DISTORTION IN CERTAIN CONFORMAL MAPPINGS
OF AN ANNULUS

P. L. Duren

1. INTRODUCTION

Let % denote the claés of functions f(z) which are analytic and univalent in a
fixed annulus R: r < lz] < 1, and which have the following properties:

(i) |f(z)|<1 for z €R;
(ii) |f(z)|=1 for |z|=1;
(iii) f(z) # 0 for z € R.

In a previous paper [4], M. Schiffer and the author developed a method of variation
within & and applied it to solve several extremal problems. In the normalized
class # C % for which f(1) = 1, the quantity

(1) p= sup |i(z) - z]
feF,z€eR

was found in terms of a certain elliptic integral, and it was shown that p < 8r for
small r, the constant 8 being best possible. D. Gaier and F. Huckemann [5] com-
pleted this work by proving u < 8r for all r. Huckemann [8] subsequently gave
another solution to (1) by the method of extremal length. Independently of these de-
velopments, F. W. Gehring and G. af Hillstrom [6] also solved the distortion prob-
lem (1) and obtained an explicit alternating series representation from which the
estimate p < 8r follows at once.

It is the purpose of the present paper to consider another type of distortion,
measured by the modulus of the derivative of the mapping function. For fixed
z=b, r< Ib[ < 1, the specific extremal problems to be studied are

(2) min |f'(b)]
feF,

and

(3) max |£'(b) .
£ 69'0

We attack these problems by the variational method developed in [4]. The re-
sults are as follows. For every b, the solution to the minimum problem (2) is a
mapping f of R onto the unit disk minus a radial slit from 0 toward f(b). For
every b sufficiently far from the inner boundary |z| = r, the maximum problem (3)
is solved by a mapping f of R onto the unit disk slit radially from 0 toward -f(b).
As |b]| tends to r, however, there is a certain value b* at which the extremal
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function for (3) changes character: the radial slit sprouts a fork at its tip. The
exact value of b* = b*(r) is given in Theorem 2. The forked curve which arises in
the case |b| < b* is governed by a certain differential equation. The direction field
of this differential equation is investigated in Section 5 to give a description of the
forked curve. In Section 6 actual representations of the radial slit mappings, in
terms of Jacobian elliptic functions, are used to obtain simple estimates for ]f'(z) |
(See Theorems 3 and 4.) In the final section (Section 7), the behavior of lf'(z)l is
studied as r tends to zero. '

There are two related families of functions in which the extremal problems (2)
and (3) have previously been studied. Grotzsch [7] considers the class of functions
which map R onto a domain contained in r < |w| < o, and which preserve the inner
boundary |z| = R. Within this class he considers the extremal problems (2) and (3)
and finds the extremal functions are always radial slit mappings. Although this class
of functions is related to our family % by an inversion, the derivatives are related
in a more complicated way, so that the respective extremal problems are not
equivalent.

Secondly, let D be a domain of arbitrary connectivity, having at least two bound-
ary points. Distinguish a point b € D, and consider the class of all functions f£(z)
analytic and univalent in D, for which |f(z) l < 1 and f(b) = 0. Within this class, pose
the extremal problems (2) and (3). The solutions are classical (see for example [9,
Ch. VII]): the minimum is given by a radial slit mapping, the maximum by a circu-
lar slit mapping.

2. DIFFERENTIAL EQUATION FOR THE EXTREMAL CONTINUUM

Each function £(z) € &3 maps the annulus R onto the unit disk minus a certain
continuum C containing the origin. It was shown in [4] that for each wg € C, wg # 0,
there exists a family of variation functions V(w) = VI()O) (w), depending upon the small
positive parameter p, which operate on f in the sense that V(f(z)) € % for all p
sufficiently small. Furthermore [4, p. 263], V(w) has the form

(4) V(W)=W[1+ 20 - 5‘02_3"_ ] + 0(p3),
(W -wglwg (1 - wWq)Wo

2

where a = a(p) is a certain bounded function of p. The error term 0(p3) depends
on w but is uniform in each closed subdomain of the range of f.

