SINGLY-GENERATED LIOUVILLE F-ALGEBRAS

F. T. Birtel

1. INTRODUCTION

The entire functions of a single complex variable provide an interesting example
of a metrizable, complete, locally multiplicatively-convex, topological algebra (an
F-algebra). Operations are pointwise addition and multiplication; the topology is the
compact-open topology or, what is equivalent, the topology of uniform convergence
on compact subsets of the plane. One may ask whether the algebra of entire func-
tions can be abstractly characterized by certain significant features of its topologi-
cal and algebraic structure. In particular, to what extent does Liouville’s theorem,
that every bounded entire function is constant, characterize the entire functions
among the singly-generated F-algebras?

Arens in [1] shows that a semisimple F-algebra A with identity which is ration-
ally singly-generated by z in A and which has a continuous derivation D such that
Dz = 1 and such that

Io% e, < e )l
where ” . ”n is a pseudonorm and rg, ry, r, *-- is a sequence of positive reals,

must be (topologically and algebraically) the algebra of all holomorphic functions on
some open subset of the plane with the compact-open topology. Thus the topological-
algebraic structure, together with the existence of a continuous derivation satisfying
Cauchy’s inequality, characterizes such algebras. The connection between Liouville’s
theorem and Cauchy’s inequality makes the Liouville property a plausible selection
for characterization of the entire functions. Rudin in [4] asks to what extent function
algebras, which satisfy a weak maximum modulus principle on well-behaved domains
in the plane, are algebras of holomorphic functions thereon; and he obtains a partial
answer. Here again, the connection between the maximum modulus assumption and
Liouville’s theorem is suggestive.

In this paper we consider singly-generated F-algebras and impose conditions to
guarantee algebraic and topological equivalence with the algebra of entire functions
in the compact-open topology.

2. PRELIMINARIES

Some definitions which will facilitate the exposition are:

DEFINITION 2.1. An F-algebra is singly-genevated if it is the completion of
the polynomials in one of its elements.,

DEFINITION 2.2. An F-algebra is to be called a Liouville algebra if the spec-
tvum of each non-constant element of the algebra is urnbounded.

Received June 7, 1963,
Supported in part by National Science Foundation Grant GP-59 and in part by
Office of Naval Research Grant NONR-G-0031-61.

89



90 F, T. BIRTEL

DEFINITION 2.3. A function algebrva A is an F-algebrva such that the pseudo-
norms ||-|, which define the topology of A satisfy the condition

I%2]l, = |x[|? (alt x € A).

Let A be a commutative F-algebra with identity whose topology is given by the

family {|‘|[,:n=1, 2, ---} of pseudonorms |-|,,. (We may assume that the pseudo-
norms have been so chosen that " la <l llas1 (=1, 2, ) ) Let B, denote the
normed algebra A /{x € A: ||x||, = 0}, and for n> m, let 7 : B, — B, be the

canonical mapping between the factor algebras. 734, (n > m) can be extended to a
continuous mapping with dense range from the completlon A, of B, into the com-
pletion A of B, {An, T } is a dense inverse limit system, and by the funda-
mental result of Michael [3] A is the inverse limit of {A,; 72,}. Each A, is a
Banach algebra. The maximal closed ideal space M (or the space of non-zero, con-
tinuous, complex-valued, algebra homomorphisms) of A is the union of the maximal
ideal spaces M of A . The relative strong topology on M is the direct limit top-
ology derived from the direct limit system {M,; 72*}. As we have chosen the
pseudonorms for A, ﬂn (n> m) is an injection map. A set U C M is open in the
direct limit topology 1f and only if UN M, is relatively weak* open in M,, for each
n. The spectrum of x in A is

{z € 6| x - z has no inverse} = M(x).

By the mapping X: M — € that is given by X(m) = m(x) for m € M denote the Gel-
fand transform of x € A. The topological algebra terminology we use is in accord
with Michael’s [3].

3. SINGLY-GENERATED F-ALGEBRAS

THEOREM 3.1. If the image in the plane of the maximal closed ideal space M
of a singly-genevated Liouville F-algebra A with identily has non-empty intevior,
then M can be identified with the set C of complex numbers.

Proof. Let a generate A. A is the inverse limit of Banach algebras A , each
of which is singly-generated by the projection 7, of @ in A, and so is commutative.
As is well known, (7, @)” is a homeomorphism of M, with a compact non-separating
subset D, of the complex plane. Suppose there is a zg € € such that z, {:‘ a(M) =D
Then for each n, choose an arc vy, such that ¥, joins zgtoe and y, N D, = p.

