FIBRING WITHIN A COBORDISM CLASS

P. E. Conner and E. E. Floyd

1. INTRODUCTION

The following question was pointed out to us by T. E. Stewart. If a closed mani-
fold M"™ is fibred differentiably by a closed connected fibre that cobords modulo 2,
over the circle as base space with structure group Z;, then does M" cobord
modulo 2? We can exhibit a 4-manifold M* fibred over the circle by a closed
connected 3-manifold, which must cobord, but where [M ]2 is an indecomposable
cobordism class. Th1s led us to the problem of characterizing those unorlented
cobordism classes that admit a representative, differentiably fibred over sl , with
structure group Z, . We consider the ring homomorphism x: ® — Z, that assigns
to each closed manifold its Euler characteristic reduced modulo 2. This is an in-

variant of the modulo-2 cobordism class, since x (V") (mod 2) equals
<Wn ’ o-1’1> € ZZ ’

where wp, € H(V™; Z,) is the nth Stiefel-Whitney class. I a manifold can be fibred
over Sl then its cobordism class lies in the kernel of X, since the Euler character-
istic modulo 2 of the total space is the product of the Euler characteristic of the base
with that of the fibre. In (4.5) we show the converse; that is, a closed manifold M"
is cobordant to the total space of a differentiable fibration over S! with structure
group Z, if and only if x(M"™) =0 (mod 2).

Two generalizations of this result are then made. The kernel of x is an ideal in
M. The correspondence

k
[M"], — ([M"],)*

is a ring homomorphism in . The image of the kernel of x under this homomorph-
ism is a subring N (k) € N. Any cobordism class 1n the ideal generated by % (1) can
be represented by a closed manifold fibred over S2 with structure group U(1), while
any cobordism class in the ideal generated by ®(2) can be represented as the total
space of a differentiable fibration over S% with structure group Sp(1). We have no
information about fibrations over S8.

We use the notation [B, X, F, 7; G] for a fibre bundle with total space B, base X,
fibre F, and structure group G. In Section 8 we show that if
[M™, 8™, F™" | 75 O(k)]

is a differentiable bundle and n # 0, 1, 2, 4, or 8, then [Mm] 2 = 0. This leads to the
obvious conjecture that the result may hold if O(k) is replaced by any compact
connected Lie group.
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Our present methods rely heavily on earlier results [2, Chapter IV, p. 59]. In
particular, we established a device for analyzing the cobordism class of a closed
manifold in terms of the normal bundle of the fixed point set of an involution on the
manifold. This is the basic principle used in the present note.

An additional remark about the fibration [M4, sl , F3 , T Zz] mentioned earlier
is in order. The map 7: M* — S! defines a bordism class [M%, 7], € % 4(S!) (see
[2]). But 7: M%? — S! turns out to be bordant to-the constant map of M4 into S!.
The observation we want to make is that [M4] 2 is indecomposable, that the fibre map
has no critical points, but that every point of M* under the constant map is critical.
This suggests that the critical (or singular) points of a smooth map do not depend to
any significant extent on the bordism class of the map.

2. COMPUTATIONS

This section develops some basic lemmas that arise from the computation of the
Stiefel-Whitney numbers of a few specific manifolds. Let £ — V™ be a real, differ-
entiable k-plane bundle over a closed manifold. We denote by B(£) — V™ the asso-
ciated (k - 1)-sphere bundle and by p: RP({) — V'™ the associated bundle with fibre
RP(k - 1) [2, p. 60]. We note that B(£) is naturally a 2-fold covering of RP(£), and
we let ¢ € HI (RP(£); Z,) be the characteristic class of this covering. Since the
fibre in RP(£{) — V™ is totally nonhomologous to zero,

p*: B¥(V'™; Z,) — H¥(RP(£); Z,)

is injective. If 1, vy, ***, v denote the Whitney class of £ — V™ then the co-
homology ring of H*(RP(£); Z,) is entirely determined by the relation

k
ck = ?p*(vj)ck'j:

It is also possible to express the total Stiefel-Whitney class of the tangent bundle to
RP(£), which is a closed (m +k - 1)-manifold. Let 1, w;, ---, w,, be the Stiefel-
Whitney classes of V™ ; then (see [2, (23.3)]) the total Stiefel-Whitney class of

RP(%) is
m k
(Ep*(wj)) (E (1+ )< p*(Vj)) .
o 0]

We shall denote by £ @ nR — V™ the sum of £ with a trivial n-plane bundle.
(2.1) LEMMA. If £ — V™ is a differentiable 2-plane bundle, then [RP(£)], = 0
in ERm.,_l . .
Proof. In this case c? = cp*(vy) + p*(v,); thus
(1 + ¢)? + (1 + c)p*(vy) + p*(v,) = 1+ p*(v,).
Each Stiefel-Whitney class of RP(§) is given by W; = p*(w; + w;.;Vv)). From dimen-

sional considerations it follows immediately that every Stiefel-Whitney number of the
(m + 1)-manifold RP(£) is zero.
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Next we focus our attention on the canonical twisted real line bundle £ — RP(1).
(2.2) LEMMA. Foranyn> 0, [RP(£¢ ®nR)],=0in R .