Now fix a number b € R, and assume without restriction of generality that

r < b < 1. Consider first the maximum problem (3). Existence of an extremal
function f € % is assured by the fact that %o is a compact normal family. By the
extremal property of f, the function f;(z) = V(f(2z)) cannot have a larger derivative
at b:

[£10) | = |V'EO)E'®) | < |£'Db)].
Thus
(5) f{log Vi(B)} <0 (B=£(b)).

From formula (4) one finds
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- 2 2 - —
(6) log Viw) = -—20% _ FPTWR - WoW) o5

(w - WO)2 ) Wo(l - WWO)2

We shall assume (as we may) that B = f(b) is real and positive. From (5), (6), and .
the general identity t{a} = % {a}, the expression -

i . B(2 - BWo)
7 9N 2 [ 1
@ {ap (wg - B)? * Wy (1 - Bwy)?

] + 0(93)} >0

then results. We now invoke Schiffer’s fundamental lemma [11] to conclude from (7)
that the continuum C is in fact a system of analytic arcs w = w(t) satisfying the
differential equation (or, strictly speaking, differential inequality)

dw 2 1 - B(2-Bw) )
® i) [(w-B>2+w(1-Bw)2] <0

For the minimum problem (2), the conclusion is the same, except that the inequality
in (8) is reversed. It is convenient also to express (8) in the equivalent form

(9)

2
dw w-wy) (W - wp)
(‘oﬁ <0,

w(w - B)? (1 - Bw)?
where w; and w, are the solutions to the quadratic equation
(10) 2B3w? + (1 - 4B% - BYHw + 2B = 0.
The discriminant of (10) is
(1 - 4B% - B%Z _ 16B° = (B - 1)2(B* - 6B% + 1),
and so w; and w, are real if and only if
(11) B<vV2-1.
Let us note the relations
(12) wyw, =1; 2B>(w; +w,) =B*+4B% _ 1.

For B < V2 - 1, we shall assume w; and w, are chosen so that w, < - 1 < w; < 0.

3. MINIMUM DISTORTION

The minimum problem (2) turns out to be the easier, so it will be treated first.

Observe that for the rectilinear slit w = Bt (0 < t < 1) the expression (8) is
positive. Since the continuum C must contain the origin, this is indeed the only
curve for which (8) is positive.

To prove uniqueness, let the differential equation for C be transformed by
w = w? into
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92)2 (% - w1) (@ - wp)
dt (w‘2 - B)z(l - Bw?)?

after proper choice of the parameter t. From the standard uniqueness theorem for
ordinary differential equations [2, Chapter 1], it follows that there is at most one
solution w(t) for which w(ty) = 0. In the w-plane, this implies that there is at most
one arc C (parametrizable in many ways) which passes through the origin and makes
the expression (8) positive. This argument even shows that the origin must be an
end-point of the arc.

Therefore, each extremal function for (2) must, under the assumption
B = £(b) > 0, map R onto |w| < 1 slit along the segment 0 < t < M < B. The length
M = M(r) of the segment depends, of course, upon the modulus of the ring; the pre-
cise dependence is exhibited in Section 6, formula (22). Let w = ¥(2) be the function
which effects the radial slit mapping just described.

THEOREM 1. Let b be a fixed numbey (r < b < 1). For all functions f(z) € ¥,
the inequality |£'(b)|> [¢' (b)| holds, wheve W(z) is the vadial slit mapping defined
above. Equality occurs only if £ is a votation of Y.

4. MAXIMUM DISTORTION

As we have seen, the differential equation (9) governs the system of arcs C
omitted by an extremal mapping w = f(z) for the maximum problem (3). Since C
must contain the origin, we verify as before that C is necessarily the segment
-M(r) < w < 0 of the real axis, provided that this segment does not contain the point
w1 in its interior. (Recall our choice w,;< -1 < wj; < 0 if the roots are real.) If,
on the contrary, -M < w;, then C has a fork at w;; we shall study this case in Sec-
tion 5.

Let w = ¢(z) = -y¥/(-z) denote the function which maps the annulus r < |z| <1
onto the disk ]wl < 1 minus the segment -M(r) < w < 0, sending b> 0 into
B = ¢(b) > 0. For all values of b except those for which w; is real and greater
than -M(r), ¢(z) is the solution to the maximum problem (3). Referring to relation
(11), we see that ¢ is certainly the extremal function if B = ¢(b) > V2 - 1, since this
makes w; non-real. Our result may be stated as follows.

