REMARKS ON A PAPER OF L. CESARI ON FUNCTIONAL
ANALYSIS AND NONLINEAR DIFFERENTIAL EQUATIONS

H. W. Knobloch

A well-known technique in dealing with oscillations of weakly nonlinear systems,
that is, systems of the form

(1) X = Ax + ef(t, x)

(¢ a small parameter), is to set up certain transcendental equations (determining
equations or bifurcation equations), the solutions of which are related to the periodic
solutions of (1). One way of establishing such relations has been developed in recent
years by Cesari, Hale and others; a comprehensive account of this method has just
been published [4] (see also [2; Section 8. 5]). The reader will find in the introduc-
tion of [4] references to literature and also a survey comparing the different ways
which are known to define bifurcation equations.

If the matrix A in (1) is 0, the formal aspect of the Cesari-Hale method becomes
quite transparent, so that the question arises whether a suitable generalization will
allow elimination of the condition that £ be small. Cesari has in fact devised such a
generalization and has obtained [1] a finite system of determining equations for
arbitrary systems

x = i(x, t),

where f is defined and satisfies certain smoothness-conditions in a finite region X
of the (x, t)-space. The number of these determining equations depends upon such
quantities as the bound for |f| and Lipschitz constants.

In the case of a single differential equation, Cesari’s method can roughly be
described as follows (a more thorough report is given in Chapter 11 of [4]; another
summary is given in Chapter 11 of [2]):

One associates with the differential equation x = f(x, t) a certain operator F, which
depends on a finite number of parameters a;, -+, ay. The operator F is in some

t
respect a modification of the operator £ — X f(£(t), t)dt used in existence and

uniqueness proofs. The modification achieves two purposes: (1) F has the con-
traction property on a conveniently chosen function space over a prescribed interval
[0, T] (whereas in the usual case the interval has to be chosen properly); (2) a peri-
odic function £(t) in the space (that is, a function with £(0) = £(T)) is mapped into a
periodic function.

As a contraction operator F has a unique fixed element £(a, t), which depends
upon the parameters a = (a;, :--, ay) and which can be constructed in the usual way
by iteration. It turns out that £(a, t) is periodic and satisfies a modified differential
equation of the form
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N

kX =1f(x, t) + 27 Ay(a)c,(t),
v=1

where the Ay(a) are functions of the parameters a;. The equations A,(a) =0
(v =1, ---, N) are then the determining equations.

As one would expect, the contraction property of F follows from the assumption
that f satisfies a Lipschitz condition with respect to x. The mere existence of the
fixed element £(a, t) is a consequence of a somewhat weaker hypothesis, but then &,
and hence the A, may not be uniquely determined by the parameter a.

In the following considerations we restrict ourselves to differential equations
% = {(x, t), where f satisfies a Lipschitz condition with respect to x, and we estab-
lish Cesari’s result in an independent way (Sections 1-3). Successively, we obtain
(Section 4) properties of the coefficients A,, which are important in applications.
First, we prove under smoothness conditions on the differential system that the A,
are differentiable functions of the parameters a;, ---, ayy. Finally, keeping in mind
that f, a,, and A,, are actually vectors with n components f;, Aip» and A;, (n being
the order of % = f(x, t)), we consider the Jacobian matrix J = (3A;j,/2a;p), and we
give a condition for det J to be non-vanishing. This condition is analogous to a
classical result [3, pp. 348-350]. The condition is that det J is certainly non-van-
ishing if a certain auxiliary linear system y =y - f.({(a, t), t) has no non-trivial
solution of period T. In our approach the uniform topology is used instead of the
L2-porm. This is a simplification, since we then need not work with two norms
at the same time (as Cesari does). Furthermore, it is then possible to use standard
analytic techniques for a closer investigation of the A,. Our results hold even in
cases where X is an infinite region in (x, t)-space. This situation occurs if the
function f(x, t) is continuous and bounded for all (x, t) and satisfies a global
Lipschitz condition. This case is of interest because the (highly transcendental)
functions A, then have a somewhat simple asymptotic behavior for large a, a fact
which can be exploited in the discussion of the determining equations. In [5], using
Miranda’s version of Brouwer’s fixed point theorem, we show, for example, that
these equations have a solution if the following additional condition is satisfied:
There exists a permutation i — j(i) such that for each i, fj(i) (x, t) has on half-
spaces of R” X I of the form x; < S, x;, > T (x =x;, -+, X, £ =f;, *--, f,) opposite
constant sign. The proof will be given as a lemma at the beginning of [5], where we
present existence theorems and an approximation scheme for periodic solutions of
certain types of strongly nonlinear, nonautonomous, second-order differential equa-
tions. To demonstrate the kind of result which we obtain there we quote the follow-
ing one.