Proof., Again we must show that every Stiefel-Whitney number vanishes. Let
d € H(RP(1); Z,) be the generator. The Stiefel-Whitney classes of the (n+ 1)-
manifold RP({£ @ nR) are

n+1 3 ( n ) i1
. = J J *
W; (j )c+j_10 p*(d),
and c®tl = ¢Mp*(d). Being concerned only with j > 0, we write

o n+1) j j (n-!—l) i-1
WJ—(J. ¢+ i ¢! px(d).

Choosing positive integers j, such that j;+j2+ *=* +jx=n+ 1, and noting that
d?% = 0, we have the relation

I
() e B ) | e,

k
Since 2 1 s /(n+ 1) =1, the term in brackets is 0 modulo 2, so that every Stiefel -
Whitney number vanishes, and [RP(¢£ @ nR}, = 0.

Our next lemma will exhibit some odd-dimensional indecomposable cobordism
classes. We recall that [M"], € %, is indecomposable if and only if it cannot be ex-
pressed as a sum of products of lower-dimensional classes. To test for indecom-
posability we shall evaluate a certain Stiefel-Whitney number [3]. Briefly, we shall
consider a closed manifold M™ whose total Stiefel-Whitney class can be expressed
as a product (1 +t;) --- (1 + t,4;), where each t; belongs to H'(M™; Z,). We shall

. . ntk = pn n
evaluate the symmetric polynomial El (t;)" on the fundamental cycle of M~ and

k k . k
. ves . _ n+1 n+1 ]S n+1) n..x
wj, ka—llI(. )c +§)n+1(1;1(jr e p*(d)

show that it is 1 modulo 2.

We select an odd number n for which n+ 1= 2P(2q + 1) (q > 0), and we let
£ — RP(2P) be the canonical twisted real line bundle.

(2.3) THEOREM. The unoviented cobordism class [RP(¢ @ (q2F '+1 - 1)R)]2 €N
is indecomposable.

Let d € H! (RP(2P); Z,) be the generator. The total Stiefel-Whitney class of
RP(; @ (a2P™' - 1)R) is

P ptl _
(1 +p*@)® 11 +e)¥® 11 +c+px@).
We are required to show that

(2P + 1) p*(d™) + (@2 - 1)c® + (¢ + p*(@)® 2 0.
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P ptl
For dimensional reasons, d™ = 0. Now c9% = c92 - 1p*(cil), hence

ptl _ P
@2 - 1) = (2P - 1)e®? Lox@®) = 0.

It remains then to show that (c + p*(d))™* = 0. Again for dimensional reasons,
2P
(c+pH@P = Z (1) em-ipra).
0
We may write n - j = (@2PT! - 1) + (2P - j), so that

2‘p-i-].

. . ptl p_;: _ P
PHIpr) = ¢ ~Tpra ) = o T lpra®),

P
2
Thus we must show that 20 (?) =0 (mod 2). Now n = qZPJrl - 1(2P - 1), hence
(‘;) = 1(mod2) (0<i<2P),

>P .
and (np) = 0 (mod 2); therefore Eo (ri) = 0 (mod 2), and (2.3) is proved.
2

We shall also need to consider a complex k-plane bundle & — V'™ together with
the associated bundle p: CP(¢) — V'™ with fibre CP(k - 1). In this case the (2k - 1)-
sphere bundle B({) is a principal U(1)-bundle over CP(¢). We let ¢ € HZ(CP(g); Z5)
be the Chern class modulo 2 of this U(1)-bundle. According to [1, p. 517],

k
¢ = 2 p(v;) i,

where 1, vy, *--, vy are the Chern classes modulo 2 of £ — V'™, The total Stiefel-
Whitney class of the closed [2(k - 1) - m]-manifold CP(¢) is

m K
( 2 p*(wj)> (Z) PH(v;) (1 + c)k-5> :
0 0

where 1, w; , **+, W, are the Stiefel-Whitney classes of V',

Finally, if £ — V'™ is a quaternionic k-plane bundle with structure group Sp(k),
then there exists a QP(£) — V™ with fibre QP(k - 1). Analogous results hold for
H*(QP(%); Z,) and for the Stiefel-Whitney classes of QP(£).