THEOREM 2. Let w = ¢(z) be the function which maps the annulus R onto the
unit disk minus the segment -M(r) < w < 0, and which maps the segment r < z < 1
onto 0 < w< 1. Let B* = B*(r) be the unique positive value of B for which

(13) %B'Z' {1 -4B% - B% _ [ - 4B? - BHZ . 16B6]I/2} = M(r),

and let ¢(b*) = B*. Then for fixedb (r <b < 1), |£'(0)|< |¢' )| for all functions f
in the family &, if and only if b > b*. If b > b*, then [f'(b)| < |¢'(b)| unless f is
a votation of ¢.

Remarks. The expression (13) is simply -w;, as given by the quadratic formula.
The positive square root is taken when the quantity under the radical is positive. As
noted in Section 2, this is the case if and only if B < V2 - 1. A simple analysis
based on relations (12) shows that as B decreases from V2 - 1 to 0, (-w;) de-
creases monotonically from 1 to 0. Hence the equation (13) uniquely determines
B*. It also follows that b* = b*(r) tends to zero as r does.



DISTORTION IN CONFORMAL MAPPINGS 435

COROLLARY. Ifb is such that ¢(b) 2_\/_2- - 1, then ¢ is the extvemal function,
unique up to a votation, for the maximum problem (3).

5. THE FORKED CURVE

Although ¢ is the solution to the maximum problem (3) for all b > b*, the extre-
mal function is of a different character for r < b < b*. This is to be expected, since
as b approaches r, ¢(b) tends to the tip of the slit, and so ¢'(b) approaches zero.

It will become evident that in the range r < b < b* the extremal function varies
with b.

By construction, b < b* implies w; > -M(r). Hence the extremal continuum C
consists partly of the slit w; < w < 0, but it forks at w;. To study the behavior
near wp, let us make the transformation

(14) w=(w- w1)3’/2 .

The differential equation (9) then becomes

dw \ 2 W - W2
a) [w(l-Bw)Z(B-w)z] <0

The expression in brackets is negative for w = w;, so

2
dw
(?E) >0 for w=20.

Thus the curve in the w-plane leaves w = 0 either along the positive or along the
negative real axis. This tells us, by (14), that as w approaches w, along C, there
are three possibilities:

. 2n 4w
lim arg(w - w;) =0, 53 -

W-’Wl

Therefore, C consists of at most three analytic arcs joined together at w; at
angles of 120°. One of these arcs is the real segment w; < w<L 0. At first glance,
one might suspect that the other two arcs of C are also line segments, but a calcu-
lation shows this to be false.

In order to describe the curve C more precisely, we shall consider the entire
locus of points I"' generated by the differential equation (9) under the requirement
that I contains the origin. This trajectory I is what Schaeffer and Spencer [10]
called the “I"-structure.” Of course, C c I'. .

Since (9) has real coefficients, it is obvious that I is symmetric with respect to
the real axis. Less apparent (although irrelevant for our purposes) is the fact that
the solution curves are symmetric with respect to the unit circle |w| = 1. This is
seen by observing that the expression (9) is invariant under the transformation
W =1/w. (Recall w; w, = 1.)

It follows from results of Schaeffer and Spencer [10, Chapter IIi] that I" can
branch only at w; and w,, and here there must be three arcs meeting at equal
angles (as we have already confirmed). Furthermore, I" can terminate only at 0
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and . At every other point, I is locally a line segment. In particular, I" must
cross the real axis and the unit circle (if it does) at right angles.:

We shall now show that the direction field of the differential equation (9) is
everywhere fangent to the unit circle, so that I' must lie entirely in [WI < 1. By
proper choice of t, (9) may be written

(15) gv_g)z __ w(w - B (w - 1/B)2

dt B (W - wp)w - wy)
. ‘dw .

Letting 8 denote arg g’ we find

8= %arg w + arg(w - B) + arg(w - 1/B)

(16)

1 3
- E[arg(w - wp) + arg(w - wy)] - —2—77

Here it is understood that
arg w; = arg(w; - B) = arg(w; - 1/B) =7,

while arg(w; - w;) = 0. As w approaches w; along the ray arg(w - w;) = 27/3, 6
tends to 27/3. Now let w = '® (-7 < o < 7) be fixed. It is a simple exercise in
trigonometry to prove

o) arg(el® _ B) + arg(el® - 1/B) = + 7

for all B, 0 < B < 1. Perhaps the easiest proof is to show that the tangent of (17) is
identically constant. Similarly, since w, w, =1,

(18) arg(el® - w;) + arg(el® - w,) = .

