HOMOGENEITY OF CERTAIN MANIFOLDS
Herman Gluck

1. INTRODUCTION

The connected n-dimensional topological manifold M" is said to be homogeneous
if for any two locally flat embeddings f; and f, of the closed n-cell D™ into MP",
there can be found a homeomorphism h of M™ onto itself such that hf; = f,. The
manifold M~, if it is orientable, is homogeneous up to ovientation if the above
homeomorphism h exists provided that f; and f, induce the same orientation on
M" from a given orientation on D.

This paper is concerned with the following conjecture.

HOMOGENEITY CONJECTURE. If M™" is orientable but does not admit an
ovientation reversing homeomorphism, then M™ i{s homogeneous up to ovientation.
Otherwise, M®™ is homogeneous.

The corresponding conjecture in piecewise linear topology was proved by New-
man [11] and Gugenheim [8], and in differential topology by Palais [12]. The present
conjecture has been proved for n < 3 by the triangulation theorems of Bing [1] and
Moise [10]. In addition, S® and R™ are homogeneous according to Brown [2, 3];
sn-1 Sl, and more generally the n-sphere with handles, is homogeneous according
to Brown and Gluck [4, 5, 6, 7].

If M" is permitted to have a boundary, then the homogeneity conjecture for the
closed n-cell D™ coincides with the n-dimensional annulus conjecture, which claims
that the closed region between any two disjoint locally flat (n - 1)-spheres in S” is
homeomorphic to S™-1 x [0, 1]. It is known [5, 6] that a solution of the annulus con-
jecture for dimensions less than or equal to n would yield a solution of the homo-
geneity conjecture for manifolds of dimension less than or equal to n. In this sense,
the real problem is a purely local one, but all known solutions in dimensions greater
than three ignore this fact and depend instead on some convenient global properties
of the manifold M™,

In this paper we present a technique, embodied in the following theorem, for
showing that certain manifolds are homogeneous.

THEOREM 1.1. Let PK be a connected finite polyhedron, piecewise linearly em-
bedded in the n-spheve S™, 2k + 2 < n. Let N" denote the intevior of a regular
neighbovhood of PX in S™, and M™-! its boundary. Then

s"_pPX N M IxRL gnd MP-lx sl

are homogeneous manifolds.
Some easy consequences are:
(1) Ifk# n + 1, then S™x Rk is homogeneous.
) If 1=p1<pa< " <prand pp:> Pr_1 + Pr-2 + *°* + D1, then

SPl x gP2 x ... x 8P is homogeneous.
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(3) 17 M? is a closed connected ovientable two-manifold and k > 4, then
M2 x RK is homogeneous.

(4) If M™ is a closed, connected differentiable n-manifold, then for each
k> n+ 2 there exists a differentiable Rk _pundle over M™ which is homo-

geneous.

2. DEFINITIONS

The set of points {(x1, ***, xp): £Zx;2< 1} in Euclidean n-space R™ will be de-
noted by D@, and its boundary by S®-1l. The set D™ and any space homeomorphic to
D™ will be called a closed n-cell. S*-1 and any space homeomorphic to S™-! will
be called an (n - 1)-sphere.

A k-manifold M¥ in an n-manifold M® will be said to be locally flat if each
point of MX has a neighborhood U in M™ such that the pair (U, U N MK) is topo-
logically equivalent to the pair (R?, RK). An embedding f: MX — M® is locally flat
if f(MK) is locally flat in M™. An embedding f: D — M® is locally flat if £/S"-1 is
locally flat. Note that f: D? — M" is locally flat if and only if the closure of
M~ - £(DT is a manifold with boundary. From this point of view the local flatness
of f is a minimal “reasonable”. requirement.

Hom(D", M™) will denote the set of all locally flat embeddings of D™ into MP®,
and H(M?") will denote the group of all homeomorphisms of M® onto itself. If
h € HM™ and f € Hom(D™ M™), then' hf € Hom(D"®, M™). In this sense, H(M™) acts
as a transformation group on Hom(D"”, M®). A manifold M™ is homogeneous if and
only if this action is transitive.

