence, $g_i \colon M_i \to V$ embeddings (i = 0, 1), and U_1 a closed tubular neighborhood of $g_1(M_1)$. Theorem A implies that the normal sphere bundles of g_0 and g_1 are fibre-homotopically equivalent. Theorem B applies Theorem A to the problem of choosing g_0 (given f and g) so that it will have as many independent normal vector fields as g_1 .

The proof of Theorem A in the case dim V \geq dim M + 3 depends on Lemma 2, due to Milnor, which states that if U_0 is a closed tubular neighborhood of $g_0(M_0)$ inside int U_1 , then U_1 - int U_0 is an h-cobordism between the boundaries bU_1 and bU_0 . This Lemma is no longer universally true if dim V = dim M + 2; Theorem C (which is independent from Theorems A and B) exhibits a special case where it is true. An immediate corollary is that if $M_0 \times R^k$ is diffeomorphic to $M_1 \times R^k$, then $M_0 \times S^{k-1}$ is h-cobordant to $M_1 \times S^{k-1}$. (The interesting case is k=2.)

All manifolds, immersions, and embeddings are *smooth*.

Throughout the paper, M_0 and M_1 are compact unbounded manifolds of dimension m, and V is a Riemannian manifold of dimension v.

2. FIBRE HOMOTOPY TYPE

If α and β are bundles, then $\alpha \sim \beta$ indicates that α and β are isomorphic, while $\alpha \simeq \beta$ means that α and β have the same *fibre homotopy type*. For this concept, the reader is referred to Dold [3].

Let $f: M \to V$ be an immersion. If ν is the normal vector space bundle of f, then $\hat{\nu}$ will denote the normal sphere bundle of f, and conversely.

THEOREM A. Let $g_i \colon M_i \to V$ be embeddings (i = 0, 1). Let $U_1 \subseteq V$ be a closed tubular neighborhood of $g_1(M_1)$ such that $g_0(M_0) \subseteq U_1$. Let $f \colon M_0 \to M_1$ be a homotopy equivalence making a homotopy-commutative diagram

Received July 31, 1964.

$$M_0 \xrightarrow{f} M_1$$

$$g_0 \setminus fg_1$$

$$U_1$$

Let $\boldsymbol{\hat{\nu}_i}$ be the normal sphere bundle of $\boldsymbol{g_i}.$ Then

- (a) $f * \hat{v}_1 \simeq \hat{v}_0$;
- (b) $f^* \nu_1 \sim \nu_0$ if $v m \le 2$.

Remark. If $v \ge \frac{3}{2}(m+1)$, and f, g_1 are given, then g_0 always exists, by Haefliger [4].

The proof of Theorem A occupies the rest of this section.

In Lemma 1, all the spaces involved are to be CW-complexes.

LEMMA 1. Let $p_i : E_i \to B_i$ be fibre spaces (i = 0, 1). A map $\phi : E_0 \to E_1$ is a fibre-homotopy equivalence provided

- (a) ϕ is a homotopy equivalence,
- (b) ϕ covers a homotopy equivalence $B_0 \to B_1$.

Proof. See Dold [3].

Now let $U_0 \subset \text{int } U_1$ be a closed tubular neighborhood of $g_0(M_0)$. (We may assume $g_0(M_0) \subset \text{int } U_1$.) Put $N_i = bU_i$.

LEMMA 2 (Milnor). If $v \geq m+3, \ \text{then} \ N_0 \ \text{and} \ N_1 \ \text{are deformation retracts of} \ U_1$ - int U_0 .

Proof. See Lemma 2 of [6].

LEMMA 3. If N₀ and N₁ are deformation retracts of U₁ - int U₀, then f^* $\hat{\nu}_1 \simeq \hat{\nu}_0$.

Proof. Consider the diagram

The maps are defined as follows:

- (i) Unlabelled maps are inclusions, and so is j.
- (ii) Identify U_i with the normal disk bundle of g_i . Then $q_i \colon U_i \to M_i$ is the bundle projection, and $p_i = q_i \mid N_i$ is the bundle projection of the normal sphere bundle $\hat{\nu_i}$.
- (iii) r is a homotopy inverse to the inclusion ${\rm N}_1 \to {\rm U}_1$ int ${\rm U}_0,$ which exists by hypothesis.

Each triangle is homotopy-commutative.

The covering homotopy property of the fibre space $p_1: N_1 \to M_1$ implies that rj: $N_0 \to N_1$ is homotopic to a map covering $f: M_0 \to M_1$. By hypothesis rj is a homotopy equivalence; consequently Lemma 1 implies Lemma 2.

Part (a) of Theorem A is proved by the lemmas. To prove part (b), first observe that

(iv)
$$f^{\#}w_1(\nu_1) = w_1(\nu_0);$$

 $f^{\#}$ is the induced homomorphism of cohomology, and w_1 denotes the first Stiefel-Whitney class. This follows from the homotopy commutativity of the diagram in Theorem A, the Whitney sum theorem, and the fact that $f^{\#}w_1(M_1) = w_1(M_0)$. If v = m + 1, then (iv) suffices to prove that $f^{*}v_1 \sim v_0$.