3. THE MODULE I*(Zz)

In the following brief discussion of the unoriented bordism group of all involu-
tions on closed n-manifolds [2, p. 75], we shall identify involutions that are equi-
variantly diffeomorphic. An involution on a closed manifold (T, M") is said to bord
if and only if there exists an involution on a compact manifold (7, B®"!) for which
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7|aB™! is equivariantly diffeomorphic to (T, M™). From two involutions on closed

manifolds (T;, M]) and (T,, M) we may form a disjoint union
(T, Mj UM3) (M} N M3 = g)

in which each Mj is invariant (i=1, 2) and T | M} = (T;, M}). We shall say that
(T, Mrll) is bordant to (T, MIZI) if and only if their disjoint union bords. This de-
fines an equivalence relation among involutions on closed manifolds. We denote the
equivalence class of (T, M™) by {T, M™}, and the collection of all such equivalence
classes by I (Z,). By means of disjoint union we impose on I,(Z;) an abelian group
structure in which every element has order 2. It was shown in [2, (28.1)] that I,(Z;)
is a rather large, but finite group. Perhaps more to the point is the graded -

o0
module structure on I (Z,) = Eo L(Z,). For any involution (T, M") and any closed

manifold V™ we form (T', M" X V™) by T'(x, y) = (T(x), y) and introduce the % -
module structure by

{T, M} [v™], = {T', M® xV™},

It turns out that I,(Z,) is a free 9N -module.

We are especially interested in an R -module homomorphism K, : I.(Z;) —» R
of degree m. We choose a representative (T, M”) of {T, M”} and form the product
S™ x M", on which there exists the fixed-point-free involution T ,(x, y) = (A(x), T(y)),
where (A, S™) is the antipodal map. Let

K, ({T, M"}) = [(S™' xM")/T ], € % _,,..

The reader may verify that this is a well-defined MN-module homomorphism. The
image of K., is an ideal of 9. We note that (S™ x M™)/T; is the bundle over the
base space RP(m) with fibre M™ and structure group 7, associated with the prin-
cipal bundle S™ — RP(m). In other words, the image of K,, is the ideal of cobord-
ism classes that contain a representative fibred over RP(m) with group Z, . We
shall denote the manifold (S™ x M®)/T; by P(m, n).

We denote by F the set of fixed points of an involution (T, M™) on a closed
manifold M™. This fixed point set is the finite, disjoint union of closed connected
submanifolds. By 5 — F we shall denote the normal bundle, with the understanding
that the dimension of the fibre may vary from component to component. In any case
it will be recognized that RP(n @ R) is the finite, disjoint union of closed, connected
n-manifolds. We shall use the fact (see [2, (24.2)]) that [M"], = [RP(y ® R)],, and
we point out that if F! CF is the union of the components of codimension 1 in M,
then 5 restricted to F! is a line bundle ny — Fl. But then M @ R is a 2-plane
bundle, so that by (2.1) [RP(n; @ R)], = 0. ’

(3.1) REMARK. If [Mn]z is computed from the normal bundle to the fixed point
set of an involution on M™®, then Fl1 makes no contribution to [RP(n @ R)}, =[M"],.

This means we shall ignore F! in applications of [2, (24.2)].



38 P. E. CONNER and E. E. FLOYD
4. THE IMAGE OF K,

In this section we show that the image of K; coincides with the kernel of x.
With each involution (T, M™) we shall first associate, by inductive definition, a
sequence of involutions on closed manifolds (7, V(n, k)). Let

(TO ’ V(n; 0)) = (T’ Mn),
and suppose (7, , V(n, k)) has been defined. On st x V(n, k), define
T (z, x) = (-3, 7,(x)),

and let V(n, k + 1) = (S! x V(n, k))/T;. We introduce T, on S! x V(n, k) by
T,(z, ) = (z, x). Since T; and T, commute, an involution (741, V(n, k+ 1)) is
induced by T, . From our definition we see that V(n, k + 1) is fibred by V(n, k)
over RP(1).

Let ((z, x)) € V(n, k+ 1) denote the equivalence class under T, of
(z, x) € S! X V(n, k), I

714102, X)) = ((3, %)) = ((z, %)),
then either (z, x) = (2, x) or (-z, 7,(x)) = (Z, Xx). Therefore, to analyze the fixed
point set F, ., of 7, ., we note that
(i) the fixed point set of T, is S; = ({1} u {-1} x V(n, k)),
(ii) the set of coincidences of T, and T is Sp= ({i} U {-i} X Fy).

Here F, C V(n, k) is the fixed point set of 7, . The fixed point set of 7, is the
disjoint union of S;/T; with S,/T;. We identify the manifold V(n, k) with S; /T,
by x — ((1, %)), and F,  with S,/T; by x — ((i, x)). To understand the normal
bundle 74, — ¥y, note first that 7,4, | S; /T, is a trivial line bundle. To
understand 7,,; |S,/T; , we should embed V(n, k) again by x — ((i, x)). Now this
embedding also has a trivial normal line bundle; but S,/T; = Fy C V(n, k), so that
Mt 1 | S,/T, is n,, ® R — F,, where 7, is the normal bundle to F in V(n, k).

