THE LATTICE-ORDERED GROUP OF AUTOMORPHISMS
OF AN ORDERED SET

Charles Holland
1. INTRODUCTION

Let S be a totally ordered set, and let G be the group of all functions f: S — S
such that f is one-to-one, onto, and the inequality x <y (x, y € S) implies that
xf < yf. We call such a function an automorphism of S. If f and g are automor-
phisms of S, then define f < g if xf < xg for all x € S. It is well known and easily
proved that this defines a partial order on G under which G is a lattice-ordered
group (¢-group). For example, Problem 95 in [2] asks what ¢-groups can be con-
structed in this way. In Section 2 we give a partial answer to this question by show-
ing (Theorem 2) that any ¢-group can be embedded in the ¢-group of automorphisms
of an appropriate ordered set. (Orderved means here, and throughout the paper,
totally ordered.) The main embedding theorem (Theorem 1) gives more precise in-
formation on the embedding and suggests a more concrete formulation of Birkhoff’s
problem as follows: What ¢-groups are fransitive groups of automorphisms of
ordered sets? The answer to this question is given by Theorem 3. Section 3 con-
tains an application of the main embedding theorem. We prove that every ({-group
can be embedded in a divisible ¢-group. In Section 4, as an illustration of the tech-
niques involved, we investigate the structure of the ¢-group of permutations of the
real line.

Notation. All groups will be written multiplicatively, and (most) functions will
be written on the right. Thus if G is a group of permutations of a set S, if f, g € G,
and if x € S, then fg is the function whose value at x is sometimes denoted by

gf(x)).

2. THE EMBEDDING THEOREM

Lemmas 1 through 4 are generalizations of lemmas that are well known if the
subgroups under consideration are (-ideals. In particular, the proofs of Lemmas 1
and 2 are sufficiently similar to the standard proofs (Birkhoff [2]) that they are
omifted here.

Throughout the paper, G denotes an ¢-group. A subgroup of G, which is also a
sublattice, is an ¢-subgroup. A subgroup C of G is convex, provided C contains
along with any x> 1 also all y such that x> y > 1. For x € G, lxl =XV x-1,
(The symbols \v and A denote the lattice operations.)

LEMMA 1. Let C be a convex L-subgroup of G, and let 1< a € G. Define
C*(a) = {x € GI aAn |x| € C}. Ther C*(a) is a convex L-subgvoup of G and
C ¢ C*(a).

LEMMA 2. Let C be a comvex subgroup of G. Let R(C) = {Cg| g € G} be the
set of all vight cosets of C in G. If we define Cg < Ch to mean theve exists c € C
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with cg < h, then this defines a partial ovder on the set R(C). If C is a sublattice,
R(C) is a lattice with CxV Cy = C(xV y).

In what follows, the only order put on R(C) is that described in Lemma 2.

LEMMA 3. Let C be a convex {-subgroup of G. The sel of convex {-subgroups
of G which contain C jform a towev (undev inclusion) if and only if a Nb =1 im-
plies a € C or beC,

Proof. Suppose a, b 42 C and a A b=1. Then b € C*(a)~C*(b) and
a € C*¥(b)~~C*(a). Moreover, C*(a) D C c C¥*(b).

Conversely, if AD C c B with A and B convex (-subgroups of G and if
a'€ ANB and b* € BNA, where a', b' > 1, then 1 < a' A b' < at, b'. Denote set-
theoretic union and intersection by U and 1 respectively. Then since A and B
are convex, a' Ab' €e AN B, Let a=a'(a" A b')-1 and b=Db'a' A b')-1. Then
aAb=1but a,b§ An BDC.

LEMMA 4. If C is a convex {-subgrvoup of G and if the set of convex {-sub-
groups of G which contain C is a tower, then R(C) is fotally ovdevred.

Proof. By way of contradiction, if neither Cg < Cf nor Cf < Cg, then
gt=glgNi-1 % C since otherwise Cg = Cg A f < Cf. Likewise, f'= f(g A f)-1 # C.
But g' A\ f'=1. Hence by Lemma 3, the convex f-subgroups of G which contain C
do not form a tower.

LEMMA 5. Let C be a convex (-subgroup of G, and let C' be a convex {-sub-
group of G which properly contains C and such that every convex {-subgvoup of G
which properly contains C also contains C'. Then the set of convex &-subgrvoups of
G which contain C form a towey.