There remains the case v = m + 2.

Let Γ be a local system of groups on a space Y. For each map $f: X \to Y$ there is an induced local system $f^{-1}\Gamma$ on X. Let

$$f_{\#}$$
: $H_i(X; f^{-1}\Gamma) \to H_i(Y; \Gamma)$ and $f^{\#}$: $H^i(Y; \Gamma) \to H^i(X; f^{-1}\Gamma)$

be the induced homomorphisms. If f is the inclusion of the open subset X into Y, and \mathcal{H} denotes homology based on infinite chains, there exists an induced homomorphism $f^!: \mathcal{H}_i(Y; \Gamma) \to \mathcal{H}_i(X; f^{-1}\Gamma)$.

Let F_i be the local system on M_i determined by orientations of the fibres of ν_i . As was shown earlier, $f^\#w_1(\nu_1)=w_1(\nu_0)$. Equivalently, $f^{-1}F_i=F_0$. It is known that $f^*\nu_1\sim\nu_0$ provided that $f^\#X_1=X_0$, where $X_i\in H^2(M_i;\,F_i)$ is the Euler class of ν_i . We proceed to prove the last equality.

Let V_i = int U_i . Since f_i : $M_i \to V_i$ is a homotopy equivalence, there exist unique local systems \widetilde{F}_i on V_i such that $f_i^{-1}\widetilde{F}_i = F_i$. Let G_i be the local system corresponding to orientation of the tangent planes of M_i , and let \widetilde{G}_i be the local system on V_i such that $f_i^{-1}\widetilde{G}_i = G_i$. Since $g_0 \simeq fg_1$ in V_1 , it follows that if ϕ : $U_0 \to U_1$ is the inclusion, then $\phi^{-1}G_1 = G_0$.

The local system of orientations of V_i is easily seen to be $\widetilde{F}_i \otimes \widetilde{G}_i$. Therefore there is an isomorphism of Poincaré duality $D_i \colon \mathscr{H}_m(V_i; \widetilde{G}_i) \to H^2(V_i; \widetilde{F}_i)$; see [2, p. 4].

It is known that the following diagram commutes:

$$H_{\mathbf{m}}(\mathbf{M}_{1}; \mathbf{G}_{1}) \xrightarrow{\mathbf{g}_{1\#}} \mathcal{H}_{\mathbf{m}}(\mathbf{V}_{1}; \widetilde{\mathbf{G}}_{1}) \xrightarrow{\mathbf{D}_{1}} \mathbf{H}^{2}(\mathbf{V}_{1}; \widetilde{\mathbf{F}}_{1}) \xrightarrow{\mathbf{g}_{1}^{\#}} \mathbf{H}^{2}(\mathbf{M}_{1}; \mathbf{F}_{1})$$

$$\uparrow^{\mathbf{f}_{\#}} \qquad \downarrow^{\phi!} \qquad \downarrow^{\phi^{\#}} \qquad \downarrow^{\mathbf{f}^{\#}}$$

$$H_{\mathbf{m}}(\mathbf{M}_{0}; \mathbf{G}_{0}) \xrightarrow{\mathbf{g}_{0\#}} \mathcal{H}_{\mathbf{m}}(\mathbf{V}_{0}; \widetilde{\mathbf{G}}_{0}) \xrightarrow{\mathbf{D}_{0}} \mathbf{H}^{2}(\mathbf{V}_{0}; \widetilde{\mathbf{F}}_{0}) \xrightarrow{\mathbf{g}_{0}^{\#}} \mathbf{H}^{2}(\mathbf{M}_{0}; \mathbf{F}_{0})$$

Let $m_i \in H_m(M_i; G_i)$ be generators such that $f_\#(m_0) = m_1$. A theorem of Thom [7] states that $g_i^\# D_i g_i \#(m_0) = X_i$. The commutativity of the diagram shows that $f^\# X_1 = X_0$; it follows that $f^* \nu_1 = \nu_0$. Theorem A is proved.

3. NORMAL FRAME FIELDS

Let $g: M \to V$ be an immersion of a manifold in V. We say g is q-framable if g admits q linearly independent normal vector fields.

THEOREM B. Let a positive integer q satisfy the condition $2(v - q) \ge 3m + 1$. Let $f: M_0 \to M_1$ be a homotopy equivalence and $g_1: M_1 \to V$ an immersion or embedding that is q-framable.

- (a) If g_1 is an embedding and U a tubular neighborhood of $g_1(M_1)$, there exists a q-framable embedding $g_0 \colon M_0 \to U$ that is homotopic to $g_1 f$ in U.
- (b) If g_1 is an immersion, there exists an immersion $g_0 \colon M_0 \to V$ that is homotopic to $g_1 f$.
 - (c) In both (a) and (b), $f^* \hat{v}_1 \simeq \hat{v}_0$, where \hat{v}_i is the normal sphere bundle of g_i .

