ENTIRE FUNCTIONS ON INFINITE VON NEUMANN
ALGEBRAS OF TYPE 1

Carl Pearcy
1. INTRODUCTION

The first purpose of this note is to explore the properties of a natural mapping ¢
that is defined on certain homogeneous von Neumann (v.N.) algebras of type I and
takes values in a certain Banach space of matrix-valued functions. In the case that
the given v.N. algebra is finite, ¢ is a faithful representation, and its properties are
well known. In fact, this representation played a central role in the author’s study
[5] to [8] of finite v.N. algebras of type I. For infinite v.N. algebras of type I, ¢ is a
Banach space isomorphism, but it fails to be a representation and has some other
unpleasant properties, which we discuss in Section 2.

The second purpose of this note is to use the mapping ¢ to extend a result of A.
Brown concerning entire functions on Banach algebras. More precisely, in [1] Brown
showed that a necessary and sufficient condition that an entire function f map the
algebra () of all bounded operators on an (infinite-dimensional) Hilbert space &
onto itself is that f map every Banach algebra onto itself. Following Brown, we say
that such an entire function has property (U), and we call a Banach algebra 8 ade-
quate if the only entire functions that map % onto itself are those with property (U).
Several adequate algebras are exhibited in [1], and in Section 3 we set forth a new
class of adequate algebras—namely, the infinite v.N. algebras of type I.

2. THE MAPPING ¢

First we study the above-mentioned mapping ¢ defined on infinite Ng-homoge-
neous v.N, algebras of type I. One knows from [2] or [3] that such a v.N. algebra %
is unitarily equivalent to a v.N. algebra of the form 38 & Z(x), in the terminology
of [2], where 8 is an abelian v.N. algebra acting on a Hilbert space ., and where
K is a separable Hilbert space. In other words, % can be taken to be the algebra
of all Ng X Ng matrices with entries from 3 that act as operators on the Hilbert
space A H A @ ---. Atypical element T € o is a matrix (Tj;), where the T;; € 8.
Let & be the maximal ideal space (or spectrum) of 8. Then, under the usual
topology, &4 is an extremely disconnected, compact Hausdorif space, and 8 is C*-
isomorphic to the AW*-algebra C(2") of all continuous complex-valued functions on
Z. Let 2 denote the v.N. algebra of all Ry X Ry matrices with scalar entries that
act as operators on a separable Hilbert space. Then there is a natural way of asso-
ciating with each element T =(Tj;) € % a function T(-): 2 — £. Namely, let T(-)
be the function whose value at t € 2" is the matrix (Tjj(t)) € £, where T;;(+) € C(@)
is the element corresponding to Tij € 8. Let  be the collection of all such func-
tions T(-), and let ¢ denote the mapping T — T(-). We introduce a metric on
as follows: Define

[T = sup [T®],
tea
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where | T(t)]| is the operator norm of the matrix T(t). The following proposition
ensures that this definition is meaningful.

PROPOSITION 2.1. Let T(-) € & covrespond to the opevator T € A. Then for
each t € &, T(t) is the matvix of a bounded operator, and

sup |[T®) ]|
ted

is finite and equal to || T]||.

Proof. For T = (Tij) € %, and any positive integer n, let Ty = (Sj;) € % be the
operator such that for 1, j<n, S;j = T;j; and for i>n or j>n, 8;;=0. For n
fixed but arbitrary, it is clear that the set of operators {T,/T € A’} is a finite v.N.
algebra of type I, and one knows from [5] that in such an algebra

ITy [l = sup [T .
tex

Thus for tg € 2, the relation [[T,(t)]| < || Tull < || T|| holds, and it follows from the
discussion of matrices in [4, Chapter II] that T(ty) is a bounded operator and that

T || = sup [T, ) || < [T

Also, for any n,

IT, [l = sup T (0] < sup [ TO],
teqd” tea”

and since we know from [4] that

Il = sup [T, 1,

n
we have the 'inequal ity

Il < sup [T
tedr

This completes the proof of Proposition 2.1.

This proposition shows that the mapping ¢ is an isometry from % onto . If
one defines addition, scalar multiplication, and the adjoint operation in .« pointwise,
then .« becomes a normed linear space, and in view of the existence of the isometry
¢, a Banach space. One would like to turn .« into a Banach algebra under pointwise
multiplication, but the following proposition shows that this cannot in general be
done.

