BOUNDED CONTINUOUS VECTOR-VALUED FUNCTIONS ON A LOCALLY COMPACT SPACE

James Wells

1. INTRODUCTION

In this paper we prove a representation theorem for the strict dual of the space of bounded continuous functions from a locally compact space X into a locally convex linear topological space E. As one would expect, the representation is accomplished by means of an identification between the strict dual and a certain space of measures on X whose values lie in the dual of E. Guided by the now familiar technique of de Branges [3], we apply this representation theorem to obtain a generalized Stone-Weierstrass theorem for the strict topology. The study was inspired by the main results in a paper of R. C. Buck [4], and it may be regarded as an extension of Buck's investigation.

Before stating our main result, we introduce some notations. Let X be a locally compact Hausdorff space, and E a complex linear space with a locally convex topology described by a family of seminorms N. By C(X; E) we denote the space of bounded, complex, continuous functions from X into E, and by $C_0(X; E)$ the subspace of C(X; E) consisting of all functions that vanish at infinity. In case E is the complex field, we denote the spaces by C(X) and $C_0(X)$. The uniform topology σ on C(X; E) is defined by the seminorms

$$\|f\|_{p} = \sup_{x \in X} p(f(x)),$$

where p ranges over N. A weaker locally convex topology on C(X; E) is the strict topology β defined by the seminorms

$$\|f\|_{\phi,p} = \|\phi f\|_{p} = \sup_{x \in X} p(\phi(x) f(x)),$$

where ϕ ranges over $C_0(X)$ and p ranges over N. See [4] for general properties, and [4], [7], [9] for applications involving the strict topology.

M(X) denotes the set of all finite, complex, regular Borel measures on X, and $M(X: E^*)$ denotes the set of all measures μ whose values lie in the dual space E^* of E and which satisfy the following conditions:

- (1) $\mu(\cdot)$ s \in M(X) for every s \in E.
- (2) There exist a seminorm $p \in N$ and a constant K such that $\sup \left| \sum \mu(A_i) s_i \right| \leq K$, where the supremum is taken over all partitions of X into a finite number of disjoint Borel sets $\{A_i\}$ and all finite collections of elements $\{s_i\}$ in E such that $p(s_i) \leq 1$.

THEOREM 1. If L is a strictly continuous linear functional on C(X: E), then there exists a $\mu \in M(X: E^*)$ such that

Received June 4, 1964.

Supported by NSF Grant G-1373.

(3)
$$L(f) = \int d\mu f$$

for each $f \in C(X; E)$. Conversely, for every $\mu \in M(X; E^*)$ the formula (3) defines a strictly continuous linear functional on C(X; E).

The integral in (3) is of the Riemann-Stieltjes type obtained by taking the limit under successive refinements of sums of the form $\Sigma \mu(A_i) f(x_i)$, where $\{A_i\}$ is a finite partition of X into disjoint Borel sets and $\{x_i\}$ is a sequence in X such that $x_i \in A_i$. All integrals in the sequel extend over X.

In case E is the complex field, Theorem 1 reduces to a theorem of Buck [4, Theorem 2, p. 99] which states that the strict dual of C(X) is the space M(X), the pairing between functional and measure being that induced by integration.

2. PRELIMINARY RESULTS

We begin with a lemma that expresses the essential character of the strict topology for C(X).

LEMMA 1. If $\alpha \in M(X)$, then there exist a $\gamma \in M(X)$ and a $\phi \in C_0(X)$ such that $\alpha = \phi \gamma$, that is,

$$\alpha(A) = \int_A \phi d\gamma$$

for every Borel subset A of X.

For a proof, see [4, p. 100].

We shall need an analogous result for M(X: E*). For every $\mu \in M(X: E^*)$ and every $s \in E$, μs denotes the measure in M(X) whose value at the Borel set A is $\mu(A)s$; $|\mu s|$ denotes the usual variation measure with total variation $|\mu s|$. If μ satisfies condition (2) for the seminorm $p \in N$, we define the p-variation $|\mu|_p$ of μ by

(4)
$$|\mu|_{p}(A) = \sup |\sum \mu(A_{i})s_{i}|,$$

where the supremum is exactly as in (2) except that only partitions of A are considered. The reader may easily verify that $|\mu|_p$ belongs to M(X). We set

$$\|\mu\|_{\mathbf{p}} = |\mu|_{\mathbf{p}}(\mathbf{X}).$$

LEMMA 2. If $\mu \in M(X; E^*)$, there exist a $\nu \in M(X; E^*)$ and $a \phi \in C_0(X)$ such that $\mu = \phi \nu$, that is,

(5)
$$\mu(A)s = \int_{A} \phi d\nu s$$

for each $s \in E$ and each Borel set A in X.