3. THE MACHINERY

.. The next two sections summarize some material from [4, 5, 6], where the proofs
of the theorems stated below can be found.

Let fy and f; be elements of ‘Homi(D", M™) such that f5(D") lies in the interior
of f; (D®). If there exists an embedding F: S?-1 x [0, 1]-— M® such that, for all
x € Sl F(x, 0)'= f5(x) and F(x, 1) = f;(x), then F will be called a strict annular
equivalence between fy and f,, and we write both \

' foz.fl and f]_:‘; fo-
Strict annular equivalence is not an equivaience relation, but it induces one as fol-

lows. Two elements f and f' of Hom(D™, M™) will be said to be annularly equivalent,
written

£~ £
a

if there exists a finite sequence of elements f = f, f], *-*, f = f' of Hom(D", M")

such that f; x fi4) for i=0, 1, ---, k - 1. Annular equivalence is an equivalence

relation. The following theorem states an elementary property of annular equiva-
lence; it appears as Lemma 3.1 in [6], where the proof may be found.

THEOREM 3.1. Let f be an element of Hom(D®, M™) and U an open set in M™.
Then therve exists an element f' of Hom(D™, M™) such that £'(D®) c U and £ 3 I
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The principal structure theorem about annular equivalence (proved as Theorem
3.4 in [6]): ‘

THEOREM 3.2. Let f and f' be annularly equivalent elements of Hom(D™, M")
with disjoint images. Then there is a g € Hom(D", M™) such that

f;&gz fr.

If M™ is S™ or R™, or more generally if M™ is any stable manifold (see [6] for
definitions), we have a stronger result (included in Theorem 14.1 of [6]):

THEOREM 3.3. Let M" be a stable manifold, and £ and {' elements of
Hom(D", M) such that £(D") c Int £'(D"). If f 3 f', then £ 71 '

4. MORE MACHINERY

Let h be a homeomorphism of M™ onto itself. If there exists a nonempty open
set U c M™ such that h/U = 1, we say that h is somewhere the identity. If there
exists a closed n-cell E with locally flat boundary in M™ such that h/M® - E = 1,
we say that h is almost everywhere the identity.

SH(M"™), the group of stable homeomovphisms of M", will consist of products of
homeomorphisms, each of which is somewhere the identity. SHO(Mn) will consist of
products of homeomorphisms, each of which is almost everywhere the identity.

Now let f;, f, € Hom(D", M™). If there exists a stable homeomorphism
h € SH(M™) such that hf; = f,, then we say that f, and f, are stably equivalent, and
write
fl 3 fZ‘
This is an equivalence relation, and the set of stable equivalence classes of elements
of Hom(D", M™) will be denoted by

Hom (D", M").

Since SH(M™) is a normal subgroup of H(M™), H(M™) acts on Hom(D®, M™) by per-
muting the stable equivalence classes, and therefore it induces an action of H(M")
on Homg(D", M").

The description of this action that is given in the next theorem follows immedi-
ately.

THEOREM 4.1. If an element of HM™) leaves one stable equivalence class of
Hom(D™, M™) fixed, it is an element of SH(M™) and thevefore leaves all stable
equivalence classes fixed. Hence H(M™)/SH(M™) acts as a regular permutation
group on Homg(D™, M™), and it is thevefore in one-to-one covvespondence with a
subset of Hom, (D", M™).

By the very definition of stable equivalence, SH(M"™), and therefore surely H(M™Y),
acts transitively on any single stable equivalence class of Hom(D"™, M™). Hence the
action of H(M™) on Hom(D"™, M™) is transitive if and only if the action of
H(M")/SH(M™) on Hom (D", M™) is transitive. Therefore we have the following
proposition.