THEOREM. Let a(t) < B(t) be two functions, sufficiently smooth and perviodic of
period T. Assume that £(x, y, t) is continuous and satisfies a local Lipschitz condi-
tion in the cylindvical region

2 ={x vy ):0<t<T, alt) <x<BB}.

Furthermore, assume that Ifl does not grow move vapidly than y?2 for |y| — oo,
Finally, suppose that

(2) &+ fa, &, <0, -+ 1B, B 1>0
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for all t. Then the diffevential equation % = £(x, X, t) has a periodic solution & (of
period T) with a < § < B for all t.

There are immediate applications of this theorem to nonautonomous differential
equations of the Liénard type, as the example X = —a.xlxl - sin x - sin t shows. This
equation satisfies all conditions of the theorem, if one chooses a = 7/2, 8 = 37/2. It
is clear from this theorem and the example that f is not required to satisfy a uni-
form Lipschitz condition in (x, t)-space. The elimination of this condition in the
proofs in [5] is achieved by means of an analytic procedure of changing and smooth-
ing the right-hand members of a system of differential equations without changing
its periodic solutions. The theorem above is only an example of the type of qualita-
tive result which can be obtained by combination of Cesari’s method and the analyti-
cal and topological arguments just alluded to.

1. A LEMMA ON FOURIER SERIES

The difference between a periodic function ¢(t) and a partial sum of the corre-
sponding Fourier series can be expressed as a Dirichlet integral. For the purposes

of this paper we use a very slight sharpening of a standard estimate of this integral
remainder.

LEMMA 1. Consider a periodic function &(t) with peviod 2w and continuous in
(<00, ) that satisfies the HOlder condition

lo(t)) —'¢(t2)|5 clt; - t,]”

Jor all ty, ty € [0, 2n] and for some constants C and a (0 < a < 1). Then the fol-
lowing is true:

Sﬂ ¢(t+_x)t' &) gin ((m+%)t)dt
-7

sin &
2

cqC form=0,1,

<
logm
m

ca C for m =2, 3, ---

b

where cy is a constant which is independent of x, m, and ¢(t).
Proof. Let

1
2x(t) =5 {ox+ ) +ox - 1) - 20() } .
According to our assumption,

lo(t) - st | < Ct; - t5]°

if t;, t; are both in an interval [27u, 27(n + 1)], p integral. Hence there exist
absolute constants c; > 0 such that

[2x®| < c1Clt]®, |xt+m) - &) < c2C|n|®

for all x € [0, 27], t € [0, 27] and all  with |p|< 7. From these estimates the
desired conclusion now follows from a standard result [4; Th. 10-8, Chapter II].



420 H. W. KNOBLOCH
2. DEFINITION AND BASIC PROPERTIES OF THE OPERATOR H,,

In this section we introduce in some function spaces a certain linear operator
H,, which maps an arbitrary function into a periodic function and which besides has
some kind of contraction property.

Let T be a positive number to be regarded as fixed throughout this section, and
let I be the interval 0 < t < T. The following system of trigonometric polynomials
is then orthonormal on I:

1 2. (21k .\ 3 27k
CO(t) = ‘T, CZk(t) =\/T Sln(—,r—" t) s CZk-l(t) =\/—71: cOS (-——;— t)

(k = 15 2’ "') .