Proof. Let $p \in N$ be a seminorm for which (2) holds with respect to μ . Since $|\mu|_p$ belongs to M(X) and therefore determines a strictly continuous functional on

C(X), there exists a real $\phi \in C_0(X)$ such that $\left| \int f d \left| \mu \right|_p \right| < 1$ whenever f is in

$$V = \{ f \in C(X) : || \phi f || < 1 \}.$$

Now suppose α is any measure in M(X) with the property $\left|\int f \, d\alpha\right| < 1$ for every $f \in V$ (see [7]). Since $f/[\|\phi f\| + \epsilon]$ ($\epsilon > 0$) is in V for every $f \in C(X)$, it follows that $\left|\int f \, d\alpha\right| \leq \|\phi f\|$. Therefore the mapping T defined by

(6)
$$T(\phi f) = \int f d\alpha$$

is a σ -continuous functional on the subspace $\phi C(X)$ of $C_0(X)$ with norm $\|T\| \leq 1$. The functional T has (by the Hahn-Banach theorem) a norm-preserving extension T' to $C_0(X)$, where (by the Riesz representation theorem) there exists a $\gamma \in M(X)$ with $\|\gamma\| \leq 1$ such that

$$T'(f) = \int f d\gamma$$
 $(f \in C_0(X))$.

Combining this with (6), we see that

$$\int f \phi d\gamma = \int f d\alpha \qquad (f \in C(X));$$

hence $\alpha = \phi \gamma$. We ensure uniqueness by requiring that γ vanish on the set $S(\phi) = \{x \in X: \phi(x) = 0\}$. Since $|\mu|_p$ satisfies the condition imposed on α , we may write $|\mu|_p = \phi \nu_p$ for some positive measure ν_p in M(X) with $\|\nu_p\| \le 1$. In fact, the same argument shows that, for each s in E, there is a unique measure νs in M(X) that vanishes on $S(\phi)$ and satisfies the conditions $\|\nu s\| \le p(s)$ and $\mu s = \phi \nu s$. This assertion follows directly from the fact (see (2) and (4)) that $|\mu s|$ is majorized by $p(s) |\mu|_p$ and from the resulting inequality

$$\begin{split} \left| \int f d\mu s \right| &\leq \int |f| d|\mu s| \leq p(s) \int |f| d|\mu|_p = p(s) \int |f\phi| d\nu_p \\ &\leq p(s) \|\phi f\| \|\nu_p\| < p(s) \quad (f \in V). \end{split}$$

We are now in a position to describe ν . For each Borel set $A \subset X$, let $\nu(A)$ be the functional on E whose value at the point s is $\nu(A)$ s (the value of the measure ν s at A). The identities $\mu(s+t) = \mu s + \mu t$ and $\mu s = \phi \nu s$ show that

$$\nu(A)(s+t) = \nu(A)s + \nu(A)t.$$

and the relation $|\nu(A)s| \le p(s)$ follows from the inequality $||\nu s|| \le p(s)$. Hence $\nu(A) \in E^*$, and ν satisfies condition (1).

Finally, the inequality

$$\begin{split} \left| \sum \nu(\mathbf{A_i}) \mathbf{s_i} \right| &= \left| \sum \int_{\mathbf{A_i}} \phi^{-1} d\mu \mathbf{s_i} \right| \leq \sum \int_{\mathbf{A_i}} \phi^{-1} d|\mu \mathbf{s_i}| \\ &\leq \sum \int_{\mathbf{A_i}} \phi^{-1} d|\mu|_{\mathbf{p}} = \int \phi^{-1} d|\mu|_{\mathbf{p}} = \int d\nu_{\mathbf{p}} \leq 1 \end{split}$$

 $(p(s_i) \le 1$, and $\{A_i\}$ a finite partition of X into disjoint Borel sets) shows that ν satisfies condition (2). Hence $\nu \in M(X; E^*)$, and the proof is complete.