THEOREM 4.2. M" is homogeneous if and only if H(M™)/SH(M™) acts transi-
tively on Homg (D", M™),
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We close this section with the following information, which appears as Theorems
5.4 and 5.5 of [6], and which will be used repeatedly in this paper.

THEOREM 4.3. Two elements of Hom(D®, M™) ave stably equivalent if and only
if they ave annularly equivalent, Furthevmore, if £ and f' are stably equivalent,

then there exists a homeomovrphism h € SHO(Mn) such that hi = f'.

5. INHERITANCE OF HOMOGENEITY

If M™ is a connected topological manifold that is known to be homogeneous, and
U is a connected open subset of M”, it is not known in general whether U must be
homogeneous. Later, we will try to show that certain open subsets of a homogeneous
manifold are themselves homogeneous, and this section sets the stage for such an
attempt.

Let
i:UcM"

denote the inclusion map.

If f is an element of Hom(D", U), then f may also be considered an element of
Hom(D", M™). If f and f' are stably equivalent elements of Hom(D", U), then by
Theorem 4.3, f and f' are annularly equivalent in U. This annular equivalence in
U is a fortiori an annular equivalence in M™, hence again by Theorem 4.3, f and f'
are stably equivalent in M™. We therefore get a natural map

i.: Homs(Dn, U) — Homs(Dn, Mn) .
By Theorem 3.1, i, is onto, but it may not be one-to-one, for example, if U is

orientable while M™ is non-orientable.

Suppose now that h € H({U) and f € Hom(D", U). Since M is homogeneous,
there exists an element H € HM™) such that

Hf = hf.

That is, H and h agree on {(D™). The homeomorphism H is not uniquely deter-
mined by these conditions, but the coset of H in H(M®)/SH(M") clearly is. We
therefore have a well-defined map

j: H(U) X Hom(D®, U) — H(M™)/SH(M®)

with the following properties:
(1) jthyhy, £ = i(hy, hy D -jhy, D),
(2) if h € SH(U), then j(h, f) = SH(M™), by Theorems 4.1 and 4.3,
(3) if Int £;(D™) N Int £,(D™) # P, then j(h, f1) = j(h, £).
Property (3) and the connectedness of U imply that j(h, f) is independent of f, so

define

j: H(U) — H(M™)/SH(M™)
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j(h) = j(h, f) for each f € Hom(D", U).

Properties (1) and (2) then indicate that the new j is a group homomorphism whose
kernel includes SH(U), so we get an induced homomorphism

jy: H(U)/SH(U) — H(M")/SH(M").
By the definitions of i, and j,, the following diagram is commutative.

H(M™)/SH(M™) X Hom (D", M") — Hom (D", M")
iy 1 i1 i1
H(U)/SH(U) x Hom (D", U) — Hom (D", U).
Concerning this diagram, we already have the following information:
(1) The upper action is regular, '
(2) The lower action is regular.
- (8) The upper action is transitive, that is, M™ is homogeneous.
(4) j4 is a group homomorphism.
(5) i, is onto.
The following questions are suggested by the diagram:
(a) Is the lower action transitive, in other words, is U homogeneous?
(b) Is j, onto?
(c) Is j, one-to-one?
(d) Is i, one-to-one?
These questions are related by the following lemmas.
LEMMA 5.1. If i, is one-to-one, then j, is also one-to-one.
Suppose j, ([h]) = SH(M™). Choose f € Hom(D", U). Then

ix([0]) = i(h, £) = SH(M™) = [H],

where Hf = hf. Since H € SH(M"), f and hf are stably equivalent in Hom(D"™, M™).
But i, is one-to-one, hence they must already be stably equivalent in Hom(D?®, U).
By Theorem 4.1, h € SH(U), and therefore j, is one-to-one.

LEMMA 5.2. If the loweyr action is transitive (that is, if U is homogeneous),
then j, is onto.

Let H be a given element of H(M™), and choose an f € Hom(D", U). Choose
H' € H(M") so that [H'] = [H] and so that H'f € Hom(D"™, U). Since U is homo-
geneous, there is an h € H(U) such that hf = H'f. But then

J*([h]) = j(h: f) = [H'] = [H],

SO j, is onto.