PROPOSITION 2.2. Let o be a sepavable Hilbert space, and let {El} be a
countable family of mutually ovthogonal one-dimensional projections whose sum is
the identity opevator on o, Lel 3 be the abelian v.N. algebra genevated by the
{E;}, and let 4 = 8 @ @(#). Then there exist elements A, B € % such that the
corrvesponding elements A(-) and B(-) in & have the property that the function
V(-): & — & defined by V(t) = B(t) A(t) does not have continuous functions as en-
tries, that is, V(-) £ .
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Proof. It is known that the maximal ideal space 2" of 3 is the Stone-Czech
compactification of the natural numbers 4.

Since every complex-valued function f that is defined and bounded on .4 has a
unique extension to a function f € C(&), it follows that we can define A(-) by defin-
ing A(m) for each natural number m, and then taking A(-) to be defined on & - A
so that the entries of A(:) become continuous functions on &. Let A(m) = (a;;(m))
be defined by

a;;(m) = 6, for i=1, 2,

1m
ajm) =0 for i=1,2, «*+; j=2,3, ---.

Let B(-) be defined by B(t) = A*(t) for t € &. We must show that A(:), B(-) € &,
and this is established as follows. By virtue of the construction, the entries of A(-)
are at least continuous functions on &. Consider the corresponding Ny X Ny ma-
trix A with entries from 8. It suffices to show that A € %A, in other words, that A
is a bounded operator on ' @ #@ --- . One knows from [4] that A is bounded if
and only if

sup [| A,

n

is finite, where the A are defined in an analogous fashion to the T, in the proof of
Proposition 2.1. As before,

"An” = Sup ”An(t) ”’
ted

and calculation shows that for any positive integers n and m in #, [|[A (m)| < 1.
Furthermore for ne # and t € & - #, Ay(t) = 0, so that, for each positive integer

Al < 1, and thus ||A]|< 1. Hence A(-) € &, and similarly B(-) € o A cal-
culatlon now shows that if V() = B(t) A(t) = (vlj(t)), then the function vi; does not
belong to C(&). In fact, for t €#, v,;(t) = 1, and for t € & - 4, Vll(t) = 0. This
completes the proof of the propos1t10n

Proposition 2.2 is in sharp contrast to the situation that exists if % is a finite,
type I, v.N. algebra. In that case, & is an AW*-algebra under pointwise multiplica-
tion, and the mapping T — T(-) is a C*-isomorphism. Unfortunately, in the infinite
case, - has other unpleasant features.

PROPOSITION 2.3. If % is as in Proposition 2.2 and £ is regavded as a
topological space under eithev its unifovm ov strvong topology, then therve exist func-
tions A(-) € A that are not continuous functions from X to ¥. However, for any
A of the form A = 8 Q L(ory), every function A(-) € A& is a continuous function
Jrom & to & provided £ is given its weak topology.

-

Proof. Let f be the vector in the separable Hilbert space of the ring £ given
by £=(1,0, 0, ---). If A(-) € & is as defined in the proof of Proposition 2.2, then
for each p051t1ve integer m € .#, "A(m)f" = 1, and for each t € & - .7, A(t)f =
Thus A(-) is not a strongly or uniformly continuous function from & to £. To
show that for arbitrary % = 8 @ Z(o,), every A(-) € & is a weakly continuous
function from & to £, we observe first that if f and g are any vectors of the
form

f= (a 1, G p, °*, O, O’ O’ "')’ g= (Bl) BZ’ b} Bm; 0’ 0; "')
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and {t,} is a net of points in & converging to t € &, then ([A(ty) - A(t)]f, g) — O.
(The entries of A(-) are continuous functions, and only finitely many entries are in-
volved in the expression ([A(ty) - A(®)], g).) The proof is completed by recalling
that vectors of the form f are (strongly) dense in a separable Hilbert space, and
furthermore dense sets of such f’s and g’s suff1ce to define the weak topology on
bounded subsets of Z.