LEMMA 3. If $\nu \in M(X; E^*)$, $\phi \in C(X)$, $\mu = \phi \nu$, and ν satisfies (2) for the seminorm $p \in N$, then $|\mu|_p = |\phi| |\nu|_p$.

The proof follows standard lines and will be omitted.

The final lemma of this section establishes the form of the σ -continuous linear functionals on $C_0(X; E_p)$. (We adopt this notation to mean that N contains only the seminorm p.) This problem was treated by Gowurin [8] and Bochner and Taylor [2] in the special case where X=[0,1] and E is a Banach space. Indeed, the literature abounds with elegant treatments of variations of this problem [5, p. 543]. However, no reference seems to be readily available to the variation we have in mind, and for this reason we offer a proof.

LEMMA 4. The general form of the σ -continuous linear functional L on $C_0(X;\,E_{_D})$ is

$$L(f) = \int d\mu f,$$

where $\mu \in M(X; E_p^*)$ and $\|L\| = \|\mu\|_p$.

Proof. For each $s \in E$ and $g \in C_0(X)$, the mapping $gs: x \to g(x)s$ represents a member of $C_0(X; E_p)$. If L is a σ -continuous linear functional on $C_0(X; E_p)$, define the functional L_s ($s \in E_p$) on $C_0(X)$ by $L_s(g) = L(gs)$. The functional L_s is linear, and the inequality

$$|L_{s}(g)| = |L(gs)| \le ||L|| ||gs||_{p} = ||L|| p(s) ||g||$$

shows that $\|\,L_{\,\mathrm{s}}\,\| \leq \|\,L\,\|$ p(s). By the Riesz representation theorem there exists a

unique measure
$$\mu s \in M(X)$$
 such that $\|\mu s\| = \|L_s\|$ and $L_s(g) = \int g d\mu s$. The rela-

tion $\mu(as+bt)=a\mu s+b\mu t$ (a, b complex and s, t in E) comes from the fact that L is a bilinear map on $C_0(X)\times E_p$ and, together with the inequality $\|\mu s\|\leq \|L\|$ p(s), it shows that the map $s\to \mu(A)s$ defines a continuous linear functional on E_p for each fixed Borel set A in X. It remains to show that the vector-valued measure μ thus defined satisfies condition (2).

Let $\{A_i\}_{i=1}^n$ be a partition of X into disjoint Borel sets, and let $\{s_i\}_{i=1}^n$ be a sequence in E_p . Let ϵ be positive. Because all measures involved are regular, there exist compact sets $F_i \subseteq A_i$ such that $\left|\mu s_i\right| (A_i \setminus F_i) < \epsilon/2n$, and open sets $V_i \supset F_i$ such that

$$|\mu s_i| (V_i \setminus F_i) < \epsilon/2n$$
 (i = 1, 2, ..., n)

with $V_i \cap V_j = \emptyset$ (i \neq j). Next choose continuous functions g_i with values in [0, 1] such that $g_i(F_i) = 1$ and $g_i(V_i^!) = 0$. Clearly, the function

(8)
$$h = \sum_{i=1}^{n} g_i s_i$$

is in $C_0(X; E_p)$, $\|h\|_p \le \max\{p(s_1), p(s_2), \dots, p(s_n)\}$, and

$$L(h) = \sum_{i=1}^{n} L(g_i s_i) = \sum_{i=1}^{n} \int g_i d\mu s_i.$$

This information, combined with the inequalities $\left| \mu(A_i) s_i - \int g_i \, d\mu \, s_i \right| < \epsilon/n$, yields the relation

$$\left|\sum_{i=1}^{n} \mu(A_i) s_i\right| < \varepsilon + \left|L(h)\right| \le \varepsilon + \|L\| \max \left\{p(s_1), p(s_2), \dots, p(s_n)\right\}.$$

Letting $\varepsilon \to 0$, we obtain condition (2) for μ .