LEMMA 5.3. If i, is one-to-one and j, is onlo, then the lower action is transi-
tive.
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The hypotheses and Lemma 5.1 imply that both i, and j, are one-to-one and
onto. The diagram then provides an isomorphism between the lower and upper ac-
tions. Since the upper action is transitive, the lower action must also be transitive.

LEMMA 5.4. If M" is a stable manifold, then i, is one-to-one.

This is part of Theorem 14.1 of [6]. Combining Lemmas 5.1 through 5.4, we ob-
tain the following proposition.

THEOREM 5.5. Let M™ be a homogeneous stable manifold, and U a connected
open subset. Then U is homogeneous if and only if j, is onto. '

If U is homogeneous, then the lower action is transitive, and hence j, is onto
by Lemma 5.2.

Suppose that j, is onto. Since M" is stable, i, is one-to-one by Lemma 5.4.
Then the lower action is transitive by Lemma 5.3, hence U is homogeneous.

6. RELATION BETWEEN THE HOMOGENEITY PROBLEMS
FOR M®-!x R! AND M®-1x s!

Let M™-! be a compact, connected (n - 1)-manifold without boundary. R! will
denote the real numbers, and S! the one-sphere parametrized by the reals modulo
1. If t € R, then [t]e S! will denote the equivalence class of reals congruent to
t(mod 1).

Define
p: M-I x R - MP-1x sl
by
p(x, t) = (%, [t]).

Then1 P i? a covering map that exhibits M2-1x R1 as a covering space over
M""" x S°.

The map
e MP xR - MR-l xR!
defined by
7%, t) = (x, t+ 1)

generates the group of covering translations of M-l xRrL
The goal of the next six sections is to prove the following result.

THEOREM 6.1. Let M™! be a compact, connected (n - 1)-manifold without
boundary. If M2-1x Rl is homogeneous, then so is M"~1 x S1 nomogeneous.
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7. DEFINITION OF p*

Ll,EMN{A 7.1. The covering trvanslation 7T is a stable homeomorphism of
M-D-1 X R*.

Define 71: M*~! x Rl — M™-! x R! by
(x, t) for t< -1,
Ti(x, 1) = ((x,2t+1) for -1<t<0,
(x, t+ 1) for t> 0.
Define 7,: M~} xR! - M*"!1x R by
(x, t + 1) for t< -1,
T,(x, t) =  (x, (t+1)/2) for -1<t<1,
(x, t) for t> 1.
Direct computation verifies that
T=T, T .

But 7; and 7, each restrict to the identity on open subsets of M2-1x Rl, and are
therefore stable. Hence 7, and therefore every covering translation, is stable.

Suppose now that f is an element of Hom(D®, M?~! x S!), Then f lifts to an
embedding f: D® — M™-1 x R!, that is, there exists an element

f € Hom(D?, M2-1 x R1)

such that pf: f. The embedding f is well-defined up to composition with a covering
translation, which must be stable by Lemma 7.1, and therefore determines a unique
element of Homg (D", M -1 Rl). If f and f' are stably equivalent elements of
Hom(D™, M™-1x S!), then by Theorem 4.3, f and f' are annularly equivalent in
M2-1x sl This annular equivalence lifts directly to an annular equivalence between
some coverings f and f' of f and f'. Then again by Theorem 4.3, f and {' are
stably equivalent elements of Hom(D?, M®-! x R1). This lifting procedure therefore
induces a map

p*: Hom (D?, M*-1 x Sl) — Hom(D?, M2-! x R}).

8. DEFINITION OF g*

The homeomorphism h € HM?-! x Rll is said to cover the homeomorphism
h € H(M?-1 x 81), and h is said to Zift to h, if

pﬁ:hp.