Let Z be the space of all n-tuples &(t) = (§;(t), ---, £,(t)), where the &;(f) are
integrable functions over I. We denote the m-th partial sum of the Fourier expan-
sion of &(t) by P (£):

2m

pP_(&) = Z c (t)S c, (né(ndr.

A function £ € Z will be called periodic, if its components £;(t) are continuous on I
and if £;(0) = £;(T) for i=1, ---, n. We define for a per10d1c £ its norm | £]| to be
max Iii(t)l (the maximum is taken over all i = 1, ---, n and all t € I). Convergence
of a sequence of periodic &’s means uniform convergence in all components. By &4,
for any number A > 0 or A = <, we denote the subspace of all periodic & with

|£]] <A. The space #, is complete (with respect to the norm defined before) and,
if A <o it is also bounded.

Let us now, for every integer m > 0 and every £ € Z, consider the n-tuple
H_ (&) of functions on I given by

(2.1)  H (&) = Sotf;(r)dr = S E(r)ar - m(j g(ryar -ij s(rar ).

It is obvious that
(2.2) H_ (§) € £, and P (H,(§)) =0 for all £ € =

Hence, £ — H, (%) is a linear mapping of Z into & ..

For the following we need a certain estimate of |Hp,(£)]||, which we next estab-
lish. To this purpose let us write for the moment 7n(t) = (,(t), ---, n,(t)) instead of
H,_,(¢§). Then n;(T/27 t) is a periodic function of period 27 without trigonometric
terms of degree less than or equal to m in its Fourier expansion; hence, it can be
written as a Dirichlet integral in the form

o3 n(;; ) ZWS+7T¢(t)-¢(t+T) . ((m+ )T)dT

-7 sin<
2
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with
T t
2T t T
b3(t) = jo T - gz § s,

In (2.3) the functions ¢; are considered to be defined (by periodicity) in (-, ), and
they are continuous on (-, ),

Since

T

z7 2
ls(t2) - st | < | §7 gmar
T

’

t, - t T
Ll |5, extnar
0

a0

we obtain easily from Lemma 1 the following lemma.

LEMMA 2. If a Holder cowndition of the form

t2
IS Ei(T)dT < Clt1 - t2|a
tl

is satisfied for i =1, -+, n and all ty, t, € [0, T] with 0 < a < 1, then
IH & | < x(m, a)C.

Here x(m, @) is a certain function of @, m and T that satisfies an inequality of the
Jorm

logm

x(m, @) < Q@, T) =~ (m> 2),
m

wheve Q depends only on & and T.

Finally,we observe from (2.1) that n = H, (§) is differentiable almost every-
where and that 7 = £ + §,,,, where £, is a trigonometric polynomial £_, of degree
no greater than m. On the other hand, P, () = 0, and the periodicity of n implies
that P_ (7) = 0. Therefore, £ = -P_ (§) or

(2.4) SH (H=£-P (),

almost everywhere.

3. PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS
AND DETERMINING FUNCTIONS

We are now ready to define the operator ¥ that we mentioned in the introduc-
tion.

Let f(x, t) = (f; (%, t), -+, £ (x, t)) be a vector function defined almost everywhere
in a region
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X={(xt):|x|]<A, o<t T},

where A is a positive constant or infinity. Here x stands for the n-tuple
(%3, -+, x,) of variables x. and |x| for max |x1| We will assume that the follow-
1

ing conditions are fulfilled.
i) f(&(t), t) € Z for every &(t) € P,

(ii) There exist non-negative functions K(t), K;(t), L(t) defined and integrable
over I such that for all (x,t) € X, (y, t) € X

(3.1) l(x, t)| < Ko |x| + K (1),
(3.2) ltx, © - £y, | < Lt]|x - v] .

