BOUNDED CONTINUOUS VECTOR-VALUED FUNCTIONS
ON A LOCALLY COMPACT SPACE

James Wells

1. INTRODUCTION

In this paper we prove a representation theorem for the strict dual of the space
of bounded continuous functions from a locally compact space X into a locally con-
vex linear topological space E. As one would expect, the representation is accom-
plished by means of an identification between the strict dual and a certain space of
measures on X whose values lie in the dual of E. Guided by the now familiar tech-
nique of de Branges [3], we apply this representation theorem to obtain a generalized
Stone-Weierstrass theorem for the strict topology. The study was inspired by the
main results in a paper of R. C. Buck [4], and it may be regarded as an extension of
Buck’s investigation.

Before stating our main result, we introduce some notations. Let X be a locally
compact Hausdorff space, and E a complex linear space with a locally convex top-
ology described by a family of seminorms N. By C(X: E) we denote the space of
bounded, complex, continuous functions from X into E, and by Co(X: E) the sub-
space of C(X: E) consisting of all functions that vanish at infinity. In case E is the
complex field, we denote the spaces by C(X) and Cy(X). The uniform topology ¢ on
C(X: E) is defined by the seminorms

I, = sup p(Ex)),
xe€X

where p ranges over N. A weaker locally convex topology on C(X: E) is the strict
topology B defined by the seminorms

Il 4, = lotll, = sup ple(x)i(x)),

x€X

where ¢ ranges over Co(X) and p ranges over N. See [4] for general properties,
and [4], [7], [9] for applications involving the strict topology.

M(X) denotes the set of all finite, complex, regular Borel measures on X, and
M(X: E*) denotes the set of all measures pu whose values lie in the dual space E*
of E and which satisfy the following conditions:

(1) wp(4)s €e M(X) for every s € E.

(2) There exist a seminorm p € N and a constant K such that sup IE,u,(Ai)sil <K,
where the supremum is taken over all partitions of X into a finite number of
disjoint Borel sets {A;} and all finite collections of elements {s;} in E such
that p(s;) < 1.

THEOREM 1. If L is a strictly continuous lineavr functional on C(X: E), then
there exists a u € M(X: E*) such that
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(3) L(f) = Sduf

for each f € C(X: E). Conversely, for every i € M(X: E*) the formula (3) defines
a strictly continuous lineav functional on C(X: E).

The integral in (3) is of the Riemann-Stieltjes type obtained by taking the limit
under successive refinements of sums of the form Z u(A;)f(x;), where {Ai} is a
finite partition of X into disjoint Borel sets and {x;} is a sequence in X such that
x; € A;. All integrals in the sequel extend over X.

In case E is the complex field; Theorem 1 reduces to a theorem of Buck [4,
Theorem 2, p. 99] which states that the strict dual of C(X) is the space M(X), the
pairing between functional and measure being that induced by integration.

2. PRELIMINARY RESULTS

We begin with a lemme. that expresses the essential character of the strict
topology for C(X).

LEMMA 1. If @ € M(X), then there exist a v € M(X) and a ¢ € Cy(X) such that
o = ¢y, that is,

a(A) = SA pdy

for every Borel subset A of X.
For a proof, see [4, p. 100].

We shall need an analogous result for M(X: E*). For every p € M(X: E*) and
every s € E, us denotes the measure in M(X) whose value at the Borel set A is
p(A)s; | u.sl denotes the usual variation measure with total variation | us H o
satisfies condition (2) for the seminorm p € N, we define the p-variation |pL|p of |
by

(4) n],(A) = sup | Zu(a)s |,

where the supremum is exactly as in (2) except that only partitions of A are consid-
ered. The reader may easily verify that |p. |p belongs to M(X). We set

”“ “p = Ilu'lp(X)‘
LEMMA 2. If p € M(X: E*), theve exist a v € M(X: E*) and a p€ Cy(X) such
that u = ¢v, that is,

(5) p(A)s = S ¢dys

for each s € E and each Borel set A in X.

Proof. Let p € N be a seminorm for which (2) holds with respect to . Since
| © Ip belongs to M(X) and therefore determines a strictly continuous functional on
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Sfdlulpl <1 whenever f{ is in

C(X), there exists a real ¢ € Cy(X) such that

v = {f e C(X): ||¢f] < 1}.

Now suppose & is any measure in M(X) with the property Sfdoz' < 1 for every
f € V (see [7]). Since £/[|¢f]| +&] (e > 0) is in V for every f € C(X), it follows
that |Sf doz| < ]l of ” Therefore the mapping T defined by

(6) T(pf) = Sfdoz

is a o -continuous functional on the subspace ¢C(X) of Cy(X) with norm ”T" <1.
The functional T has (by the Hahn-Banach theorem) a norm-preserving extension

T' to Co(X), where (by the Riesz representation theorem) there exists a v € M(X)
with |y|| <1 such that

@ = {1ay (1 e cy.
Combining this with (6), we see that
qu&dy = Sfda (f € C(X));

hence o = ¢y. We ensure uniqueness by requiring that y vanish on the set

S(¢) = {x € X: ¢(x) = 0}. Since |u|p satisfies the condition imposed on a, we may
write |u IP = ¢y, for some positive measure v in M(X) with H vp" < 1. In fact,
the same argument shows that, for each s in E, there is a unique measure vs in
M(X) that vanishes on S(¢) and satisfies the conditions ||vs| < p(s) and ps = ¢vs.
This assertion follows directly from the fact (see (2) and (4)) that [us[ is majorized
by p(s) Iu IP and from the resulting inequality

[ {rane

< Jltlalus] < v §lelalul, = e § J1e] av,

<o) [et] v <ps) (2ev).