Using induetion on k, we see that in fact Fri1 isa disjoint union
"k
F U (U (V(n, j))) :
0

Furthermore,

My | F=1@E&DIR — F,

where n — F is the original normal bundle to F in M", while Mkl | V(n, j) is a
trivial (k - j + 1)-plane bundle. We can now use [2, (24.2)].

(4.1) LEMMA. If n — F is the normal bundle to the fixed point set of (T, M™),
then

k-1
[V(n, K)], = [RP(n @ (s + DR, + 27 [RP(s - )], [Vin, 3.
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The following is an immediate corollary.

(4.2) LEMMA. The cobordism class [V(n, k)], is indecomposable ‘if and only if
[RP(n @ (k+1)R)], is indecomposable.

As we already noted, each [V(n, k)], lies in the image of K;. This brings us to
a specific application.

(4.3) THEOREM. To each integer m (m > 2, m # 2P - 1) there corvesponds a
diffeventiable fibving of closed manifolds [X™, RP(1), F™-L 7; Z,] for which [X™],
is an indecomposable cobordism class.

We begin with m = 2s, s > 1. We take n =2, k= 2(s - 1), and consider
V(2, 2(s - 1)) arising from the involution (T, RP(2)) given by.
T([x;, x5, x3]) = [-x;, x5, %3] .

The fixed point set F is the disjoint union of a point p and a projective line
RP(1) € RP(2). Furthermore, the restriction of  — F to RP(1) is the canonical,
twisted, real line-bundle £ — RP(1). Thus

[RP(n @ (2s - 1)R)], = [RP(2s)], + [RP(¢ ® (2s - 1)R)],.
But by (2.2), [RP({ ® (2s - 1)R)], = 0, and since 2s is even,
[RP(n ® (2s - DR)], = [RP(2s)];

is indecomposable. By (4.2), we can take X% = v(2, 2(s - 1)).
Suppose next that m + 1 = 2P(2q + 1), ¢ > 0. Let (T, RP(2P + 1)) be the involution :

T([xly "t X2p+2].) = ['XI’ X2, "% XZP+ ] .

We take k = qZle-1 - 2 and show that [V(2P + 1, quqi_1 - 2)]2 is indecomposable. The
fixed point set of (T, RP(2P + 1)) is the disjoint union of a point with an RP(2P),
Furthermore, n — F restricted to RP(2P) is the canonical line bundle £ — RP(2P),
Therefore

+1 1
[RP(n @ (@2F"" -1)R)], = [RP(m)], + [RP(¢ @ (a2 - 1)R)],.
But [RP(m)], = 0, since m is odd, so that [RP(y G—)(quJrl -1)R)], is indecompos-
able. Again in view of (4.2) let X™ = V(2P + 1, q2P*1 - 2).

(4.4) REMARK. The manifolds V(2, k) avising from the involution (T, RP(2))
cobovd, for odd k.

Write k = 2s + 1; then
2s
[v(2, 2s + 1)], = [RP(2s + 3)], + [RP(£ ® (25 +2)R)], + z? [RP(2s + 1 - 1)1, [V(2, D], .

Now [RP(2s + 3)]; = [RP(¢{ @ (2s+2)R)], = 0. Also, [RP(2s+1 - j)], =0 if j is
even, hence



40 P. E. CONNER and E. E. FLOYD

s-1
[v(2, 25 + 1)], = 2J [RP(2(s - )], [V(2, 2j + 1)], .
0

We can now use induction on s, since for s =0, [V(2, 1)], € %3 = 0. This last
means that X 25 is fibred over the circle by a closed connected fibre that cobords
modulo 2.

We may think of R as the graded polynomial algebra over Z, generated by
[RP(2)], together with the classes [X™], of (4.3). Any odd-dimensional class lies
in the ideal generated by the [X™],, while [V%5], = [Y25], + r[RP(2)]°, where
[Y25], lies in the ideal spanned by the [X™], . Since x([Y25],) = 0, we see that
T = X(VZS), and we conclude that the ideal spanned by the [Xm]z , the image of K,
and the kernel of x: % — Z, all coincide.

(4.5) THEOREM. The cobordism class of a closed manifold admits a vepresen-
lative fibred over the circle with stvucture group Z, if and only if X (V™) = 0 (mod 2).

5. THE IMAGE OF K_,

In this section we present some partial results concerning the homomorphisms
K. L(Z;) - ®%, for m > 1. We recall that from (T, M™) we constructed
P(m, n) = (S™ x M™)/T; .