Proof. If 1 < k € C'\C, then since k % C*(k), it follows that C*(k) = C. Now
let a A b=1. Suppose a % C. Then since a € C*(b), C*(b) properly contains C,
and therefore C*(b) D C'. Let 1 <k € C'\C. Then b € C*(k). Hence b € C. Thus
by Lemma 3, the set of convex (-subgroups of G which contain C form a tower.

The proof of the following lemma is straight-forward.

LEMMA 6. Let C be a convex subgroup of G, and suppose R(C) is totally
ovdeved. Then each g € G induces an automovphism B(g, C) of R(C) defined by

(Cx)ﬁ(g, C) = ng‘
If C is a convex subgroup of G and if R(C) is totally ordered, we let A(C) de-
note the £-group of automorphisms of R(C).

LEMMA 7. If C is a convex {-subgroup of G and if R(C) is totally ordered,
then the mapping a(C): G — A(C) defined by ga(C) = B(g, C) is an L-group homo-
morphism of G onto a transitive L-subgroup of A(C).

Proof. The only non-trivial part of the proof is to show that the lattice opera-
tions are preserved. We must show that

(g v1)a(C) =8(g, C)Vvi

where i denotes the identity function in A(C).

In other words, we must show that for any right coset Cx,

Cx(g Vv 1) = (Cxg) v (Cx).
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But this follows immediately from Lemma 2.

LEMMA 8. If Clg] is a maximal element of the set of convex {-subgroups of G
which do not contain 1 + g € G, then the set of convex L-subgvoups of G which con-
tain C|g] forms a tower.

Proof. Let K be the intersection of all convex f£-subgroups of G which contain
C[g] and g. Then every convex {-subgroup of G which properly contains C[g] also
contains K. The result now follows from Lemma 5.

THEOREM 1. (Main Embedding Theovem). If G is an L-group, then G is £-
isomovphic to a subdivect sum of 0-gvoups {Blgl| 1+ g € G} such that each Blg]
is a trvansitive (-subgroup of the L-group of automorphisms of a totally ovdevred set
Sie].

Proof. For each 1 # g € G there exists, by Zorn’s lemma, a convex {-subgroup
Cl[g] of G which is maximal without g. By Lemma 8, the set of convex (-subgroups
of G which contain C[g] forms a tower. By Lemma 4, S[g] = R(C[g]) is totally
ordered. By Lemma 7, the mapping ¢ (C[g]): G — A(C[g]) is an ¢-group homo-
morphism of G onto a transitive ¢-subgroup B[g] of A(C[g]). Moreover, g is not
in the kernel of a(C[g]) since C[glg # C[g]. The theorem now follows from the
standard results (see Birkhoff [2]).

If H is the direct sum of ¢-groups B, and if each B, is the ¢-group of auto-
morphisms of an ordered set S, where S, N Sg = p for B + o, then we may totally
order the set USa as follows: first order the collection of sets S, in any way; for
example, it may be well-ordered. Then for x,y € USa, call x<y if x,y € S5 and
x <y as elements of Sy, or if x € S, and y € SB where S, < SB. If ¢ € H then ¢
induces an automorphism of the set USoz ordered in this way, as follows: x¢'= X¢y,

where x € Sy and ¢y is the ath component of ¢. From this and Theorem 1, we
have the following theorem.

THEOREM 2. If G is arn {-group, G is {-isomorphic to an {-subgvoup of the
2 -group of automovphisms of an ovdered set.

The next theorem describes those ¢-groups for which the embedding of Theorem
1 can be chosen so that there is only one summand.

THEOREM 3. An {-group G is L-isomorphic to a transitive {-subgroup of the
- grvoup of automorphisms of an ovdeved set if and only if there exists a convex -
subgrvoup C of G such that both

(1) the set of convex fL-subgroups of G containing C is totally ovdered undevr
inclusion, and '

(2) the only f-ideal of G contained in C is {1}.

Proof. If G is a transitive f-subgroup of the £-group of automorphisms of an
ordered set L, and if x € L, then C = {g € G| xg = x} is clearly a convex {-sub-
group of G. C contains no (-ideals of G. For if-1# g € C, say yg #y, then, as G
is transitive, there exists f € G such that xf = y. Therefore

xfgf-1 = ygf‘l #yi-1 = X,

S0 fgf"1 c{EC. The f£-ideals of G containing C form a tower, for otherwise, by
Lemma 3, there exist a, b é C such that a/\ b= 1. That is, xa # x # xb, and yet

x=x1=x(a:1/\b) = (xa) \ (xb),
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which is impossible since L is totally ordered.