Although we cannot turn the Banach space - into a Banach algebra by defining
multiplication pointwise, « has some interesting subspaces that are amenable to
such an algebraization. Let ¥ denote the set of continuous functions from & to &,
where & is given its uniform topology. Since the norm of a matrix must be at least
as large as the absolute value of its largest entry, the entries of any element
A(-) € € are continuous functions on &. Since & is compact, sup ||A(t)| is finite,
and an argument like that of Proposition 2.1 shows that A(-) is the image of an
operator A € % under the mapping ¢, that is, A(-) € ./, Thus ¥ c .#, and on gen-
eral grounds one knows that & is a closed linear subspace of #. By virtue of the
inequality

latty) Bty - ADBOI < Aty | 1By - BO+ B Aty - a0,

the product of any two elements of & defined by pointwise multiplication is again an
element of €, so that € becomes a C*-algebra under the pointwise *-operation.
The mapping ¢ is then a faithful representation of a certain C*-subalgebra ¢ of %A
onto €. Since ¢ obviously contains all elements of % whose matrices contain only
a finite number of nonzero entries, it follows from the results in Chapter II of [4]
that ¢ is strongly and weakly dense in the N j;-homogeneous v.N. algebra

A = 8 ® Z(,). The algebras ¢ and ¢ and the mapping ¢ are useful in connec-
tion with some unitary equivalence problems in % that the author will discuss in a
later note.

3. ENTIRE FUNCTIONS

For the purposes of obtaining the proposed result concerning adequate algebras,
we wish to consider another subset & of £ in which pointwise multiplication is
well-behaved. We arrive at this subset of « by considering the set T C % of all
operators A = (Aij) € % that satisfy

AlJ:O for i<j; i,j

1l
[Ny
-
[\
-
.
-

Ai+1,j+1 = Ai,j for IZj, i, ] = 1, 2, .

We might well call the set T the set of analytic Toeplitz operators of the algebra
A. We define & to be the image of the set ¥ under the mapping ¢; and before
proceeding to the consideration of &, we set forth some properties of the set <.

LEMMA 3.1. The set ¥ is a Banach subalgebra of U, and in addition, it is
closed in the weak and strong operator topologies.

Proof. It is obvious that ¥ is closed under addition and scalar multiplication,
and a matrix calculation shows that ¥ is also closed under the product operation.
To show that T is closed in the three operator topologies, it suffices to show that if

Ay = (A") is a net of operators in ¥ that converges weakly to A = (AIJ) € U, then
Ae T, But it is easy to see that if iy and j; are any fixed indices, then the weak



ENTIRE FUNCTIONS ON VON NEUMANN ALGEBRAS 5

convergence of A) to A implies that the net of entries Ai):, Jjo must converge weakly
to Aio i Since each A) is an analytic Toeplitz operator, it follows easily that A is
also.

LEMMA 3.2. The set & is a closed subspace of A, and if a product operation
is defined in I by pointwise multiplication, then J becomes a Banach algebra
(under the norm on ). Furthermore, the mapping ¢: T — I is a Banach algebra
isomovphism.

Proof. That & is a closed subspace of .« follows immediately from the facts
that ¢ is an isometry and that ¥ is norm-closed. The fact that the product of two
elements S(*) and T(-) of &, defined pointwise, is in . and therefore in &, fol-
lows from the observation that.each entry in the product matrix is a finite sum of
products of entries from S(-) and T(-), and is therefore a continuous function on
. For the same reason, ¢ clearly preserves products and thus is a Banach alge-
bra isomorphism of € onto 7.

A natural question to ask at this time is whether & is a subalgebra of the C*-
algebra %, and the answer is that, in general, it is not. A sketch of the argument
which proves this goes as follows. If 4 were contained in €, then for every
A(-) € 7, the product A*(-)A(-) (defined pointwise) would also be in #. But if
the function A(-) defined in Proposition 2.2 is redefined to be analytic Toeplitz by
leaving the first column as it is and changing the other columns accordingly, then
the entries of the product A*(-) A(-) are not continuous functions, contradicting the
relation A*(-)A(-) € €.

LEMMA 3.3. Let S € % be the "shift' opevator whose matrix (Sij) is defined
by 55 = 61 41 1, wheve 1 is the unit element of the v.N. algebra 8. Then the oper-
atm's of 9o tkat commute with S ave exactly the operators in the algebra <.

The proof is an easy matrix computation, which we omit. The following lemma
is crucial to our program.

LEMMA 3.4. Suppose that f is any entive function and that A € . As before,
let ¢ be the isomorphism T — T(-) of T onto I. Then, for each t € X,

@ [£A)]D(®) = f[AW®].