Furthermore, there exist constants ¢, ¢, k;, and k; with (0 <o < 1) such that
for all t;, t, € [0, T]

& .
(3.3) | St K(rdri<k[t, - t,|” =0,1
1
and
‘ t2 s}
(3.4) S L(ndr| < e]t; - t,] .
4

In view of (i), the operator H,, defined in Section 2 can be applied to all func-
tions of the form f(£(t), t) with £(t) € #,. We put now F,(§) = H (f(£(t), 1)),
£(t) € # 4, and have thus defined an operator F_: &, — #,. It has the following
properties:

(3.5) p_(F_()=0,

(3.6) I (&) ] < x(m, @)k, | £] + X)),
(3.7) IF o6 - F ) < x(m, ede]lg, - &, |,
(3.8) 3t Foul® = 160, B - P_(£G6®, 9).

The properties (3.5) and (3.8) follow immediately from the definition of F_ and
from (2.2), (2.4). According to (3.1),

[£E®, D <Ky O[] + Ky (0 ;

hence, by (3.3), we see that

o

. <t2 )
| % e, nar| < el + w1ty - t,
tl
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Applying Lemma 2, we then obtain (3.6). Finally, we prove (3.7) in a similar way:

|£(5, ), © - 1,0, O] < LO[ &, - &

according to (3.2);

t
§7 116, @, D - 16,0, Dlar < allg; - &, [t; - £,

ty

follows from (3.4); and finally we again apply Lemma 2 (using the linearity of the
operator H_ ).

For the remainder of this section, we choose the number m so large, that
x(m, a)t <1, x(m, @)(kg A + k1)< A, if A< and x(m, a)kg <1 if A=, @ be-
ing the exponent in (3.3), (3.4). This is always possible, since lim x(m, o) = 0 (see
Im— o0

Lemma 2). We will now keep m fixed and omit the subscript m in P.,H F

m?’ m*

Let a be a system

{allJ:} (i =1, tee, D, U= 0, **% 2m)

of n(2m + 1) real numbers and let A(a, t) = (A (a, t), .-+, A (a, t)) be the n-tuple of
the trigonometric polynomials

2m
A.i(a., t) = Z; aiu C,U.(t) .
u=0
In the case A <« we assume
(3.9) r@@, ]| < A - x(m, a)k A + k).

We consider then the set #,(a) of all £ € &, that satisfy the conditions
(3.10) P(&) = Ma, t).
& ala) is closed in &4, and the transformation

£ — Ma, t) + F(§)

maps £ (a) into itself, as can be seen immediately from (3.5), (3.6) and (3.9). We
claim now that there exists one and only one £ = £(a, t) in & A(a.) such that

(3.11) &(a, t) = AMa, t) + F(é(a, t)).

First, since x(m, a)¢ < 1, which together with (3.7) implies that the map is a con-
traction, it is clear that there exists at most one such &(a, t). If A <o, Pp(a) isa
bounded complete space, and the existence of £(a, t) is guaranteed by Banach’s fixed-
point theorem. If A =, we have to proceed as follows. We choose Ag > 0 so large
that

(3.12) [r(a, ] < Ap - x(m, @) (kg Ap + kj).
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This is possible since X(m, a)kg < 1. The bounded subspace % A, is then invariant

with respect to the mapping in question and hence has a fixed point. If we differen-
tiate both sides of the relation (3.11) with respect to t and make use of (3.8), we find
that

E(a, t) = f(5(a, t), t) + Ala, 1)
with
(3.13) Aa, 1) = Ma, 1) - P(f(5(a, 1), 1)) .

N(a, t) is a trigonometric polynomial of degree no greater than m. It represents
the error, so to speak, up to which &£(a, t) satisfies the differential equation

(3.14) X = (x, t).