Conversely, if C is such a subgroup of G, then by Lemma 4, R(C) is totally
ordered, and by Lemma 7, the mapping a(C) is a homomorphism of G onto a
transitive subgroup of A(C). If g is in the kernel of a(C), then Cg = C; thus the
kernel is contained in C. As the kernel is an f-ideal of G, the kernel is {1} and
a(C) is one-to-one.

COROLLARY 1. If there exists an (-ideal K # {1} of G such that every non-

trivial (-ideal of G contains K, then G is a lransitive L-group of automovphisms
of an ovdeved set.

Proof. Let 1+ g € K, and let C[g] be a convex £-subgroup of G maximal with-
out g. Then C[g] satisfies conclusions (1) and (2) of the theorem.

COROLLARY 2. A simple {-grvoup (without non-tvivial L-ideals) is a transilive
L-group of automorvphisms of an ovdered sel.

COROLLARY 3. If G is abelian and is a transitive {-group of automovphisms
of an ovdered set, then G is totally ovdered.

Proof. Any such C is an f-ideal. Hence C = {1}, and G is isomorphic as an
ordered set to R(C), which is totally ordered.

In this connection, Cohn [3] proves that a group satisfying certain completeness
conditions, which is a group of automorphisms of an ordered set, admits a total
order if and only if it is abelian.

3. REMARKS ON GROUPS OF AUTOMORPHISMS

Most of the elementary properties of ¢-groups are almost self-evident for (-
groups of automorphisms of ordered sets. To show this, as well as to establish
some notation for the next section, we consider an £-group G of automorphisms of
an ordered set L. Let g € G be given. For any x € L let

Ix) =4y € L| there exist integers m, n such that xg" <y < xg™} .

Then I(x) is convex in L, (I(x))g = I(x), and if y € I(x), then I(y) = I(x). If I(x) con-
tains more than one point then I(x) is a supporting intevval of g. The union of the
supporting intervals of g is the support of g. In any case, we call I(x) an inferval
of g. The collection of intervals of g determine an equivalence relationon L (x ~y
if and only if I(x) = I(y)). For a given interval I(x) of g and for all y € I(x), either
(1) yg =y, in which case I(x) = 1x}, and we say g is zero on I(x), or (2) yg <y,
and we say g is megative on I(x), or (3) yg >y, and we say g is positive on I(x).

It is clear that if gt = g\ 1, then for all x € L,
xg if g is positive on I(x)
xgt = {
x otherwise.
Likewise, g~ = g A 1 is such that
xg if g is negative on I(x)
xg~ = {

x otherwise.
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Similarly, [g| =g\ g-! is such that

xg if g is positive on I(x)
xlel- |

1 otherwise.

Xg~
Moreover, for 1< g, h € G, g/ h=1 if and only if the support of g does not meet
the support of h.

Thus the following elementary properties of ¢-groups are obvious for these
groups of automorphisms:

(1) |g|> 1 forall g = 1;
(2) If gAh=1, then g\ h=gh = hg;
(3) If g» > 1, then g > 1.

We note also that if G is the £-group of all automorphisms of L, then G is
“laterally complete” in the sense that any collection of pairwise disjoint positive ele-
ments of G has a least upper bound. It follows from Theorem 2 that any £¢-group
can be embedded in a laterally complete £-group. This generalizes an example of
Birkhoff [2; p. 242, Example 2(b)].

4. AN APPLICATION

An f-group G is divisible provided that for all g € G and for all integers n > 0,
there exists an h € G such that h® = g. We use the theory of Section 2 to show that
every {-group can be embedded in a divisible ¢-group.

A totally ordered set N is called an 71, sef (Hausdorff[6]) if for every pair of
subsets A and B of N such that |A|, |[B[< 8, and such that every element of A
is less than every element of B (A < B), there exists an x € N such that A < x< B.
An 7y set of cardinality X, will be called an a-sef. It is known that any two «-
sets are isomorphic, that any o -set contains every ordered set of smaller cardi-
nality, and that a-sets of arbitrarily large cardinality exist (assuming the general-
ized continuum hypothesis). These a-sets play a role in “universal embedding
theorems?” for totally ordered abelian groups [1] and totally ordered fields [5].