Such arcs exist, since ¢\D, is open and connected Construct a smgle—valued
analytic functlon Spt €Ny, — ¢ with (s (z)) = z - Zg. Having chosen s, restrict
sn toa neighborhood Va of D, which does not meet v, U v,,;, and then continue

n| Vn analytically to s, wh1ch is defined on G \yp,+]1. (The assumption that
” ln < [l-lln41 implies D, € D, ;1) Proceeding inductively, construct {s,}5-1,
thereby obtaining a single- valued square root s defined on @(M) = D. Let

Bn = 1- ‘S‘ Sn(Z) dz (n =1, 29 "')’

2wi I.,nz -

where I' | isa contour in Vp m1ssmg D,. B={BntS-1 is in A, since 77»’,8 = B; for
j> 1. Furthermore B = so & omits all values in some sphere in ¢, smce D has in-
terior s and does not assume a value and its negative. Then it is clear (for example,
by the Riemann Mapping Theorem) that there exists a non-constant bounded analytic



SINGLY-GENERATED LIOUVILLE F-ALGEBRAS 91

function F defined on a neighborhood of 3(M). By Theorem 10.1 of [3], F o § is in
A, which is in contradiction to the assumption that A is a Liouville algebra. This
contradiction establishes the theorem.

COROLLARY. The maximal closed ideal space M of a singly-genevated Liou-
ville function algebyvya A with identity can be identified with the set & of complex
numbers.

Proof. A is the inverse limit of singly-generated sup-normed Banach algebras
A, each of which is isomorphic to the uniform closure of the polynomials defined
on the spectrum of the generator. Denote the respective spectra by Dp
(n=1, 2, ---), and let

o0
p=-Ubp,.
n=1

The maximal ideal space of A, is homeomorphic to D, (n=1, 2, ---). If D, has no
interior, then A, = C(D,), the uniformly closed algebra of all continuous functions
on the compact space D,. Consequently, if no D, has interior, A = C(D), the alge-
bra of all continuous functions on D, which is not a Liouville algebra. Therefore,
the fact that some D, has interior renders the interior of D non-empty, and the
above theorem applies.

For singly-generated F-algebras we introduce a condition from which it will
follow that M is the complex plane with its Euclidean topology. Here, ¢, M, D, My,
and D,, have the same meanings as in the preceding proofs.

CONDITION ¢. The intervsection of the boundavies of D, (n=1, 2, --+) is empty.

THEOREM 3.2. If condition ¢ is salisfied, the maximal closed ideal space M
of a singly-genevated Liouville F-algebra A with identity is homeomovphic to the
complex plane with its Euclidean topology.

Proof. Clearly, as a set, M can be identified with €. Now let U be a Eucli-
dean open subset of the plane. Each compact M, is homeomorphic to D_, so

alwnby=atunwm,

is relatively open in M, for each n. Also, letting W be an open subset of M in the
direct limit topology, m € W, and @(m) = z, we conclude from condition ¢ that z is
in int(M,) for some n. Hence, there exists a Euclidean neighborhood V of z with
z € Vc a(W). This shows that &(W) is a Euclidean neighborhood of z. Therefore
& is a homeomorphism of M onto the complex plane.

THEOREM 3.3. Every singly-genevated Liouville F-algebra A with identity is
topologically and algebraically isomovphic to the algebra Hol( G ) of entive functions

on the complex plane with the compact-open topology, provided that Condition ¢
oblains.

Proof. We first establish the existence of an equivalent system
{h-ll:x=1,2, -}

of pseudonorms with the property that any weak* compact subset K on M is con-
tained in some set of the form
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{meM: Imx)|<1 if [|x]i <1}.
To this end, put Uy = {x € A: |x|l, <1}. {Un}n-1 is a base for A in the sense

that dilations of the sets in {U,}%.; form a fundamental system of neighborhoods
of 0 in A. If K is a weak* compact subset of M, then

K% = {x ¢ A: |Im(x)| < 1 for m € K}
is a convex, absorbing, balanced, idempotent and closed subset of A, and hence is a

neighborhood of 0, since A is an F-algebra (therefore A is barrelled); that is,
KO 5 -1 U, for A > 1 and for.some n. Therefore

(1) KcK cZluy?=aul
implies
K=KnMcaulnm,
and we also see that
-1 -1 -1
(2) AU - Uy € AT U,
Let D, be the closed disc of radius r centered at the origin of the éomplex plane.
Since M is homeomorphic to the complex plane (Theorem 3.2), &-1(D,) is a weak*
compact subset of M; hence, by (1) above, there exist n; and A; > 1 such that
alopyecrulnmern,vl ., nm
1 1%n, 1%n,+1 .

Now @& (x; U:911+1 N M) is compact and non-separating, so there exists a disc D]_,1 and

corresponding to it A, > 1 and Unz such that

(3) AMUR g NMcat (D) A Up N M
and

. P 0 :
(4) int(& (x; Un1+1 N M)) C int Drl .

Continue in this fashion, constructing a sequence {Alzl Unk }1°<°=1 of neighborhoods of

0 in A. {nk}°1:=1 is a subsequence of {n}:=1_, for otherwise @&(M) would be

bounded, which is impossible. Therefore {)\1‘(1 Unk }f:zl is a base for A. For
x € A, let

”X”;{ = inf{uz 0:x € H"kUnk} k=1, 2, ---).

{ || . ”1'{ k=1, 2,..-} is a system of pseudonorms equivalent to the system
{ ” . Hn: n=1, 2, ..-} of pseudonorms originally used to define the topology of A.