Combination of (16), (17), and (18) shows that for w = €%, 9 = @ - #/2. This proves
our assertion that the direction field of (15) is tangent to the unit circle.

Next let:‘us study the behavior of 6 as w varies along a fixed ray
W=W,+ seiB (s> 0)

from w; in the direction eiB, 0 < B<wm As s increases, it is geometrically ob-
vious that arg(w - wy) increases, while arg w, arg(w - B), and arg(w - 1/B) de-
crease monotonically. Hence 6 decreases as s increases. As s tends to 0, (16)
shows that 0 approaches 7 - B/2; therefore, 6 < m - 8/2 for all w on the given ray.
In particular, 6 < B8 for all s if 27/3 <8< m.

This last result proves that I', which leaves w; along the ray arg(w - w;) = 27/3,
cannot enter the sector 27/3 < arg(w - w;) < 7. By symmetry we deduce: the curve
I lies entively within the sector Farg(w - wl) | < 27/3. Roughly speaking, this means
I" bends back toward B.

A more careful study of the direction field of (15) reveals that I has the form
illustrated in the diagram. Other solution curves are also shown. We remark that
the general structure of the solution curves is independent of the relation between B
and wi.
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Figure 1.

We know that for b < b* the curve C omitted by the extremal function occupies
some of the curved portion of T, as well as the segment w; < w < 0. However, we
have not been able to show (although it seems likely) that C is symmetric with re-
spect to the real axis. We do not even know that three branches actually emanate
from wj.

6. ESTIMATES THROUGH ELLIPTIC FUNCTIONS
In order to obtain quantitative information on the distortion, we need an actual
expression for the function w = ¢(z) which maps the annulus r < Hzl < 1 onto the
disk |w]< 1 slit along -M < w < 0. Gehring and af Hillstréom [6] have pointed out

that such a representation can be given in the remarkably simple form

1 + sn(alog z, k)

(19) ‘ (z) = 1 - sn(alog z, k)’
where

1-Mm ,___ K _K
(20) k_1_+—1\_/I’ T Tlogr m°

Here sn(u, k) is the fundamental Jacobian elliptic function with modulus k, and

/2
K = Kk) = 5w (1 - k%sin26)-1/24dp;
(21) 0

K' = K'Y, k'=(1-Kk%/2,
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The length M of the slit can be expressed in the form [9, p. 295]

o0

8n
(22) M-—2L o2 IO —llf—)
1+ L2 n=1 1+ r8n-4

2

Differentiation of (19) and use of the relation sn' = (cn)(dn) yields the result

2acn(alog z, k) dn(alog z, k)

(23) ¢'(z) = z[1 - sn(alog z, k)]

It is interesting to study the behavior of ¢'(b) as b tends to 1. From (23) and
[1, #907.01, #907.05], we obtain the asymptotic formula

(24) ¢'(b) = —[2 + 4alog b + a%(5 - k®) log?b + 0(log3b)] (b — 1).

In particular, the maximum distortion on the outer boundary of the annulus is
2a = 2K'/ 7.

According to Theorem 1, the minimum in %o of |f'(b)| occurs for
f(z) = Y(z) = -¢(-2z). A short calculation based on (23), (20), and [1, #122.07] yields

2
@ v - x| { e | e

Setting b = 1, we see that the minimum distortion on the outer boundary is 2kK'/7.
Moreover, we find from (25) and (24)

(26) Yb) = Ka 19 ¢ akalog b + (5k% - 1)a2log?b + 0(log3b)] (b — 1).

It is also possible to obtain an asymptotic expression for '(b) as b approaches
r. For this purpose we set

(27) u=K[1l-logb/logr]=K+aloghb

and make use of [1, #122.05] to conclude

-2kK(1 - k?) sn(u, k)
28 "(b) = . 2 .
28) v'(®) blog r [dn(u, k) + ken(u, k)]2
From (28) we find
(29) ' (b) = %—1;—((11——1‘)—‘1 [6 - (k% - 6k + D + 0wd] (u—0).