THEOREM 4. Let N be an a-set and let G be the L-group of all automorph-
isms of N. Then G contains as an L-subgroup every L-grvoup of cardinality less
tharn Ng.

Proof. It is clear from the proofs of Theorems 2 and 3 that any £-group of
cardinality less than R, can be embedded in an £-group K such that K is the £-
group of automorphisms of an ordered set L. and L has cardinality less than VR ,.
We now show that any such K can be embedded in G.

As L can be embedded in N, we consider L-c N. Now define an equivalence
relation on N as follows: for x, y € N, let xEy if the intervals [x, y) and [y, x)
contain no element of L. Then the equivalence classes are convex, and thus N/E
has a natural total order. Also, each equivalence class contains at most one ele-
ment of L; and if an equivalence class contains an element of L, then that element
is the upper end point of the equivalence class. An equivalence class is said to be
of type 1 if it contains an element of L, otherwise, it is of type 2.
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It is not hard to verify that any class of type 2 is an a-set, and that any class of
type 1 minus its end point is also an «-set. Hence any two classes of type 1 are
isomorphic and any two classes of type 2 are isomorphic. Now for each pair of E-
classes A and B of the same type, choose an isomorphism y(A, B) of A onto B
such that if A, B, and C are all of the same type then v(A, B)y(B, C) = ¥(A, C).
This is clearly always possible; for example, let C be a fixed E-class of type 1 and
choose an arbitrary collection of isomorphisms (A, C) for all A of type 1, A % C.
Then let y(C, C) be the identity, and for all A and B, let

7(A, B) = y(A, C)y(B, )L,

Do a similar thing for the E-classes of type 2.

Let ¢ be an automorphism of L. Since each E-class contains at most one ele-
ment of L, L is isomorphic to the subset L' = LE of N/E. Thus ¢ induces a natu-
ral isomorphism ¢' of L'. It is easy to verify that every cut of L' determines
exactly one element of (N/E); that is, if A U B= L' and A < B then there
exists exactly one element n of N/E such that A < n < B. We may now extend ¢’
to an automorphism ¢" of N/E as follows: if x € L' then x¢" = x¢', and if
x € (N/E)N\L' then x determines a cut A < x< B of L'; the cut A¢' < Bo' of L'
determines a unique y € (N/E)™NL' such that A¢' < y < B¢'; let x¢" =y, and it fol-
lows that ¢" is an isomorphism of N/E.

We now extend ¢ to an automorphism ¢* of N as follows: for all x € N,
x¢* = xy(xE, (xE)¢").
It is a straight-forward matter to verify that the mapping ¢ — ¢* is an £-iso-

morphism of K into G.

LEMMA 9. Let S be an ovdeved set in which any two non-trivial closed inter-
vals arve isomovphic. Then the (- group of all automovrphisms of S is divisible.

Proof. Let g € G and a positive integer n be given, where G is the £-group
of all automorphisms of S. We wish to find an f € G such that f®=g. There is no
loss of generality in assuming that g is positive and has only one supporting inter-
val (see Section 3). It follows from the hypothesis that S is dense in itself; that is,
if x,y € S and x <y, then there existsa z € S such that x < z < y.

Let ag < apg for some ag € S. Choose
ag<ayj<a<--<a,_j<a,=agg.

Since any two non-trivial closed intervals in S are isomorphic, it follows that there
exist isomorphisms

®;: (a5_3, ai] - (ai; ai+1] (i=1,2,-,n-1).
Define ¢,: (a,_;, a,] — (a,, a;g] by
xp,=xp;l 051,07t

Now let ¢*: (ag, a,,] — (a;, a; g] be the extension of all the ¢, for i =1, 2, -+, n.
Then ¢* is an isomorphism.
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Define f € G as follows: if x is not in the support of g, then xf = x; if x is in the
support of g, then there is a unique integer m(x) (not necessarily positive) such that

X € (3-0 grn(x), (X) =295 8 m(X)+1 ],

in this case, let xf = xg'm(x) o* gm(x). Then f is an automorphism of S and f*= g,
THEOREM 5. Every {-group can be embedded in a divisible {-group.

Proof. Since there exist a-sets of arbitrarily large cardinality, it follows from
Theorem 4 that every f£-group can be embedded in the ¢-group of automorphisms of
some a-set. If [a, b] is a closed interval in an a-set, then it is easily seen that
(a, b) is an a-set, unless a > b. Hence any two non-trivial closed intervals in an
a -set are isomorphic. Thus by Lemma 9, the {-group of automorphisms of an a-
set is divisible.