If fil and Hz both cover h, there exists an integer k such that
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Since 7 is stable, this means that the coset of fi, h- SH(Mn”1 X Rl), is well-deter-
mined by h.

Let
HL(M2-1 x sl)

denote the subgroup of HM™-1 x S1) consisting of homeomorphisms that can be
lifted to homeomorphisms of M2-1 x R1, Furthermore, let

sHL(M™! x sy = g (™! % s1) n sEm2-! x sy,
So far, the lifting procedure furnishes a group homomorphism
HL(M™-! x sy — gm™-1 x rY) / sHM™-1 x RY).
Suppose now that h € SHL(M™-! x S1) is covered by h. Let
f € Hom(D™, M2-1 x sl)

be covered by fe Hom(D", M"~ IR ) Then hf covers hf. Then the fact that £

and hf are stably equ1va1ent in Hom(D", m2-1 x sy 1mp11es according to Section 7,
that f and hf are stably equ1va1ent in Hom(Dn M2l xR ) But then h is stable by
Theorem 4.1. Therefore SHL(M™-! x 81) lies in the kernel of the above homomorph-
ism, and we obtain an induced homomorphism

.. HL(M™-! x sy . HM™-! x R1)
9" SHL(M™-1 x 81) © SH(MP-I x R1)

9. THE DIAGRAM

In the spirit of Section 5, we draw the following diagram which, by the very defi-
nitions of p* and gq*, is commutative.

HM™-1x RD)
SH(M™-1 x R1)
q*1 p*1 p*1
HL(M?-1 x s1)
sHL(M2-1 x sl)

X Homg(D?, M*~! x R}) — Hom (D", M- x R})

X Hom_ (D", M*~! x 8!) — Hom_ (D", M™-1 x s!)

So far we have only the following information about this diagram:

(1) The upper action is regular.

(2) The lower action is regular.

(3) g* is a group homomorphism.

The following questions are suggested:

(a) Is the uﬁper action transitive, that is, is m"-1 x rl homogeneous?
(b) Is the lower action transitive?

(c) Is p* one-to-one?
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(d) Is p* onto?
(e) Is q* one-to-one?
(f) Is g* onto?

10. THE MAP p* IS BIJECTIVE

THEOREM 10.1. The map p* is one-to-one.

Let £, f' € Hom(D™, M™~! x S!) have stably equivalent liftings f, f". By Theorem
3.1, we may assume that f(D") and f' (D ) lie in m2-1 % (0, 1) c M’”'1 x g1 , in which
case we can choose f and f' so that f(D™) and f'(DM) lie in

M-l x (0, 1) c M2-1 x R1I,

By Theorem 4.3, f and f' are annularly equivalent in M™®-! X R1, The annular equiv-
alence can clearly be compressed within M?-1x (0, 1) ¢ M2-1 x Rl and then pro-
jected down to an annular equivalence between f and f'. Again by Theorem 4.3, f
and f' are stably equivalent, so that p* is one-to-one.

THEOREM 10.2. The map p* is onto.

By Theorems 3.1 and 4.3, any element of Hom(D®, M2-1 x R1) is stably equiva-
lent to an element whose image lies in M™-! x (0, 1), which can then be projected
down to an element of Hom(D®, M2-1x S1), Hence p* is onto.

11. THE HOMOMORPHISM q* IS BIJECTIVE

THEOREM 11.1. The homomorphism q* is one-fo-one.

Suppose h € HL(Mn‘1 x 81y 1ifts to h e sHM™ ! x RY). Choose any
f € Hom(D", M2-1 x gl and lift f to f e Hom(D™, M*-! x R1). Then hf covers hf.
Since h is stable, f and hf are stably equivalent. By Theorem 10.1, f and hf are
stably equivalent. Therefore h is stable by Theorem 4.1. Hence q* is one-to-one.

LEMMA 11.2. Let H be a homeomorphism of M®~1 x R onto itself such that
HM"-1 x 0) ¢ M2-1 x (0, 1). Then therve exists a homeomorphism H' of MP-1x Rl
onto itself such that

H'Y/M™-1 x 0 = H/M™-1x 0
and
H'vw = 7H'.

