AN ELEMENTARY PROOF OF KATĚTOV'S THEOREM CONCERNING Q-SPACES

S. Mrówka

We recall here that a completely regular (Hausdorff) space X is called a Q-space [1] provided that every homomorphism ϕ of the ring C(X) of all real continuous functions defined on X into the ring of real numbers which does not vanish identically on C(X) is of the form

$$\phi(f) = f(p_0)$$
 for all f in $C(X)$,

where p_0 is a fixed point of X. Q-spaces can be characterized in a purely topological manner; for instance, it is shown in [5] that a completely regular space X is a Q-space if and only if it satisfies the following condition.

(Q): for every point p_0 from $\beta X \setminus X$, there exists a function $f: \beta X \to I$ such that $f(p_0) = 0$ and f(p) > 0 for p in X.

I denotes here the closed unit interval [0, 1]; $f: \beta X \to I$ means that f is a continuous function which maps βX into I.

In [3] Katetov has proved the following theorem.

THEOREM. If X is a paracompact space and every closed discrete subspace of X is a Q-space, then X is also a Q-space.

(This theorem is a particular case of Shirota's result [6]: if a space X admits a complete uniformity and every closed discrete subspace of X is a Q-space, then X is a Q-space. Indeed, every paracompact space admits a complete uniformity.)

We shall give here another, more elementary proof of Katetov's theorem. We begin with the following remarks.

Clearly, the problem whether a discrete space is a Q-space depends only upon the cardinality of the space. Moreover, if R is a discrete space and R₀ is an arbitrary subspace of R, then $\overline{R}_0 = \beta R_0$, where \overline{R}_0 denotes the closure of R₀ in βR . Hence, using the condition (Q), one can easily infer that if R is a Q-space, then R₀ is also. Therefore we can state:

(i) if R $_1$ and R $_2$ are discrete spaces with $\overline{\overline{R}}_1 \leq \overline{\overline{R}}_2$, and R $_2$ is a Q-space, then R $_1$ is also a Q-space.

Denote as m_0 the least cardinal such that the discrete space of the cardinality m_0 is not a Q-space. (It can be shown [2], that m_0 is the so-called *first measurable cardinal*; this fact, however, will not be used in our reasonings. In particular, the non-existence of such cardinal would only simplify the proof.) According to (i), it follows that:

(ii) a discrete space R is a Q-space if and only if $\overline{\overline{R}} < m_0$.

Notice that if $\{F_{\xi}: \xi \in \Xi\}$ is a discrete system of subsets of a space (we recall here that a system of subsets of a space is said to be *discrete* provided that each point of the space has a neighbourhood which intersects at most one member of the

Received April 25, 1963.

the system) and $p_{\xi} \in F_{\xi}$ for each ξ in Ξ , then $\{p_{\xi}: \xi \in \Xi\}$ is a closed discrete subset of the space. Therefore, according to (ii), the Katětov theorem can be formulated as follows.

If X is a paracompact space having the property that

(A): every discrete system of subsets of X is of the cardinality less than m_0 , then X is a Q-space.

We shall prove this statement.

Proof. Assume that X is a paracompact space having the property (A). Suppose that p_0 is a point from $\beta X \setminus X$. For any $A \subset X$, we denote by Cl(A) the closure of A in $X \cup \{p_0\}$. Let

$$\mathfrak{A} = \{X \setminus \overline{G}: G \text{ is a neighborhood of } p_0 \text{ in } X \cup \{p_0\}\}$$

 $(\overline{G}$ denotes the closure of G in X). Since X is paracompact and $\mathfrak A$ is an open covering of X, one can find a σ -discrete closed covering $\mathfrak F$ of X which is a refinement of $\mathfrak A$ (see, for instance, [4; Th. 28, p. 156]); in other words, members of $\mathfrak F$ are are closed in X, $p_0 \notin Cl(F)$ for any F in $\mathfrak F$ (since $\mathfrak F$ is a refinement of $\mathfrak A$); moreover, $\mathfrak F = \mathfrak F_1 \cup \mathfrak F_2 \cup , \cdots$, where the systems $\mathfrak F_n$ (n = 1, 2, ...) are discrete in X.

Let $S_n = \bigcup \mathfrak{F}_n$. We shall distinguish two cases:

Case 1. $p_0 \notin Cl(S_n)$ for every n. In this case there exist functions $f_n \in I^{\beta X}$ such that $f_n(p_0) = 0$ and $f_n(p) = 1$ for $p \in S_n$. Setting

$$f(p) = \sum_{n=1}^{\infty} 2^{-n} f_n(p)$$
 for p in βX ,

we find that $f: \beta X \to I$, $f(p_0) = 0$, and f(p) > 0 for p in X.