(5.1) LEMMA. If n — F is the normal bundle to the fixed point set of (T, M%),
then [P(m, n)], = [RP(n @ (m + 1)R)],.

To see this we examine the fixed point set of an additional involution (7, P(m, n)).
First let (r, S™) be the reflection involution

Xy, Xps s Kppp) = (K X, s X)),

and define T, on S™ X M™ by T,(x, y) = (r(x), y). Since Tj(x, y) = (A(x), T(y)), we
see that T; and T, commute, so that T, induces an involution (7, P(m, n)). To ob-
tain the fixed point set of 7, note that

(i) the fixed point set of T, is S™-1 x Mn,
(ii) the set of coincidences of T; and T, is S° x F.

Again it is clear that the fixed point set of 7 is the disjoint union of
(™' xM™)/T, = P(m - 1, n)

with (89 x F)/T; = F. According to (3.1), we can ignore P(m - 1, n) in using ([2,
(24.2)]). The normal bundle to F C P(m, n) is n @ mR — F, hence

[P(m, n)], = [RP(n @ (m + 1)R)],.

We now combine (5.1) with the involutions (7, V(n, k)) of Section 4. The fixed

k-1
point set F,_ C V(n, k) is a disjoint union F U ( U, v, j)), while

n | F=n ®kR
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and 7, l V(n, j) is a trivial (k - j)-plane bundle. We wish to apply (5.1) to
(S™ x V(n k))/T,.
(5.2) LEMMA. If n — F is the normal bundle to the fixed point set of (T, M),
then

[P(m, n + k)]z [(8™ x V(n, k))/T 1]2

Il

k-1
[RP(n @ (m+k+ )R], + ? [RP(m +k - §)],[V(n, i)],.

We note explicitly that [P(m, n + k)], is indecomposable if and only if
[RP(n @ (m + k + 1)R)], is indecomposable.

(5.3) THEOREM. If 2s > m and 2s # m + 1, then there exists a diffeventiable
fibring of closed manifolds [X%5(m), RP(m), F2s- ™ w3 Z,] for which [Xzs(m)]2 is
indecomposable.

If m = 2s, we use RP(2s) for the manifold. If 2s > m + 1, we take n = 2 and
k = 2(s - 1) - m > 0, and use the involution (T, RP(2)), recalling that
[RP(np @ (m +k + 1)R], = [RP(2s)], .

We take X%5(m) = P(m, 2 + 2(s - 1) - m) for the required manifolds.

(5.4) THEOREM. If 2s = 2P(2q + 1), q > 0, and m < q.‘ZPJrl - 2, then theve exists
a diffeventiable fibring [X%5-1(m), RP(m) F2s-1 Z,) for which [X2s-1(m)],
is indecomposable.

Obviously, we use the involution (T, RP(2P + 1)), so that
n=2P+1 and k=2-1-m-n=q2P'-2.m,.

Since m < q2P"! - 2, it follows that k > 0, and we may apply (5.2).

This provides some indecomposable cobordism classes in the image of K,,. We
do not know, however, whether (5.4) holds for some values of m > q2P*1 - 2, The
first questmn is whether there exists a differentiable fibring [X°(3), RP(3), F2, 1; Z ]
for which [X>(3)], is indecomposable.

In concluding this section we note that if m = 2, then 2 < q2p+1 -2 forall p>1
and q > 0; thus (5.4) applies to all odd numbers Zs -1 +2P - 1. Together with (5.3)
this means that R can be thought of as the polynomial algebra over Z,; generated
by [X°(2)], (s >2, s #2P - 1),

(5.5) COROLLARY. The image of K,: L(Z,) — RN is the ideal Z);o RN .

6. THE COMPLEX ANALOGUE

In the proof of (4.3) we used only some very special manifolds V(n, k), namely,
those that arise from an involution (T, RP(n)) given by

{Xls X2, "% Xn+1] - [_x]_’ XZ’ ) Xn+1]-

In this section we introduce the complex analogues of these manifolds. Let TX denote
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and Ek(C) the k-fold cartesian product of S3 with
in complex coordinates A;, ---, A_,; for which

the k-dimensional toral group,1
itself. We shall express S2nt

n+l —
El A;2;=1. On Zk(C) x 8%7%1 ye define a principal action of T¥*! py setting

g, wy), ooy (2, W)y s s 2 40))