It will be sufficient to construct an embedding

1 1

H: M*~1x [0, 1] - M* ' xR
such that
H'(x, 0) = H(x, 0)

and
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H'(x, 1) = TH'(x, 0)

for all x € Mn'l, for then the homeomorphism H' will be the obvious extension of
the embedding H'.

Using the homeomorphism H, construct first an embedding
Gy: M x[-1, 2] —» M* ! x RY

such that
(1) Gy (M™-1 x 0) lies to the left of M™-1 x -1,
(2) G,(x, 1) = H(x, 0) for all x € M?™!,
(3) G;(M*~! x 2) lies between H(M™~! x 0) and M™~! x 1.
Next, using the embedding G;, construct a homeomorphism

G,: M1 xR — M-! x R!
such that
(4) G, Gy (x, 0) = G;(x, 1) = H(x, 0) for all x € MP~1
(5) G, restricts to the identity outside G;(M™~! x [-1, 2]).
Finally, define
H' =G, 7, G;/M*"1 x[o, 1].
Then H' is an embedding such that
H'(X, 0) = GZ Tl G].(X’ 0) = Gz G1<X, 0) = H(X, 0)
and

H'(x, 1) = G, 71 G, (%, 1) = G, 7 H(x, 0) = G, TH(x, 0)

= TH(x, 0) = TH'(x, 0).

This completes the proof of the lemma.
THEOREM 11.3. The homomorphism q* is onto. ’

We must show that any homeomorphism H of M®2-1x R! onto itself can be
modified by a stable homeomorphism so that the result covers a homeomorphism of
M?™-1 x Sl Since the homeomorphism that sends (x, t) onto (x, -t) already covers
a homeomorphism of M-l x Sl we may assume that H does not interchange the
ends of the space M™-1x RL.

Now, since m=2-1 s compact, first modify H by a stable “compression” of
M2-!x R! so that HM™"1x 0) € M®-1x (0, 1). Now compare H with the homeo-
morphism H' whose existence is asserted by Lemma 11.2. H-1 H' restricts to the
identity on M™~1 x 0 and does not interchange the ends of M?-1 x Rl. 1t is a stable
homeomorphism, for it can be written as the product of a homeomorphism that is
the identity to the left of M2-1 x 0 and agrees with H-1 H' to the right, and a further
homeomorphism that is the identity to the right of M™®-1x 0 and agrees with H-! H'
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to the left. But the relation H'r = TH' implies that H' covers a homeomorphism of
M™"1x 8!, Therefore g* is onto.

12. PROOF OF THEOREM 6.1

Theorems 10.1, 10.2, 11.1 and 11.3 show that the diagram of Section 9 provides
an isomorphism between the upper and lower actions. If M2-1x R! is homogeneous,
then the upper action is transitive by Theorem 4.2. Then the lower action must also
be transitive. A fortiori, HM™-1 x sl) / SH(M™-! x s1) acts transitively on
Hom (Dn, M2-1 x S1), so again by Theorem 4.2, M2-1x Sl is homogeneous.

13. A THEOREM ABOUT M®-! x Rl

Let M™-1 be a compact, connected (n - 1)-manifold without boundary, and
f: M2-1 — M©-1 x R! a locally flat embedding. The following three conditions are
clearly equivalent.

(1) There exists a homeomorphism h of M™-1 x R! onto itself such that
h(x, 0) = f(x) for all x € M™-1,

(2) There exists a homeomorphism h of M2-1 x R! onto itself such that
n(M2-1 x 0) = f(Mn-1),

3) (M»-1 x R1) _ f(M™-1) is a union of two open sets, each of whose closures is
homeomorphic to M2-! x [0, ).

The following theorem is useful.

THEOREM 13.1. Let M be a locally flat copy of M™~! in M~ x R with com-
plementary domains U and V. If U is homeomorphic to M™~1 x [0, «), then so is
V.