This asymptotic result and the value of ¥'(1) suggest the following global estimate.
THEOREM 3. For each function 1(z) in the family F and for all z in the
annulus r < lz | < 1, the inequality
4k(1 - kK)K?log(|z]/r)
7(log r)2(1 + K) [zl

|£'(z) | >
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holds. Here k and K are constants determined by r accovding to formulas (22),
(20), and (21).

Proof. For |z|=b, we know by Theorem 1 that |f'(z)|> ¥ '(b). But we have an
explicit formula (28) for Y '(b), with u defined by (27). As b ranges from r to 1, u
ranges from 0 to K. The key to our proof is the inequality

snu 2u

2> > (0<u<KkK).
(dnu + kenu)® — 7(1 + k)

(30)

Because (30) appears to be of independent interest, a proof is published elsewhere
[3]. If (30) is applied to estimate (28), Theorem 3 follows at once.

In similar fashion, an upper estimate for ff'(z)] may be deduced from Theorem
THEOREM 4. Fov each £(z) € & and for all z such that b* < |z|< 1, the in-
equalitly

2K log( | z ]/r)
(log r)° | z]

[t(=z) | <

holds. Here the number b* = b*(r) > r is as defined in Theovem 2.
Proof. Introduce (27) into (23) and use [1, #122.05], with the result

s 2a(1 - K2) sn(u, k)
(31) ¢'(b) = — [en(u, k) + dn(u, K)?

The key inequality is now

(32) Shu < (0 < u<K),

[dnu + cnu]® — K( - k)? - -

a proof of which appears in [3]. The estimate of Theorem 4 follows directly from
(31), (32), (27), and Theorem 2.

7. ASYMPTOTIC EXPRESSIONS FOR SMALIL r

It is easy to verify that for r = O, the only functions of class % are the rota-
tions f(z) = e!® z. Because of this, it is reasonable to expect the maximum and
minimum of |f‘ (b)| to approach 1 as r tends to 0. We shall see that this is in fact
true, and we shall obtain some asymptotic information on the rate of approach.

Many of the expansions for elliptic functions [1, p. 303 ff.] are given in terms of
Jacobi’s nome

q = q(k) = exp {-7K'/K} .

For this reason, it is advantageous to transform the elliptic functions in (23) to de-
pend upon the complementary modulus k', since by (20)

(33) q' = q(k') = exp{-7K/K'} = r.
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Such a transformation is accomplished using [1, #161.01], and the result is
(34) ¢'(z) = —ZZE dn(-ialog z, k') exp{2iam(-ialog z, k") } .

Now hold b fixed (0 < b < 1), and let r tend to zero. One finds by (34) and [1,
#908.00, #908.03] the asymptotic formula

(35) ¢'(b) = 1 + 4br + (9% - b~2 - Hr?+ 0(3) (r — 0).

To obtain a similar asymptotic formula for y'(b), first transform (25) by [1,
#161.01] to obtain

, 2
iy 1 + itn(ialog b, k") 1
(36) w'(b) = k [1 + ikin(ialog b, k')] ¢'®) .

A rather laborious calculation based on (36), [1, #908.11], (22), (20) [1, #900.00], and
(35) yields, finally, that

(37) ') = 1 - 4br + (9% -1 % - Orl+ 0D (r — 0).
Since b*(r) tends to zero with r, Theorems 1 and 2 allow us to deduce the fol-

lowing theorem from (35) and (37).

THEOREM 5. For each € > 0 and each fixed z in 0< |z| < 1, there exists an
o > 0 such that

“f'(z)f - 1[ < 4lz,r + €
Jov all r <rg and all f € Fog= Fo(r). The number rq depends only on & and lzl,
and not on £f. The constant 4 is best possible.
The coefficient (9b% - b~2 - 4), which appears in both (35) and (37), changes sign
at

by =(2+ ﬁ'ﬁ)l/z /3 = 0.78 ---.

Theorem 5 is false for & = 0, except possibly if |z| = bg. However, onesided
asymptotic estimates hold for |z|> by and for [z|< by.

The author is indebted to his colleague ¥. W. Gehring for valuable suggestions
and criticism.
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