We are now ready to formulate a theorem.
THEOREM 1. Let a be a system of veal numbers

{ai}u-} (i = 1; see, N, U= 0, cccy 2m)’

let Ma, t), £(a, t), Ala, t) be defined as above and by (3.11), (3.13), respectively,
and let (3.9) be satisfied. Then &(a, t) is a periodic solution of the differvential
equation (3.14) if and only if A(a, t) = 0. Conversely, if & € #,(a) is a solution of
(3.14), then & = &(a, t) and A(a, t) = 0.

Proof. The first part of the theorem is clear. As to the second part, let
£ € #,(a) be a solution of (3.14). We see then that (see the definition of F,,)

F(£) = HIE(EW), ©) = HE) = £1) - £(0) - PE®) - £(0) = £ + A,

where A is a certain trigonometric polynomial of degree no greater than m. Since
P(F(£)) = 0, it follows that A = -P(§) = -A(a, t) and therefore £ is a solution of
(3.11). Furthermore the two identities £ = f(£(t), t) and P(E) = A imply

A = P(f(£(t), t)), that is A(a, t) = 0. This completes the proof.

It follows from (3.13), with A(a, t) = (A4(a, t), =<, A, (a, 1)), that

Z2m
(3.15) Aia, t) = Aga, t) - 2 c‘u(t)S cp(Miy(E@, 1), Tdr.
=0

We also observe that ¢y(t) = 0 and that ¢, (t) isa constant multiple of ¢, for
u> 0. It follows then from the definition of A; that A; can be written in the form

2m

M@, = 27 vy agxc,®,
p=1

where p,, # 0 is a constant and pu — py* is a certain permutatmn of the numbers
1, *=-, 2m. Therefore Aj(a, t) is a trigonometric polynomial z 2m Am(a)cu(t)
and its coefficients are given by
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1 T
Asole) = -\ § tuteta, 7, mar,

T
Ay (@) = pyuags - SO £(5@, 1), Dey(Mdr (> 0)

(3.16)

The A;,(a) are called determining functions of the differential equation (3.14).
In case A = «, the A;, are defined for all a € RM2m*1); iy case A < «, they are
defined only for those a for which (3.12) holds. By Theorem 1, the problem of find-
ing periodic solutions of the differential equation is equivalent to the problem of
finding common zeros of the determining functions.

We finally observe that the £(a, t) are continuous functions of t and a. This fol-
lows, in the same way as in Cesari’s paper [1], from the inequality

&G, ©) - £, D] < [ Mz, t) - A, D+ tx(m, @) | £(a, t) - £, 1)

or

le@, v - £k, ]| < 5 Ixa, t) - Ao, D,

: |
- 'QX(m, a)

which is a consequence of (3.7) and the definition of £(a, t). Hence, in view of (3.16),

the A; p_(a) are also continuous functions of a if the f; satisfy su1tab1e conditions:

for example the interval [0, T] can be divided into a f1n1te number of subintervals

[T T, 1] such that f(x, t) is a bounded continuous function in each subregion
={x,t) eX, T; <t<Tl+1} of X.

4. FURTHER INVESTIGATION OF THE DETERMINING EQUATIONS

The functions A; (a) depend continuously on the a., as we have seen in Section
3. We shall now discuss whether they are d1fferent1abie functions, and we shall give
a sufficient condition for the non-vanishing of their Jacobian.

We start with some general remarks. Let £(u, t) be an n-tuple of functions of u
and t, defined for t € [0, T] and u € U, where U is a certain open interval. Let us
assume that £(u, t) € Z for each u and that 9&(u, t)/ou exists and is continuous in
both variables. Then it follows immediately that H, (£(u, t)) and P (£(u, t)) have
one continuous partial derivative with respect to u and that

) 0

30 Pm(6(u, ) = Ppy ( 5 oW ﬂ) ’
(4.1)

d d

Furthermore, if the functions f(x, t) have continuous partial derivatives, we ob-
tain from (4.1) the relation

2 (b, ) = Hy, (& 6, 0 L., 0, 9).
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Here f.(x, t) stands for the Jacobian matrix (af.l/ax ); Fry (E(u, t)), 9&(u, t)/0u have
to be regarded as 1Xn-matrices. We shall assume from now on that fx(x t) exists
and is continuous for all (x, t) € X.