Furthermore, letting Ny = {x € A: [|x]|, = 0} and letting A] be the completion of
the normed algebra A/N,, we see that
(5) A = inverse limit (A]I() .

Denote the maximal ideal space of the Banach algebra Al'( by Mlé Then
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. 1 1 : L] 1 vee
(6) . Myc 1nt(MZ) c M) C 1nt(M3) C M C -,

because M N ng = M,. (See Michael [3; p. 28].)

Having constructed Ay (k = 1, 2, --.) with M) satisfying (6), we are in a position
to adapt an argument of Arens in [1] to conclude the proof of the theorem. If p isa
polynomial in the generator «, then p o & is in A; and, since convergence in the
given F-algebra topology enta1ls convergence of representing functlons on all com-
pact subsets of M, there exists for each X € A an f suchthat fo & =% and f is a
uniform limit of polynomials on compact subsets of & (M), the complex plane. Con-
sequently, f is an entire function. Moreover, x — f is a continuous homomorphism
of A into Hol( ¢). Continuing to follow Arens, we consider the homomorphism of

Hol( &) into A given by
’ o0
1 £(z) _
f {21riS z-adz_(af)j} ’

I‘j j=1

where the I'; are chosen to be the boundaries of the discs D . i=1,23,--). Let
. " J
ap= {(af)j}‘?:l. Then a,m) = f o @(m). And for x € A, the maps

‘x—>f—a—f

are all isomorphisms, since semi-simplicity follows from the Liouville hypothesis:

The topology on A induced by the topology of uniform convergence of represent-
ing functions on compact subsets of M makes A into an F-algebra which is com-
mutative, semi-simple, and all of whose homomorphisms are continuous. There-
fore, by Theorem 14.2 of [3], the original topology of A coincides with the compact-
open topology. (We could also verify this fact directly.) This concludes the proof.

THEOREM 3.4. A is a singly-genevated Liouville F-algebra with identity and
with no topological divisors of zevo if and only if A is topologically and algebrai-
cally isomorphic to Hol(C).

Proof. (For the definition of topological divisor of zero see [3; p. 43].) As be-
fore, let A = inverse limit (A,) and M, be respective maximal ideal spaces. As-
sume that ||-||; < ||-|l, < ---. By 1.2 in Arens [2], if there are no topological divi-
sors of zero, then M is contained in the interior of M, for some n, n> k. Conse-
quently, Condition ¢ is satisfied, and Theorem 3.3 applies. Conversely, it is well
known that the algebra Hol( ) has no topological zero divisors.

Regard the maximal closed ideal space M of a singly-generated Liouville F-
algebra A as identified with the set ¢ of complex numbers. Then each represent-
ing function f € A is a continuous function from G with its direct limit topology (or
relative weak* topology) into ¢ with its Euclidean topology. If these topologies -
agree on €, then the proof and conclusions of Theorem 3.3 remain valid. In par-
ticular, if every f € A is a continuous function on the complex plane (Euclidean
topology) then all mentioned topologies coincide. .

THEOREM 3.5. Every singly-genevated Liouville F-algebra of continuous
Junction on the complex plane is topologically and algebraically isomovphic to the
algebra Hol( ) of entive functions with the compact-open topology.

Proof. The direct limit topology on ¢ is stronger than the Euclidean topology
on ¢. But basic weak* neighborhoods of z; € ¢ are of the following form:
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V={zega:|fz)-fizg)|<e, >0, f; €A, 1<i<n}.

Since each f; is continuous, V contains a Euclidean neighborhood of zy. Thus the
weak*, direct limit, and Euclidean topologies agree on ¢, and the proof proceeds as
in Theorem 3.3.

To construct examples of function algebras, it is natural to begin by specifying a
sequence of domains and then to consider Banach algebras of functions which are
uniform limits of certain types of functions defined on these domains, thus reversing
the procedure of starting with an F-algebra and then realizing it as a suitable inverse
limit of Banach algebras.

We call a subset K of ¢ a natural domain, if K is the closure of a Jordan do-
main. Let K; c K, C -+ be a sequence of natural domains. Let A, be the uniform
closure of the polynomials on K (n=1, 2, ---), Let A be the inverse limit of the
Banach algebras A . A is a function algebra consisting of all functions on

k- Uk,

n=1

that are uniform limits on each K, of polynomials.

THEOREM 3.6. If A is a function algebva of the type constructed above, then A
is topologically and algebvaically isomovphic to Hol( € ) if and only if A is a Liou-
ville algebra.

Proof. The maximal ideal space of A, is homeomorphic to K,. Suppose all K,
share a common boundary point z, € €. Since the boundary of K, is a Jordan
curve, zg can be approached by an arc ¢,, whose other points are exterior to Kp.

In the arcwise connected complement of each K,,, there exists an arc y,, such that
£,V vy, joins zy; to « and misses K. As in Theorem 3.1, a square root function
s can be constructed. It belongs to A, because each A consists precisely of all
continuous functions on K, which are analytic on int(K,). The conclusion that

K= ¢ and A = Hol(¢ ) then follows by contradiction of the Liouville assumption and
Theorem 3.3, as before.

The converse is obvious.
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