-1 -1 -1 -1 -1 -1
= ((zyty, wyty ), ==, (25t tjawyty ), oo, (et , tieoy Wity ),

-1 -1 -1
(e trr s 22t s 75 Aprr tirn))s
where t = (t1 , °tt, tk+1)- We denote the quotient manifold by
(=¥ (C) x sty Rt = 1, k),
and a point in I'(n, k) by
[(Zl » W), o0y (2, W), (A, =0, An+1)]'
The mapping I'(n, k) — CP(1) given by
[(Z]_ ’ w]_)s R (Zk, Wk)9 (h]_ s "7 hn.‘.]_)] - [Z]_) W]_]

is a fibre map with fibre I'(n, k - 1) and structure group U(1), as we can see by let-
ting U(1) act on I'(n, k - 1) by

t]_([(zzy Wz)’ ) (Zk’ Wk)7 ()\'1 » 7T, An—l‘l)]
= [(ZZ: t]_ WZ), **% (Zk’ Wk)’ (Aly B }Ln+1)]'

There is also the Hopf fibring (S,3 U(1)). The bundle with fibre I'(n, k - 1) asso-
ciated with the Hopf bundle has as total space I'(n, k).

Along the same lines we observe that the I'(1, k - 1) play a special role. The
map I'(n, k) —» I'(1, k - 1) given by

[(Z]_ ’ W1)7 B (zk: Wk)’ (A'l s °°% An-|-1)] - [(Z]_ ’ Wl )’ ot (zk ’ Wk)]

is a fibre map with fibre CP(n) and structure group U(1) acting on the fibre by

tk([hl ’ "t An.}.]_]) = [tk}tl’ 7\'2, "'9 A'n-'_l]'

This means that there exists a complex line bundle £ — I'(1, k - 1) such that the
total space of CP(£ @ nC) is I'(n, k). This is the line bundle associated to the in-
duced action of U(1) = T¥/Tk-1 on (Zk-1(C) x $3)/Tk-1 | which is a principal U(1)-
bundle over I'(1, k - 1).

We could replace the toral group by (Z,)<"!. Let ZX(R) be the k-fold product
of S!, and replace s2ntl py §% . If we use the analogous definition for the action of
(Z,)<7! . we find that (ZX(R) x §7)/(Z, )5 is the manifold V(n, k) arising from the
involution [x;, X2, ***, Xpn+1] — [-X1, X2, ***, Xpn+1] on RP(n). The comment is an
immediate consequence of our definitions in Section 4. This is not an accident, for
now we show that [I'(n, k)], = ([V(n, k)]z)2 .
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To do this we note that by our original definition I'(n, k) is a closed complex
analytic (n + k)-manifold. We shall exhibit a conjugation involution on I'(n, k) (see
[2, p. 63]) whose real fold (that is, set of fixed points) is V(n, k). To do this we
first define ¢ on =¥(C) x 827+ py

O((Zl b Wl)’ .’ (Zky wk_)) ()\-]_ s T )"n-*-l) = ((21, ‘77]_)’ °*t, (ik’ ‘;;k)’ (}-‘1, I’ xn'i'l))'

I t — { is the automorphism of TX*! given by (t;, **-, txr1) — &, ==+, tis1), then
ot = to. We also note that t = t-! ; thus the subgroup of fixed elements is (Z,)k*1,
The fixed point set of ¢ is ZX(R) X S™ = F. If tF N F + @, then, since ot = To, we
seethat t € (ZZ)k+l and tF = F. We may therefore identify the image of ¥ under
the quotient map

2n+l k+1

s¥(C) x s — T(n, k) with (ZR) x$)/(2,)""! = V(n, k).

We define the conjugation involution (o*, I'(n, k)) by

[(zl ’ W]_), R (Zk’ Wk): (}\1 s "% }\'n-i-]_ )] - [(il ’ ‘;1)3 Ty (ik’ \'l—fk), (il » 77T in+1)]-

We must show that the fixed point set of o* is V(n, k) C I'(n, k); that is, if

p € Z¥(C) x 82ntl jg5 3 point for which o(p) = tp for some t € Tk+l  then there must
exist some 7 € TKt! for which 7p € ZK(R) X S®. Since t has a square root, we can
choose 7 sothat 7 = 7-1t= Tt; then o(7p)= To(p)= Ttp = Tp, so that 7p is fixed
under o. We may applg ([2, (24.4)]) to (o*, I'(n, k)) and conclude that

[P(n; k)]z = ([V(n, k)]Z) .

(6.1) THEOREM. If m > 2 and m # 2P - 1, then theve exists a diffeventiable
fibring of closed manifolds [Y2™, CP(1), F2(m-1) 4. U(1)] for which
[Yzm]z = ([Xm]Z )2 .

The manifolds X™ of (4.3) were certain ones of the V(n, k). We use the corre-
sponding manifold I'(n, k) for Y2™, An immediate consequence:

(6.2) COROLLARY. A cobordism class of the ideal in M generated by squaves

of elements in the image of K1 admils a vepresentative fibved over the 2-sphere
with structure group U(1).