Let A(a(u), t) = A be a trigonometric polynomial of degree no greater than m,
the coefficients a;, (u) of which are continuously differentiable functions of a para-
meter u (u € U). We assume that the condition (3.9) is satisfied for all u € U. The
relation

£=x+ F_ (%)

defines uniquely a continuous function £ of u and t, as we have seen in Section 3.
We wish to show that £ has a continuous partial derivative with respect to u. To
this purpose we make the following assumptions.

(i) The partial derivatives afl/ax are bounded for all (x, t) € X (1 j=1, -, n),
that is,

(4.2)

0x;
(ii) nDx(m, 1) < 1.

According to Lemma 2, the second condition can always be enforced by taking m
sufficiently large.

Let us now consider the linear homogeneous system of differential equations
(4-3) S’ =Yy: fX(E, t) ’

where y stands for the unknowns and the matrix of the coefficients is given by the
Jacobian f.(x, t) with x = £&. The differential equation (4.3) can be treated along the
lines of the previous section: From (4.2) we see that

ly - tx(¢, )| < |y |nD;

hence, the conditions (3.1), (3.2) are satisfied by taking K; = 0, K5 = L =nD, A =,
The condition to be imposed on m in this case turns out to be nothing else than (4.2).
Therefore, the sequence 7,,, which is defined by the relations

2
Mo = u s
(4.4)
=2k Ho - £, 1)
Mys1 = 3u miTy * 1S5

converges uniformly with respect to t and u (uniformity with respect to u is a con-
sequence of the fact that the ratio of contraction for the underlying mapping is inde-
pendent of u).

On the other hand, £ = lim £, with

Y—>» 00
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‘EO = A-,

A+ H (E(E), 1).

£v+1

It follows from these recursion relations that EV has a continuous derivative with
respect to u and that

(4.5) 2t H, (S 6,006, 0) .

Taking norms on both sides and using Lemma 2 (with @ = 1), we conclude that

(v=0,1, ).

? it o
| <] 2]« moxim, -] Z e,

"5‘{{ ‘Ev+1
This leads to the estimate

14
0 0 k.
| &l <& 2 (nDx(m, DY

hence, in view of (4.2),

il =
ou 1 - nDx(m, 1) °

0
"mg

In other words: The 3£, /6u are uniformly bounded with respect to t and u. We
shall now show that this sequence is in fact uniformly convergent. We do this by
proving that n,, - 8&,/0u converges uniformly to zero.

Let € > 0 be given. Since the elements of the matrix fx(x, t) are continuous in
X, we can find a number N = N(¢) such that

5 )
| (2 6y et 0 - 15 01) [ < ¢ 02w,
We then conclude from (4.5) that
0 ) )
36 vl “a Mt Hm(éTl £y 1.8, t)) + T,

with ||rV " < g if v > N. Subtracting the last relation from (4.4), we obtain the in-
equality

| 3 " < nDx(m, 1) V-%&,,"+ =1,

MTyy1 ~ 30 €1

and thus we finally see that for w =0, 1, ---,

w-1

" TNt w - £N+w ” < skZ)O (nDx(m, 1))* + (nDx(m, 1))“’”11N 35 EN" s

and
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2 1 g - 2 ]
" TN+w ~ 3u §N+w" <e 1 - nDx(m, 1) + (nDx(m, 1)) N " 34a gN :

Our statement follows now immediately from this inequality.

We thus arrive at the conclusion that our assumptions on f (x, t) and the condi-
tion (4.2) guarantee the existence and continuity of 3£(u, t)/ou. In particular, they
guarantee the existence and continuity of the derivatives 9&(a, t)/ aaj p Here a . stands
for the n(2m + 1)-tuple

{ajp} (j = 1, e, N, P = 0’ ) 2m):

and £(a, t) has the same meaning as in Section 3. By the condition (3.9), a has to
be restricted to a certain open set, which we denote henceforth by u.