Simple estimates on approximating sums show that $\int d\mu(gs) = \int g \, d\mu \, s$ for $g \in C_0(X)$ and $s \in E_p$. Thus

$$L(h) = \int d\mu h.$$

Since functions of the form (8) with $g_i \in C_0(X)$ ($s_i \in E_p$) are σ -dense in $C_0(X; E_p)$, it follows in the usual way that L(f) has the form (7).

The argument for the last assertion of the lemma is routine, and we omit it.

3. PROOF OF THEOREM 1

The strict topology has a base of neighborhoods about the origin O in C(X; E) of the form

$$U = \{f \in C(X; E): \|\phi_1 f\|_{p_1} < 1, \|\phi_2 f\|_{p_2} < 1, \dots, \|\phi_n f\|_{p_n} < 1\},$$

where $\phi_i \in C_0(X)$ and $p_i \in N$ (i = 1, 2, ..., n). Since

(9)
$$p = \max\{p_1, p_2, \dots, p_n\}$$

is a seminorm on E, it is clear that U contains the neighborhood

(10)
$$V = \{f \in C(X; E): \|\phi f\|_{p} < 1\},$$

where $\phi = \max\{|\phi_1|, |\phi_2|, \cdots, |\phi_n|\}$. The new system of seminorms obtained by adjoining to N all possible seminorms p and kp (k > 0) of the form (9) defines the

same topology on E. Henceforth we assume that the family N has been so extended, and that accordingly every strict neighborhood of O ϵ C(X: E) contains a strict neighborhood V defined by a single inequality (10).

Let L be a β -continuous functional on C(X: E). There exist a seminorm $p \in N$ and a $\phi \in C_0(X)$ such that |L(f)| < 1 whenever f is in the neighborhood V defined by (10). For $f \in C(X: E)$ and $\varepsilon > 0$, the function $f/[\|\phi f\|_p + \varepsilon]$ is in V; therefore $|L(f)| < \|\phi f\|_p + \varepsilon$, and letting $\varepsilon \to 0$, we see that $|L(f)| \le \|\phi f\|_p$. This last inequality implies that if we view $M = \phi C(X: E)$ as a subspace of $C_0(X: E_p)$ (see Lemma 4), then the functional T defined by $T(\phi f) = L(f)$ represents a σ -continuous functional on M whose norm does not exceed 1. By the Hahn-Banach theorem, T has an extension T' to $C_0(X: E_p)$ such that

$$\big| \mathbf{T}'(\mathbf{f}) \big| \, \leq \, \big\| \mathbf{f} \big\|_p \qquad (\mathbf{f} \, \in \, C_0(X; \, E_p)) \, .$$

According to Lemma 4 there exists a measure $\nu \in M(X; E_p^*) \subset M(X; E^*)$ such that

$$T'(f) = \int d\nu f$$
 $(f \in C_0(X; E_p)).$

Consequently,

(11)
$$L(f) = \int d\nu (\phi f) \quad (f \in C(X; E)).$$

If we set $\mu = \phi \nu$, the integral on the right can be rewritten in the form $L(f) = \int d\mu f$, which is the required representation (3).

It remains to show that every $\mu \in M(X; E^*)$ defines a β -continuous functional on C(X; E) by means of (3). By virtue of Lemma 2, μ has the decomposition $\mu = \phi \nu$ for some $\phi \in C_0(X)$, $\nu \in M(X; E^*)$. Thus (3) may be written in the form (11), which clearly defines a β -continuous functional on C(X; E).

4. A STONE-WEIERSTRASS THEOREM FOR C(X; E)

The purpose of this section is to show how Theorem 1 provides a natural tool in the study of Stone-Weierstrass theorems for C(X; E). Our procedure is that outlined in [7].

THEOREM 2. Let X be a locally compact space, and E a locally convex topological space whose topology is given by a family of seminorms N. Let A be a β -closed subspace of C(X: E) that satisfies the following conditions:

- (i) $A(x) = \{f(x): f \in A\} = E \text{ for every } x \in X.$
- (ii) If $\phi \in C(X)$ has values in [0, 1] and $f \in A$, then $\phi f \in A$. Then A = C(X; E).