Call a copy of M™-! in M™-1x R! normal if there exists a homeomorphism of
M2-1 x R1 onto itself that takes this copy onto M2-! x 0.

According to [3], some closed neighborhood A of M in V is homeomorphic to
m2-1 x [0, 1]. Let M' denote the other boundary of A. Note that UU A is homeo-
morphic to U, and hence to MP-1 x [0, ). Note also that U must contain one of the
ends of the space m™-1x Rl , and that therefore there are plenty of normal copies
of M*-1inU. In fact, if W is any neighborhood of M' in A, then normal copies of
M™-1 can be found in W - M, Simply take a normal copy of M™-! in U, and, using
the fact that UU A is homeomorphic to M-l x [0, =), push it close to M' by a
homeomorphism of M™-!x R! that restricts to the identity on M'.

To show that V is homeomorphic to M-l x [0, ), we will construct a homeo-
morphism h: A - M'— V. To do this, let M,;, M,, --- be an infinite sequence of
normal copies of M™-1 in Int A, such that M;,; lies to the “right” (assuming that
U contains the left end and V the right end of M™-1 x R1) of M; and such that the
M; converge setwise to M'. Since M; is a normal copy of M™~! some homeo-
morphism h; of V onto itself pushes M; far to the right but restricts to the iden-
tity of M. Inductively, let h;,; = h; to the left of M; and push M;;; even further to
the right, so that h;(M;) lies to the right of M®-1x i, Then the h; converge to a
homeomorphism h: A - M' — V, and this proves the theorem.

COROLLARY 1. Let X be a topological manifold with compact, connected
boundary M, such that X - M is homeomorphic to M X (0, ). Ther X is homeo-
morphic to M X [0, «).
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Add M X (-, 0] to X by matching M X 0 with M; this yields the space X!'.
Note that X' must be homeomorphic to X - M, that is, to M X R1. Then apply
Theorem 13.1.

COROLLARY 2. Let C be a closed n-cell with locally flat boundary in the n-
spheve S™. Then the closure of S™ - C is also a closed n-cell. Therefore S is
homogeneous.

Remove a point from the interior of C and another point from S - C, obtaining
a space homeomorphic to sn-1 x Rl, and then apply Theorem 13.1.

REMARK. The proof of Theorem 13.1 is an adaptation of a technique exploited
by Brown in [2]. Corollary 2, therefore, comes as no surprise.

14. PROOF OF THEOREM 1.1

We are going to show that certain connected open subsets U of S™ are homo-
geneous. Since S is homogeneous [2, 3], Theorem 5.5 applies, and we need only
show that

ix: H(U)/SH(U) — H(S™)/SH(S")

is onto. To do this, we will start with an arbitrary homeomorphism H of S",
modify it by stable homeomorphisms to obtain H', and then find a homeomorphism
h of U onto itself that agrees with H' on some open set. In the simplest cases,
H' will already take U onto itself, so we can let h = H'.

The tool for modifying H to H' will be the following theorem of Homma [9].

HOMMA’S THEOREM. Let MP, M® and _PX be two finite combinatovial n-
manifolds and a finite polyhedvon such that M" is topologically embedded in M", Pk
is piecewise linearly embedded in Int M™ and 2k + 2 < n. Then for each ¢ > 0
there exists an €-homeomovrphism F of M™ onto M® such that

F/M® - U (BK) = 1,
F/PX is piecewise linear.
Now let PX be a connected finite polyhedron, piecewise linearly embedded in the

n-sphere S%, 2k + 2 < n, as in the hypothesis of Theorem 1.1. Let H be any homeo-
morphism of S™ onto itself.