The correspondence [V?], — ([V"],)2 is a ring homomorphism. Therefore the
ideal in question is generated by the squares ([X™}] 2)2; but for these classes we just
proved the result in (6.1).

7. QUATERNION ANALOGUE

We can carry the constructions of Section 6 through one more stage. Let Gktl
denote the (k + 1)-fold direct product of Sp(1), and ZX(Q) the k-fold product of S7
with itself. Express S4n+3 jn terms of quaternions (py, **-, p,4+1), Where

27 p; [).1 = 1. Now let GK'1 act on THQ) x s*»t3 py
t((q]_ ’ p]_ ); T (Qky pk)’ (pl » 770 pn+1))
- - - -1 -1 -1
= ((‘11 11, P, tll), °tt, (thj 1, tj-l pjtj ) e, (thk y te1 Pty )
1 -1

- -1
Pty Patiiys = Pogrtirr ) -
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We denote the quotient manifold of this principal action by 6(n, k). Again, let

[(ay, py), *=, (5 Py, Py =5 Poyq)] denote a point in 6(n, k). The map
6(n, k) — QP(1) given by

[(ply ql): tty (pk: qk)y (p]_; s pn+1)] - [p]_; ql]

is a fibre map with fibre 6(n, k - 1) and structure group Sp(1). Also, the map
6(n, k) — 6(1, k - 1) given by

[(ql » pl); % (qk’ pk)’ (pl s " pn+1)] - [(qu pl)’ °tty (qk’ pk)]

is a QP(n)-bundle with Sp(1) acting on the fibre by

tk([Pl » % Pn+1]) = ([tkpl s Py =y pn+1])-

There exists a quaternion line-bundle £ — 6(1, k - 1) for which
QP(( @ nQ) = 6(n, k).

In particular, 6(1, k) = QP(¢{ ® Q).

There also exists a suitable involution. We let a: Q — Q be the inner auto-
morphism of period 2 in the quaternions that is given by q — iqi'1 . The fixed sub-
field of @ is the field of complex numbers. We let

o((qu pl)’ °t (qk; pk)’ (Pl, Tty pn+l))
= ((a(ay), alpy), -+, (alay), alpy), (alpy), ==, alp, 1)),

and let a(t) = (a(ty), **+, @(txs1)) denote the automorphism on GX*t1, Then

ot = a(t)o, the set F of fixed points of o is ZX(C) x S27*1 | the fixed subgroup of «
is TK*l c Gkl and tF N F # P if and only if t € TX*! and tF = F. This means
that

(=k(c) x g@ntly/pktl - p(p k)
can be identified with the image of F under the quotient map
TRQ) x s*3 -, o(n, X).
Now we must show that if (o*, 6(n, k)) is the involution induced by o, then

I'(n, k) C 6(n, k) is the fixed point set of o*; that is, if a point is fixed under o*,
we must be able to express it in complex coordinates.

Suppose now that
p = ((ql s pl), "., (qk’ pk)y (p]. bl ..‘, pn+1))

is a point in ZX(Q) x S***! for which o(p) = tp for some t ¢ Gkl . By way of in-
duction, let us assume that (q; , p;) are both complex for 1 <i<j - 1. Then

= ese = = -1 = . . _'1 = -
t; = tj_I 1 and qjtj oz(qJ), thJ oz(pJ).

There exists a 7; € Sp(1) for which (qj’r}1 » P3T -1) are complex. We replace p by
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(1,1, --,1, 75,1, -~-, 1)p, which is equivalent to p under GK*tl, We begin with

j = 1, and by induction we show that there exists a point p', equivalent to p, whose
first k coordinate pairs are complex pairs. The reader may easily show that p'
can further be replaced by a p" in which all coordinates are complex. This means
that I'(n, k) € 6(n, k) is the fixed point set of (o*, 0(n, k)).

Unfortunately, in this case we do not know of a proposition analogous to [2,
(24.2)]. It certainly seems that there should be an appropriate replacement. Any-
way, we shall prove that the relation [0(n, k)], = ([T'(n, k)],)? still holds. For this
we must analyze the cohomology rings

H*('(n, k); Z,) and H*(0(, k); Z,).

(7.1) LEMMA. There exist cohomology classes &y, ++», 0y, C in Hz(l"(n, k); Z,)
that genevate the ving H*(T'(n, k); Z,) subject only to the velations

2 _ 2 _ : nt+tl _ .n
af =0, af = o, (2<ij<Kk), c = ctay.

The total Stiefel- Whitney class of T'(n, k) is
1+ay) A+, )+ )™+ c)lay).