In view of (3.16) and our assumption on f_(x, t), the functions Aiu(a) have con-
tinuous partial derivatives with respect to ajp if £(a, t) has. Therefore we can
formulate the following result.

THEOREM 2. Assume that the functions f;(x, t) have bounded continuous par-
tial devivatives with respect to x for all (x,t) € X. Let m be chosen such that the
conditions of Section 3 ave satisfied and (4.2) holds in addition. Then a; “(a) has
continuous parvtial devivatives with rvespect to every ajp if a€u.

We conclude this section with a remark on the Jacobian matrix

J= ( gAi” )
Zjp

of the determining functions.

THEOREM 3. Let the assumption on f(x, t) be the same as in Theovem 2, and
let a € N. Ifthe linear homogeneous system

y=y-£.(é@, t), t)

has no non-trivial periodic solution of peviod T, then det(J) + 0.

Proof. We begin with an identity that is an immediate consequence of the defini-
tion of the A;;:

2m
7 £i(a, 0 = (5@, B, B + Z Asp@eu®,

or, in matrix notation,

2m
% t@, t) = (£, 1), t) + Z)O A, (@), (1),
u:

Ay being the 1Xn matrix (Alu,: -+, Apy). We have already proved that £(a, t) has
continuous first partial derivatives with respect to the a;,. Thus it follows from our
assumptions on f and from the last relation that 9&(a, t) 9a;, is a solution of the
linear equation
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2m
Joy i E@ 0, 0+ D 2 Au@) cut).
p=0 <P

Let y(t) be a fundamental matrix of the corresponding homogeneous equation

(4.6) y=vy-£.((a, DY),
and let ¥ (t), -+, Y, (t) be the columns of . We may then write a representation of
the form
2m
(4.7) aa. Z) l(T)cu(T)dT) W) + py (),

Jp u=o Aip

where p;, is a certain constant 1Xn-matrix. Since a&/aa ip is periodic in t, Pip
must satisfy the relation

pip- @(0) - W(T)) = E 5— Ay ( 5 w-lmeymar ) -w(T).

Now the assumption on the periodic solutions of (4.6) implies that

det ((0) - ¥(T)) # 0,

and we can solve the last equation with respect to p ;5. We can thus change (4.7 to

2m
9 )
= £, 1) = 24 A { ey (n)d
ajp a o aap w Sl,b T)eylr)dr

(4.8)

+ (jOTw-l(ﬂc“(T)dr) - @(0) - () } Wy

for i =1, ---, n. Next we multiply the last relation by c4(t) (¢ =0, -*-, 2m) and
integrate with respect to t from 0 to T. Since

2m

P(§(@, 1) = 2 azcy),
4=0

5 0 for i#j,
P (52- &a, v) =
mA\da, cp(t) for i=j,

and

T
S co(t) 5— &;(a, DAt = 635000 -
0 2jp
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So we finally arrive at the following set of (n(2m + 1))2 relations

2m

66,0 = 2 w—Au- § co® Stt,b'l() (1)d
;%00 = o anp U b Co b T Cu' T)ar
(4.9)

T
+ (jo p-L(ncy(mar ) - w(0) - w(T))-l} -yt

We now arrange the nX1-matrices

T t T
§ eyt { Yy i@eu@ars (§ vt meu@ar) - wo - w(T))-l} gyt

0

in a rectangular scheme such that ¢ marks the rows and the pair (i, p) marks the
columns (i=1, «>-, n; p, £ =0, ---, 2m). We thus obtain an n(2m + 1)-square-matrix
E. In a similar way we arrange the 1Xn-matrices aAu/aajp in a rectangular
scheme, using (j, p) as row index and p as column index. This matrix is obviously
the Jacobian matrix J, and from (4.9) we obtain the matrix equation

I=J-8,

where I is the n(2m + 1)-unit-matrix. Hence Theorem 3 is proved.
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