We are now in a position to describe v. For each Borel set A C X, let v(A) be
the functional on E whose value at the point s is v(A)s (the value of the measure
vs at A). The identities pu(s +t) = us + ut and us = ¢vs show that

v(A)(s+t) = v(A)s + v(A),

and the relation |v(A)s| < p(s) follows from the inequality ||vs| < p(s). Hence
v(A) € E*¥, and v satisfies condition (1).

Finally, the inequality
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= lZ) S q!)"ldusi < ES ¢_1dlﬂsi|
Aj

Aj

<z SAi s talul, = §otalul, = fav, <1

'EV(Ai) S;

(p(s;) < 1, and {A;} a finite partition of X into disjoint Borel sets) shows that v
satisfies condition (2). Hence v € M(X: E*), and the proof is complete.

LEMMA 3. If v € M(X: E*), ¢ € C(X), u = ¢v, and v salisfies (2) for the
seminorm p € N, then |p Ip |¢| Ivlp.

The proof follows standard lines and will be omitted.

The final lemma of this section establishes the form of the ¢ -continuous linear
functionals on Cy(X: E ) (We adopt this notation to mean that N contains only the
seminorm p.) This problem was treated by Gowurin [ 8] and Bochner and Taylor [2]
in the special case where X = [0 1] and E is a Banach space. Indeed, the literature
abounds with elegant treatments of variations of this problem [5, p. 543]. However,
no reference seems to be readily available to the variation we have in mind, and for
this reason we offer a proof.

LEMMA 4. The geneval form of the o -continuous lineav functional L. on
Cy(X: EP) is

(7) L(f) = Sdp.f,

wheve p € M(X: EY) and ] = "p.HP

Proof. For each s € E and g € Cy(X), the mapping gs: x — g(x)s represents a
member of Cy(X: Ep) If L is a o-continuous linear functional on Cy(X: E ) define
the functional Lg (s € E, ) on Cy(X) by Lg(g) = L(gs). The functional L 1s linear,
and the 1nequa11ty

L@ = [Les)] < | fesll, = [Tl ets) el
shows that |L_]| < [[L]l p(s). By the Riesz representation theorem there exists a
unique measure s € M(X) such that |ps] = | L, and L/ (g)= Sgd,us. The rela-

tion p(as +bt) = aus + but (a, b complex and s, t in E) comes from the fact that L
is a bilinear map on Cy(X) X E_ and, together W1th the inequality ” us " < || LII p(s),
it shows that the map s — p(A)s deflnes a continuous linear functional on E, for
each fixed Borel set A in X. It remains to show that the vector-valued measure 13
thus defined satisfies condition (2).

Let {A;}., be a partition of X into disjoint Borel sets, and let {s;}i., be a

sequence in E Let € be positive. Because all measures involved are regular
there exist compact sets F; C A; such that Iusil (A;\ F,) <&/2n, and open sets
V; O F; such that

|us; | (V,\ F,) <e&/2n (i=1, 2, -, n)



BOUNDED CONTINUOUS VECTOR-VALUED FUNCTIONS 123

with V; N V: =@ (i #j). Next choose continuous functions g; with values in [o, 1]
such that g;(F;) = 1 and g;(V]) = 0. Clearly, the function

n
(8) h =2 g; 5;
i=1

is in C()(X: Ep), "h"p _.<_ max {p(s]_), p(sz)a %y p(sn)}; and

L(h) = 2’ I(g; s;) = 27 Sgidy.si.
i=1 i=1

This information, combined with the inequalities | L(A;)s; - ‘S‘ g;dus;
the relation

27 L (Ai)s i

i=1

< g+ |Lh)| < &+ |L]| max {p(s,), p(s,), ---, p(s_)} .

Letting £ — 0, we obtain condition (2) for p.

Simple estimates on approximating sums show that Sd,u (gs) = Sgd,us for
g € Cy(X) and s € EP' Thus

L(h) = Sduh.

Since functions of the form (8) with g; € Cy(X) (s; € E ) are o-dense in Cy(X: E )
it follows in the usual way that L(f) has the form (7 ).

The argument for the last assertion of the lemma is routine, and we omit it.