We consider the CP(n)-bundle p: I'(n, k) = CP(£§ @ nC) —TI(1, k - 1). The fibre
is totally nonhomologous to zero modulo 2. If o € H%(I(1, k - 1); Z,) is the first
Chern class modulo 2 of £ — I'(1, k - 1), then H*(I'(n, k); Z,) is completely deter-
mined by the relation ¢?tl = p*(a)cn, where ¢ € H2(I'(n, k); Z,) is the Chern class
modulo 2 of the principal U(1)-bundle B(¢ @ nC) — CP(¢ @ nC). We consider
T(1, k) — I'(1, k - 1) with fibre CP(1). In this case, ¢ € H2(I'(1, k); Z,) is the first
Chern class modulo 2 of £ — TI'(1, k). We suppose classes aj, -+-, & in
H%(T(1, k - 1); Z,) are chosen that generate the ring H*(I'(1, k - 1); Z,) subject
only to
2 . -
1= 0, al = a;a; 2<j<k).

Finally we assume «; is the Chern class modulo 2 of £ — I'(1, k - 1). Let

aj = p*(aj) (1 <j<Kk), and set ¢ = ax+; . This furnishes us with appropriate
classes in I'(1, k - 1). For p: I'(n, k) — I'(1, k - 1), take «; = p*(a;) (1 <j<k),
together with c¢. We now have the first part of (7.1).

Next we must show that the Stiefel-Whitney class of TI'(1, k) is
1+ ap) - (1+0y).
For I'(1, k), we note that
(1+c)* + (1 +c)p(ay) = 1+ p*(ay);
hence, by induction over k, we see that p*((1 + « ) --- (1 + o)) is the total Stiefel-

Whitney class of I'(1, k). Applying this to I'(n, k) — I'(1, k - 1), we obtain the
second part of (7.1).

If we think of I'(n, k) as the base space of a principal TX*1l-pundle, then the
ap, *, ¢y, ¢ are simply the characteristic cohomology classes of the bundle. If
6(n, k) is considered as the base space of a principal Gk“—bundle, then there are
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(modulo 2)-characteristic classes 8;, ***, By, d in H4(9(n, k); Z,) that satisfy the
relations analogous to those of (7.1).

Since I'(n, k) C 6(n, k), we consider
i*: H¥(6(n, k); Z,) — H*(I'(n, k); Z,).
The homomorphism can be computed immediately, since
i*(g;) = af (1<j<k) and i¥d) = c?.

According to (7.1), the image of the total Stiefel-Whitney class of 6(n, k) under i*
is then the square of the total Stiefel-Whitney class of I'(n, k). Upon application of
the Whitney sum theorem, we see that the normal bundle 5 — I'(n, k) has the same
Whitney classes as the tangent bundle 7 — I'(n, k). This means that 7 — I'(n, k) is
bordant to n — I'(n, k) in terms of bundles; that is,

[7 — T'(n, K)], = [n — T(n, k)],
in % 2(n+k) (BO(2(n + k))) [2, p. 68]. An immediate corollary is that
[6(n, k)], = [RP(T @ R)], = [RP(n @ R)], = [T(n, k) X T'(n, k)], .

(7.2) THEOREM. For m > 2 and m # 2P - 1, theve exists a differentiable fibr-
ing of closed manifolds [W4™, QP(1), F4(m-1); 7; Sp(1)] for which

W, = ((x™])*%.

Since the correspondence [V"], — ( [Vm]z)4 is a ring homomorphism in %, we
also have the following result.

(7.3) COROLLARY. A cobordism class of the ideal in Nt genevated by fourth
powers of elements in the image of Ky admits a representative fibved over the 4-
spheve with structure group SP(1).

8. A TECHNICAL ADDITION

(8.1) THEOREM. If [M™, 8™, F™™™, 7; O)] is a differentiable fibvation of
closed manifolds, then [M™], =0 ifn#0, 1, 2, 4, or 8.

The bordism class of the bundle is an element of % ,(BO(k)) [2]. The bordism
class of this bundle is uniquely determined by the Whitney numbers of the character-
istic map f: S® — BO(k) [2, (17.2)]. However, there is only one Whitney number of
f that might be nonzero, namely the nth Whitney class v, € H*(S™; Z;). Milnor [4]
has shown, however, that v, =0 if n #0, 1, 2, 4, or 8 [4]. Hence, except in these
cases, all Whitney numbers of the characteristic map of the bundle must vanish.

But then [M™, s2 Fm-n_ 7. O(k)] is bordant as a bundle to the product bundle
[sn x Fm-n_gn pm-n_ 7 O(k)], and in particular, [S? x Fm-n}, =[M™]; = 0.

While it is clear that this argument would apply to some structural groups other
than the orthogonal group, it is not certain what the best result is. An optimistic
conjecture is that if [M™ s» Fm-n g, G] is a differentiable fibring of closed
manifolds in which the structure group is a compact, connected Lie group, then
[M™],=0i n#0,1, 2, 4, or 8. ‘
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