Case 2. $p_0 \in \operatorname{Cl}(S_{n_0})$ for some n_0 . According to (A), $\overline{\mathfrak{F}}_{n_0} < m_0$. Moreover, since \mathfrak{F}_{n_0} is a discrete system, members of \mathfrak{F}_{n_0} are open in S_{n_0} and therefore open also in $S_{n_0} \cup \{p_0\}$. We consider the collection $\mathfrak{F}_{n_0} \cup \{p_0\}$ as a decomposition space of $S_{n_0} \cup \{p_0\}$; let ϕ be the projection of $S_{n_0} \cup \{p_0\}$ onto $\mathfrak{F}_{n_0} \cup \{p_0\}$. It follows from the preceding that members of \mathfrak{F}_{n_0} are isolated points of the space $\mathfrak{F}_{n_0} \cup \{p_0\}$; hence \mathfrak{F}_{n_0} is a discrete subspace of $\mathfrak{F}_{n_0} \cup \{p_0\}$. Since all members of the decomposition $\mathfrak{F}_{n_0} \cup \{p_0\}$ are closed in $S_{n_0} \cup \{p_0\}$, $\mathfrak{F}_{n_0} \cup \{p_0\}$ is a T_1 -space. Consequently, $\mathfrak{F}_{n_0} \cup \{p_0\}$, as a T_1 -space having only one non-isolated point, is completely regular (in fact, normal).

If g is a bounded real-valued continuous function defined on \mathfrak{F}_{n_0} , then the function $f=g\circ\phi$ is a continuous function defined on S_{n_0} . Since S_{n_0} is a closed subset of X, f admits a continuous bounded extension over X and, in turn, it admits a continuous extension f^* over $X\cup \{p_0\}$. Setting $g^*(p)=g(p)$ for p in \mathfrak{F}_{n_0} and $g^*(p_0)=f^*(p_0)$, we see that the equality $f^*=g^*\circ\phi$ still holds, and therefore g^* is a continuous function on $\mathfrak{F}_{n_0}\cup \{p_0\}$. In other words, every bounded real-valued continuous function defined on \mathfrak{F}_{n_0} admits a continuous extension over $\mathfrak{F}_{n_0}\cup \{p_0\}$, and it means that p_0 can be considered as a point from $\beta\mathfrak{F}_{n_0}\smallsetminus\mathfrak{F}_{n_0}$.

Since \mathfrak{F}_{n_0} is a Q-space, there exists a function $g_0\colon \beta F_{n_0}\to I$ such that $g_0(p_0)=0$ and $g_0(p)>0$ for p in \mathfrak{F}_{n_0} . Let us set $f_0=g_0\circ\phi$. Then f_0 is a continuous function on $S_{n_0}\cup \left\{p_0\right\}$. The restriction $f_0\mid S_{n_0}$ admits a bounded continuous extension f_1 over X such that $f_1(p)>0$ for p in X. (If f_1 vanishes on X, then let $B=f_1^{-1}(0)$, and replace f_1 by the function $f_1'(p)=\max \left\{f_1(p),g(p)\right\}$ for p in X, where $g\colon X\to I$ is a function such that g(p)=0 for $p\in S_{n_0}$ and g(p)=1 for p in B.) In turn, f admits a continuous extension f over βX . Clearly, f(p)>0 for p in X and $f(p_0)=f_0(p_0)=0$ (f and f_0 agree on S_{n_0} , and therefore they agree on every point from $Cl(S_{n_0})$). This shows that X is a Q-space.

REFERENCES

- 1. E. Hewitt, Rings of real-valued continuous functions I, Trans. Amer. Math. Soc. 64 (1948), 45-99.
- 2. ——, Linear functionals on spaces of continuous functions, Fund. Math. 37 (1950), 161-189.
- 3. M. Katětov, Measures in fully normal spaces, Fund. Math. 38 (1951), 73-84.
- 4. J. L. Kelley, General topology, D. Van Nostrand Company, Inc., New York, 1955.
- 5. S. Mrówka, Some properties of Q-spaces, Bull. Acad. Polon. Sci. Cl. III 5 (1957), 947-950.
- 6. T. Shirota, A class of topological spaces, Osaka Math. J. 4 (1952), 23-40.

The Pennsylvania State University