3. PROOF OF THEOREM 1

The strict topology has a base of neighborhoods about the origin O in C(X: E) of
the form

= {f € C(X: E): ||q.'>1f||p1 <1, "gbzfupz <1, e, ll¢nf||pn <1},
where ¢; € Co(X) and p; € N (i=1, 2, ---, n). Since

(9) p = max {ply p27 ) pn}

is a seminorm on E, it is clear that U contains the neighborhood
(10) V = {f € C(X: E): ||¢f"P < 1},

where ¢ = max { lqb1|, |qb2|, ees Ic,bn] } The new system of seminorms obtained by
adjoining to N all possible seminorms p and kp (k > 0) of the form (9) defines the
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same topology on E. Henceforth we assume that the family N has been so extended,
and that accordingly every strict neighborhood of O € C(X: E) contains a strict
neighborhood V defined by a single inequality (10).

Let L be a B-continuous functional on C(X: E). There exist a seminorm p € N
and a ¢ € Co(X) such that lL(f)l < 1 whenever f is in the neighborhood V defined
by (10). For f € C(X: E) and € > 0, the function f/[||¢f“P + &£] is in V; therefore
|L(f)| < | ¢£], + &, and letting £ — 0, we see that |L(f)| < [¢f],. This last in-
equality implies that if we view M = ¢ C(X: E) as a subspace of Cy(X: EP) (see
Lemma 4), then the functional T defined by T(¢f) = L(f) represents a ¢ -continuous
functional on M whose norm does not exceed 1. By the Hahn-Banach theorem, T
has an extension T' to Cy(X: Ep) such that

@] < ey @ e ol Bp).

According to Lemma 4 there exists a measure v € M(X: Ei’;) C M(X: E*) such that
T = |avf (£ € Co(X: Eyp).

Consequently,

(11) Lo = favien (e cix E).

If we set u = ¢v, the integral on the right can be rewritten in the form L(f) = Sdp.f,
which is the required representation (3). |

It remains to show that every p € M(X: E*) defines a S-continuous functional on
C(X: E) by means of (3). By virtue of Lemma 2, y has the decomposition y = ¢v
for some ¢ € Cy(X), v € M(X: E*). Thus (3) may be written in the form (11), which
clearly defines a B-continuous functional on C(X: E).

4. A STONE-WEIERSTRASS THEOREM FOR C(X: E)

The purpose of this section is to show how Theorem 1 provides a natural tool in
the study of Stone-Weierstrass theorems for C(X: E). Our procedure is that outlined
in [7].

THEOREM 2. Let X be a locally compact space, and E a locally convex topo-
logical space whose topology is given by a family of seminorms N. Let A be a B-
closed subspace of C(X: E) that satisfies the following conditions:

(i) A(x) = {f(x): £ € A} = E for every x € X.

(ii) If ¢ € C(X) has values in [0, 1] and f € A, then ¢f € A.
Then A = C(X: E).

Proof. Suppose the conclusion is false. Then there exists a nonzero measure pu
in M(X: E*) such that g L A, in other words, such that Sdp.f = 0 for every f € A.

Since p determines a strictly continuous linear functional on C(X: E), there exists a
¢ in Cy(X) and a p in N such that
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(12) lSdp.f‘ < 1 whenever [off, < 1.

The set VO of all measures p for which (12) holds and & L A is a convex and weak*
compact subset of M(X: E*), which by the Krein-Milman theorem has an extreme
point 1. According to Lemma 2, there exists a v in M(X: E*) such that y = ¢v,
and since p is extreme, v has p-variation equal to 1 on X, that is,

IVIP(X) = "V”p = 1.

Choose an h in C(X) such that 0 < h < 1. Now observe that the measures
hp/|hv |, and (1 - B/ | (1 - By |, arein VO and

hu (1 - h)u
L= “hu"p _——Hhv "P + l|(1 - h)v"P ‘———‘_"(1 ~ h)V"P,

where, by Lemma 3,

Invl, + b -nwl, = (@ -malvl,+ (nalvl, = {alp], = 1.

Thus p = h,u/"hv "P , since p is extreme. Set c-1 = Hhv "P . Then

ggdy.s =cC Sghd,us

for each s in E and g in C(X). Thus h is constant on the support of ps, and since
h can be chosen so that it separates points, this implies that the support set is a
single point x3. The identity p(s +t) = us + pt, which holds for each pair s, t € E,
shows that each of the measures pus (s € E) is a point mass at x3. Since p L A,
we conclude that

(13) 0= {aut = n({xeDitxg) (1 e a).

Because u is nonzero, p( {Xo}) is a nonzero continuous linear functional on E*
whose kernel, according to (13), contains A(xg), contrary to (i). This contradiction
establishes the theorem.

An earlier result of this type [4, Theorem 5, p. 102] required that X be metriz-
able and E be finite-dimensional. More general results can be established. For
example, the result in [7] has a complete analogue in C(X: E).

As an illustration of Theorem 2, consider the family A of all finite linear com-
binations of functions of the form

x — ¢(x)E(- +x) (p € C(G), fe LNG))

from a locally compact abelian group G into its group algebra LI(G). Each element
of A is bounded and continuous with respect to the L!-norm, and A evidently
satisfies conditions (i) and (ii). Hence A is a strictly dense subset of C(G: Ll(G)).
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