Proof. (a) To say that the embedding $g_1\colon M_1\to V$ is q-framable means that the normal (v-m)-plane bundle ν_1 is a Whitney sum $\nu_1=\mu_1\oplus\epsilon^{q-1}$, where ϵ^{q-1} is the trivial (q-1)-plane bundle, and the (v-m-q+1)-plane bundle μ_1 has a non-zero section. Factor g_1 thus:

$$M_1 \xrightarrow{h_1} E\mu_1 \subset E\nu_1 \xrightarrow{e} U,$$

where E indicates total space, h_1 is the zero cross-section, and e is a diffeomorphism. The dimension of $E\mu_1$ is v-q+1. By hypothesis, dim $E\mu_1 \geq 3(m+1)/2$. Therefore the embedding theory of Haefliger [4] is applicable and says that because the map $h_1 f \colon M_0 \to E\mu_1$ is a homotopy equivalence, it is homotopic to an embedding $h_0 \colon M_0 \to E\mu_1$. Let $\hat{\mu}_0$ be the normal sphere bundle of h_0 , and $\hat{\mu}_1$ that of h_1 . By Theorem A, $f^*\hat{\mu}_1 \simeq \hat{\mu}_0$. Since $\hat{\mu}_1$ has a section, so has $\hat{\mu}_0$. Clearly the normal (v-m)-plane bundle ν_0 of the composite embedding g_0 , defined to be

$$M_0 \stackrel{h_0}{\rightarrow} E\mu_1 \subset E\nu_1 \stackrel{e}{\rightarrow} U,$$

has the form $\alpha \oplus \varepsilon^1 \oplus \varepsilon^{q-1}$. Therefore g_0 is q-framable, and this proves (a).

Part (b) follows from (a), since an immersion $g_1: M_1 \rightarrow V$ can be factored:

 $M_1 \xrightarrow{h_1} E \nu_1 \xrightarrow{e} V$, where ν_1 is the normal (v - m)-plane bundle of g_1 , h_1 is an embedding, and e is an immersion.

Part (c) is a consequence of Theorem A.

4. HOMEOMORPHISMS OF BUNDLES

Let E_i be the total space of a smooth orthogonal k-plane bundle over M_i (i = 0, 1). Let $B_i \subset E_i$ be the corresponding unit ball bundle. For each t > 0 put $t B_i = \{tx \mid tx \in E_i, \ x \in B_i\}$; let $N_i = b B_i$ and $t N_i = b(t B_i)$.

THEOREM C. Let $\psi \colon E_0 \to E_1$ be a diffeomorphism such that $\psi B_0 \subset \text{int } B_1$. Then B_1 - int $h B_0$ is an h-cobordism between ψN_0 and N_1 .

Remark. This theorem actually has little to do with manifolds. It can be reformulated so as to apply to bundles over paracompact spaces, with essentially the same proof.

Proof. By compactness of M_i , we can choose r, s > 0 such that

$${\bf B}_1 \subset {\rm int} \; \psi({\bf rB}_0) \quad {\rm and} \quad \psi({\bf rB}_0) \subset {\rm int} \; {\bf sB}_1$$
 .

(i) $B_1 - int \psi B_0$ is diffeomorphic to $s B_1 - int \psi (r B_0)$.

To prove (i), choose t < 1 so that $\psi B_0 \subset \operatorname{int} t B_1$. Let $\phi \colon E_1 \to E_1$ be a diffeomorphism taking B_1 onto $s B_1$, leaving $t B_1$ fixed. Then choose u > r so that $\psi(u B_0) \subset \operatorname{int} s B_1$, and let $\theta \colon E_0 \to E_0$ be a diffeomorphism taking B_0 onto $r B_0$, leaving E_0 - int $u B_0$ fixed. Then $\psi \theta \psi^{-1} \phi \colon E_1 \to E_1$ is a diffeomorphism taking B_1 - int ψB_0 onto $s B_1$ - int $\psi(r B_0)$.

(ii) ψN_0 is a deformation retract of B_1 - int ψB_0 .

This follows easily from the facts that ψN_0 is a deformation retract of $\psi r B_0$ - int ψB_0 , and B_1 is a retract of $s B_1$. Similarly,

(iii) $s N_1$ is a deformation retract of $s B_1$ - int $\psi(r B_0)$.

From (i) and (iii) it follows that N_1 is a deformation retract of B_1 - int ψB_0 . This together with (ii) proves Theorem C.

REFERENCES

- 1. M. Atiyah, Thom Complexes, Proc. London Math. Soc. (3) 11 (1961), 291-310.
- 2. H. Cartan, Séminaire de topologie algébrique de l'Ecole Normale Supérieure, Exposé 20, 1950-51.
- 3. A. Dold, Über fasernweise Homotopieäquivalenz von Faserräumen, Math. Z. 62 (1955), 111-136.
- 4. A. Haefliger, *Plongements différentiables de variétés dans variétés*, Comment. Math. Helv. 36 (1961), 47-82.
- 5. J. Levine, On differentiable embeddings of simply-connected manifolds, Bull. Amer. Math. Soc. 69 (1963), 806-809.
- 6. J. Milnor, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. (2) 74 (1961), 575-590.
- 7. R. Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Ecole Norm. Sup. (3) 69 (1952), 109-182.

University of Cambridge