Proof. Let p(z) be any polynomial with complex coefficients. Since ¢ is an
isomorphism, and since multiplication is defined pointwise in &, it follows that
(o [p(AYH®) = p[A(t)]. (For example, ¢(A2) = A(-)A(-), so that

@ [AZ])(1) = A@) A(t) =[A®1)]?)

Let {p,(z)} be a sequence of complex polynomials that converges uniformly to f on
every compact subset of the z-plane. Then, of course, the sequence {p,(A)} con-
verges to f(A) in the uniform topology of %, and for any t € &, {p,[A(t)]} con-
verges to f[A(t)] in the uniform topology of Q Since p,[A({t)] = (®[p,(A)])(®) and
since

| @ [pa(AD®) - GIEAD® | = [ {¢[oa@)] - ¢ [£A)1} ® | = [I{ 6 [pafA) - £A)]}F @ ||

< sup [[{o[p,(a) - #A)]} ®) = |l¢ [p,A) - £(A)] ]
tedr

= ” pn(A) - £(A) ” — 0,
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the result follows.
We can now obtain the desired result for Nj-homogeneous algebras.

LEMMA 3.5. If % is any Ng-homogeneous, infinite v.N. algebra of type 1, and
f is an entive function such that () contains all operators of the form AS, wherve A
is a positive scalay and S is the shift operator of Lemma 3.3, then £ has property

(U).

Proof. Let A be an arbitrary positive scalar, and let A € 4 be such that
f(A) = AS. Since A commutes with f(A) = AS, it follows from Lemma 3.3 that A € T.
Furthermore, it follows from Lemma 3.4 that for each t € &,

(*) f[A(D)] = (@ [£(A)])(E) = AS(t) .

From the definition of S it follows that for every t € &, the matrix S(t) = (s; (t)) 4
is the matrix defined by s; J(t) = 0; j+1; in other words, it is a unilateral shlft oper-
ator on the separable Hilbert space of the ring £. The result now follows from (¥)
and Theorem 2 of [1].

In the following theorem, we dispose of the restriction of N;-homogeneity by
adopting an argument used by Brown in [1].

THEOREM 1. Let U be any infinite v.N. algebva of type 1, and suppose that £
is an entive function mapping W onto itself. Then f has property (U) of (1], that is,
A is an adequate algebra.

Proof. One knows from [3] that % is a direct sum of homogeneous v.N. algebras
% ; of type I, at least one of which must be infinite. Since f maps onto % and any
central projection E € 4 satisfies f(EA) = Ef(A) for each A € %, it is clear that f
must map each homogeneous summand 2 ; onto itself. Thus, suppose that %A, is an
infinite, homogeneous summand such that f(?l ) = Ay In view of the decomposition
theorem [2, Proposition 5, p. 27] which says that 9[ 1 is unitarily equivalent to a
v.N. algebra of the form 3 X Z(H,), where 8 is an abelian v.N. algebra and the
dimension of the Hilbert space o¢( is at least N, there clearly exists a projection
E € %; such that the v.N. algebra E%; E is an infinite, Ng-homogeneous algebra.
Using the decomposition 1 = E @ (1 - E), where 1 is the unit of % 1> one can write
every operator A; € %, as a 2-by-2 operator matrix

AB
A1=( ):M(A,B, C, D),
CD

where A € E¥%; E and B, C, and D are defined in the usual way. Let S; € %, be
the operator whose matrix is M(AS, 0, 0, 0) where X> 0 and S € E%; E is the shift
operator of Lemma 3.3. Let T; € %; be such that £(T;) = S;. Then T; commutes
with S;, and it follows easily that the matrix of T, is of the form M(T, 0, U, V),
where T € E%; E comutes with S. For any polynomial p(z), p(T;) has a matrlx
M(p(T), 0, *, *) and it follows that f(T;) corresponds to a matrix M(£(T), 0, *, *).
Thus f(T) = ,\S and an application of Lemma 3.5 completes the argument.

Remarks. (1) The author wishes to express his appreciation to Arlen Brown and
Don Deckard for several conversations concerning the contents of this note. In par-
ticular, Proposition 2.3 was obtained jointly with Deckard.

(2) It is shown in [8] that some finite v.N. algebras of type I are adequate alge-
bras.
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(8) Since Z(x) is a particular infinite v.N. algebra of type I, Theorem 1 gener-

alizes Brown’s result in [1]. It is natural to ask whether our Theorem 1 could be
further generalized by deleting the phrase “of type I” from the hypothesis.
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2.
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