AN ELEMENTARY PROOF OF KATETOV’S THEOREM
CONCERNING Q-SPACES

S. Mrdowka

We recall here that a completely regular (Hausdorff) space X is called a Q-
space [1] provided that every homomorphism ¢ of the ring C(X) of all real con-
tinuous functions defined on X into the ring of real numbers which does not vanish
identically on C(X) is of the form

o(f) = f(pg) for all f in C(X),

where pg is a fixed point of X. Q-spaces can be characterized in a purely topologi-
cal manner; for instance, it is shown in [5] that a completely regular space X is a
Q-space if and only if it satisfies the following condition.

(Q): for every point pg from BX X, there exists a function f: BX — 1 such
that 1(pg) = 0 and f(p) > 0 for p in X. ‘

I denotes here the closed unit interval [0, 1]; f: 83X — I means that f is a con-
tinuous function which maps BX into I.

In [3] Katétov has proved the following theorem.
/

THEOREM. If X is a paracompact space and every closed discvete subspace of
X is a Q-space, then X is also a Q-space.

(This theorem is a particular case of Shirota’s result [6]: if a space X admils a
complete uniformity and every closed discrvete subspace of X is a Q-space, then X
is a Q-space. Indeed, every paracompact space admits a complete uniformity.)

We shall give here another, more elementary proof of Katétov’s theorem. We
begin with the following remarks.

Clearly, the problem whether a discrete space is a Q-space depends only upon
the cardinality of the space. Moreover, if R is a discrete space and Rg is an arbi-
trary subspace of R, then Ry = 8Rg, where R denotes the closure of Ry in 8R.
Hence, using the condition (Q), one can easily infer that if R is a Q-space, then Rg
is also. Therefore we can state:

(i) if Ry and R, are discrete spaces with ﬁl < ﬁz, and R, is a Q-space, then
R, is also a Q-space.

Denote as m( the least cardinal such that the discrete space of the cardinality
mg is not a Q-space. (It can be shown [2], that m( is the so-called first measur-
able cardinal; this fact, however, will not be used in our reasonings. In particular,
the non-existence of such cardinal would only simplify the proof.) According to (i),
it follows that:

(ii) a discrete space R is a Q-space if and only-ifﬁ < mg.

Notice that if {Fg: & € 2} is a'discrete system of subsets of a space (we recall
here that a system of subsets of a space is said to be discrete provided that each
point of the space has a neighbourhood which intersects at most one member of the
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the system) and p¢ € Fg for each £ in E, then {pg: £ € B} is a closed discrete
subset of the space. Therefore, according to (ii), the Katétov theorem can be
formulated as follows.

If X is a paracompact space having the property that

(A): every discrete system of subsets of X is of the cardinality less than mg,
then X is a Q-space.

We shall prove this statement.

Proof. Assume that X is a paracompact space having the property (A). Sup-
pose that pg is a point from BX\X. For any A C X, we denote by Cl(A) the
closure of A in X U {po}. Let

% = {X~G: G is a neighborhood of py in X U {pg}}

(G denotes the closure of G in X). Since X is paracompact and 9% is an open cov-
ering of X, one can find a o-discrete closed covering § of X which is a refinement
of % (see, for instance, [4; Th. 28, p. 156]): in other words, members of § are
are closed in X, pg 42 CI(F) for any F in § (since § is a refinement of %); more-
over, § = 81U &, U, -+, where the systems &, (n=1, 2, +-) are discrete in X.

Let s, = UJ & n- We shall distinguish two cases:

Case 1. pg % C1(S,) for every n. In this case there exist functions £, € BX
such that f,(pg) = 0 and f,(p) =1 for p € S,,. Setting

o0
f(p) = 27 27" fu(p) for p in BX,
n=1
we find that f: X — I, f(pg) = 0, and f(p) > 0 for p in X.

Case 2. pg € Cl(Sno) for some ng. According to (A), ?no < mg. Moreover,
since 85, is a discrete system, members of %no are open in Sy, and therefore
open also in Sno U {po}. We consider the collection %no U {po} as a decomposi-
tion space of S, U {pg}; let ¢ be the projection of Sp, Y {po} onto Bng U {polt-
It follows from the preceding that members of %no are isolated points of the space
%no U {po}; hence § n, 1S a discrete subspace of ‘ifno U{pgp}. Since all members
of the decomposition &, U {po} are closed in Sny U {po}, 8n, U {po} isa T;-

space. Consequently, $ U {po}, as a T, -space having only one non-isolated
0

n
point, is completely regular (in fact, normal).

If g is a bounded real-valued continuous function defined on %no, then the func-
tion f = go ¢ is a continuous function defined on Sno. Since Sno is a closed subset

of X, f admits a continuous bounded extension over X and, in turn, it admits a con-
tinuous extension f* over X U {po}. Setting g*(p) = g(p) for p in E’s’no and

g*(pg) = f*(pg), we see that the equality f* = g* o ¢ still holds, and therefore g* is
a continuous function on ‘{_'sno U {po} . In other words, every bounded real-valued

continuous function defined on ffno admits a continuous extension over %no U {po},

and it means that po can be considered as a point from g%, ~ 3, .
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Since %no is a Q-space, there exists a function gg: BFno — I such that
go(pPg) = 0 and gy(p) > 0 for p in %no“ Let us set fy = gg ©¢. Then f; is a con-
tinuous function on Sno U {po} . The restriction fOI Sno admits a bounded continuous

extension f; over X such that f;(p) > 0 for p in X. (If f; vanishes on X, then let
B= fil(O), and replace f; by the function fj(p) = max{fl(p), g(p)} for p in X, where
g: X — I is a function such that g(p) = 0 for p € Sy, and g(p) =1 for p in B.) In

turn, f admits a continuous extension f over gX. Clearly, f(p) > 0 for p in X and
f(pg) = folpy = 0 (f and £, agree on Sny? and therefore they agree on every point

from Cl(Sno)). This shows that X is a Q-space.
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