Proof. Suppose the conclusion is false. Then there exists a nonzero measure μ in M(X: E*) such that $\mu \perp A$, in other words, such that $\int d\mu f = 0$ for every $f \in A$. Since μ determines a strictly continuous linear functional on C(X: E), there exists a ϕ in $C_0(X)$ and a p in N such that

(12)
$$\left|\int \mathrm{d}\mu f\right| < 1 \quad \text{whenever} \quad \left\|\phi f\right\|_{p} < 1.$$

The set V^0 of all measures μ for which (12) holds and $\mu \perp A$ is a convex and weak* compact subset of M(X: E*), which by the Krein-Milman theorem has an extreme point μ . According to Lemma 2, there exists a ν in M(X: E*) such that $\mu = \phi \nu$, and since μ is extreme, ν has p-variation equal to 1 on X, that is,

$$|\nu|_{\mathbf{p}}(\mathbf{X}) = ||\nu||_{\mathbf{p}} = 1.$$

Choose an h in C(X) such that 0 < h < 1. Now observe that the measures $h\mu/\|h\nu\|_p$ and $(1-h)\mu/\|(1-h)\nu\|_p$ are in V^0 and

$$\mu = \|h\nu\|_{p} \frac{h\mu}{\|h\nu\|_{p}} + \|(1-h)\nu\|_{p} \frac{(1-h)\mu}{\|(1-h)\nu\|_{p}},$$

where, by Lemma 3,

$$\|h\nu\|_{p} + \|(1-h)\nu\|_{p} = \int (1-h)d|\nu|_{p} + \int hd|\nu|_{p} = \int d|\nu|_{p} = 1.$$

Thus $\mu = h\mu/\|h\nu\|_p$, since μ is extreme. Set $c^{-1} = \|h\nu\|_p$. Then

$$\int g \, d\mu \, s = c \int g h \, d\mu \, s$$

for each s in E and g in C(X). Thus h is constant on the support of μ s, and since h can be chosen so that it separates points, this implies that the support set is a single point x_0 . The identity $\mu(s+t) = \mu s + \mu t$, which holds for each pair s, $t \in E$, shows that each of the measures μ s (s \in E) is a point mass at x_0 . Since $\mu \perp A$, we conclude that

(13)
$$0 = \int d\mu f = \mu(\{x_0\}) f(x_0) \quad (f \in A).$$

Because μ is nonzero, $\mu(\{x_0\})$ is a nonzero continuous linear functional on E^* whose kernel, according to (13), contains $A(x_0)$, contrary to (i). This contradiction establishes the theorem.

An earlier result of this type [4, Theorem 5, p. 102] required that X be metrizable and E be finite-dimensional. More general results can be established. For example, the result in [7] has a complete analogue in C(X: E).

As an illustration of Theorem 2, consider the family A of all finite linear combinations of functions of the form

$$x \to \phi(x)f(\cdot + x)$$
 $(\phi \in C(G), f \in L^1(G))$

from a locally compact abelian group G into its group algebra $L^1(G)$. Each element of A is bounded and continuous with respect to the L^1 -norm, and A evidently satisfies conditions (i) and (ii). Hence A is a strictly dense subset of $C(G; L^1(G))$.

REFERENCES

- 1. E. Bishop, A generalization of the Stone-Weierstrass theorem, Pacific J. Math. 11 (1961), 777-783.
- 2. S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Ann. of Math. (2) 39 (1938), 913-944.
- 3. L. de Branges, *The Stone-Weierstrass theorem*, Proc. Amer. Math. Soc. 10 (1959), 822-824.
- 4. R. C. Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104.
- 5. N. Dunford and J. T. Schwartz, *Linear operators* (Part I), Interscience Publishers, New York, 1958.
- 6. I. Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc. 105 (1962), 415-435.
- 7. ——, Bishop's generalized Stone-Weierstrass theorem for the strict topology, Proc. Amer. Math. Soc. 14 (1963), 329-333.
- 8. M. Gowurin, Über die Stieltjessche Integration abstrakter Funktionen, Fund. Math. 27 (1936), 254-268.
- 9. C. S. Herz, *The spectral theory of bounded functions*, Trans. Amer. Math. Soc. 94 (1960), 181-232.

University of Kentucky