To apply Homma’s theorem, let
M?™” = S™ with its given piecewise linear structure,
M™ = S™ with the piecewise linear structure induced by H,
Pk = H(PK) with a triangulation carried over from Pk by H.
Since Pk was piecewise linearly embedded in S" = M", Pk is piecewise linearly
embedded in M™, Now by Homma’s theorem, there exists an g£-homeomorphism H,

of S™ onto itself such that H;/PX is piecewise linear, that is, such that H; H/Pk is
piecewise linear. For small ¢, H; is somewhere the identity and therefore stable.
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Now the inclusion Pk ¢ S and H,; H/ Pk are homotopic piecewise linear em-
beddings. Since 2k + 2 < n, there exists an orientation-preserving piecewise linear
homeomorphism H, of S™ onto itself such that H, H, H/PX is the inclusion, by [8].
And H, is stable by [5].

Therefore H' = H, H; H is a stable modification of H such that H'/Pk=1. In
particular, H'(S? - Pk) = (S» - PK), Since H was arbitrary, this means that
j,: H(S® - PX) / SH(S™ - PX) — H(S™)/SH(S®)
k

is onto, or equivalently that S™ - P
Theorem 1.1.

is homogeneous. This is the first part of

Now let N™ be the interior of a regular neighborhood of PX in S™, with boundary
M™-1, Then N™ - P¥ is homeomorphic to M?-! x Rl [13]. Let U™ be another
regular neighborhood of PX, concentric with N®, and chosen so small that both U%
and H'(UT) lie in N™ Then N® - U" is homeomorphic to M2-1 x [0, ).

In order to construct a homeomorphism h of N™ onto itself that agrees with H'
on Un, it is necessary and sufficient that N® - H'(U™) be homeomorphic to
M™-1x [0, ). But this is now implied by Theorem 13.1 and the fact that
H'(Un) - Pk is homeomorphic to Mn-1 X [0, ©). The existence of the homeomorph-
ism h then implies that

iyt H(N™)/SH(N™) — H(S™)/SH(S™)
and
ju: HON™ - PX)/SH(N™ - PX) — H(S™)/SH(SM)

are onto, or equivalently that N® and N” - PX are homogeneous. Recalling that
N2 - pk js homeomorphic to m2-1 x Rl, we obtain the next two parts of Theorem
1.1.

Finally, Theorem 6.1 and the homogeneity of M-l x Rl yield the homogeneity
of M2-1 x S1, This completes the proof of Theorem 1.1.

15. SOME APPLICATIONS

THEOREM 15.1. If k# n+ 1 then S® x RX is homogeneous.

First embed S" in Sn+k, k> n+ 2, and apply Theorem 1.1 to the interior of a
regular neighborhood of S". This gives the present theorem for k> n + 2.

Next embed S%-! in 8% k < n. Then 2(k - 1) + 2 < n + k, and Theorem 1.1
applied to SPtk _ gk-1 . g x RK completes the argument.

THEOREM 15.2. If 1 =p; < pp <+ <prand Pr > Pr_1+ Pr_z+ - + py, then

Spl x szx cee X SPr is homogeneous.

Embed SF2 x 873 x .- x sP7-1 jp SE, where 2 =p; + p2 + p3 + *** + pr. Then
Z > 2(pp + p3 + *** + Pr_1) + 2, and the boundary of a regular neighborhood of

sz‘ X Sp3 X eee X Spr'1 is homeomorphic to sz X Sp3 X ene Spr. The fourth case of

Theorem 1.1 then completes the proof.
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THEOREM 15.3. If M? is a closed connected orvientable two-manifold and
k> 4, then M” X R™ is homogeneous.

This follows from the fact that the interior of a regular neighborhood of M? in
Sk+2 js homeomorphic to M2 x Rk,

THEOREM 15.4. If M™ is a closed connected differentiable n-manifold, then
for each k> n + 2 therve exists a diffeventiable RK_bundle over M™ which is homo-
geneous.

n+k Sn+k

Triangulate S so that a differentiable embedding of M™ into appears
piecewise linear. The corresponding normal bundle is homeomorphic to the interior
of a regular neighborhood of M", and the theorem then follows from the second case
in Theorem 1.1.
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