5. AUTOMORPHISMS OF THE REAL LINE

In order that the embedding theorem (Theorem 1) shed much light on the struc-
ture of ¢-groups, it would be necessary to know how the structure of an ordered set
affects the structure of any transitive £-group of automorphisms of the set, or con-
versely, to what extent a given ¢-group determines the sets over which it is a trans-
itive f£-group of automorphisms. These questions are not answered in this paper;
however, the ¢-group of automorphisms of the real line seems to illustrate many of
the possibilities, and in this section we investigate this {-group in some detail.
Most of the results in this section can be generalized. For example, Lemma 10 re-
mains true under the hypothesis of Lemma 9. For other results on this group, see
Everett and Ulam [4].

Throughout this section, G is the ¢-group of all automorphisms of the real line.

LEMMA 10. Two elements g, £ € G are conjugates if and only if theve exists a
one-to-one function ¢ from the set of intervals of g onto the set of intervvals of £
such that for all intervals I and J of g,

1) iFI<T (i€l, j €T implies i <j),then Ip < I, and

(2) if g is positive (negative, zevo) on 1, then { is positive (negative, zevo) on
Ip.

Pyroof. Suppose f = h'1 gh. Then let Ip = Ih for each interval I of g.

Conversely, let such a ¢ exist. Define h € G as follows: If x € R, the reals,
then x belongs to exactly one of the intervals of g, say x € I. If g is zero on I, let
xh be the only element of Ip (by assumption, f is zero on Ip). If g is positive on I
(and similarly if g is negative on I), choose xp € I and yg € I¢. Then there exists
k € G such that xgk = y and xqgk yof. Also there exists a unique integer n(x)
such that x € (xg g™ n(x) , X0 gn x)+ ]. Let xh = xg'n(x) kfn(x). Then it is easy to verify
that h is an automorphlsm of R and that f=h"~ gh

It is a corollary (due to T. Lloyd) that, for every g € G, g and g2 are conjugates;
and so g is a commutator.

THEOREM 6. Let
A = {g € G| there exists an x4 € R such that y > x, implies yg =y} ;
B = {g € G| there exists a Yo € R such that y <y, implies yg =y} ;
C=ANB.
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Then A, B, and C ave the only proper {-ideals of G. Moreover, C is the only
proper L-ideal of A ov B, and C has no proper {-ideals.

Proof. Let 1<g ¢ A,andlet 1<beB,say yb=y for all y < yo. We now
show that any ¢-ideal of G or of B which contains g also contains b.

First suppose g has no fixed point above some xp € R. There exists p € B such
that xgp = yg- Then p'1 gp has no fixed points above yg. Hence the set of intervals
of p-1 gp is the same as the set of intervals of g' = (p~lgp) Vv b. Thus from Lemma
10, p-lgp and g' are conjugate; in fact, since p~-! gp and g!' agreeonall x<vyq, a
glance at the proof of Lemma 10 shows that p-lgp and g' are conjugate by an ele-
ment of B. Hence g and g' are conjugate by an element of B. Moreover,

g' > b > 1. Therefore, any {-ideal of G which contains g also contains b; and any
{-ideal of B which contains g also contains b.

The other case is if g has arbitrarily large fixed points. Then there is a se-
quence of supporting intervals I; = (aj, b;) of g such that

a.l <b1 <az< b2< b <ai<bi< b
and {ai} is cofinal in R. There exists a q € B such that
aj;q = 4@ - 1) and b;q=4i - 1.

Each of the intervals (4(i - 1), 4i - 1) (i=1, 2, ---) is a supporting interval of the
function q-!gq. Likewise, there exists an r € B such that

ajr=4i -2 and byjr=4i + 1.

Each of the intervals (4i - 2, 4i+ 1) (i=1, 2, +-*) is a supporting interval of the
function r-!gr. Hence

g"=(q-1gq) V (r-lgr)

has no fixed points above 0. Now returning to the first case with g" in place of g,
we again obtain the conclusion that any f£-ideal of G or of B which contains g must
also contain b. Thus any f¢-ideal of G which is not contained in A must contain B.
By symmetry we may interchange A and B in the previous sentence. But it is
easily seen that A and B together generate G. Thus every proper f{-ideal of G is
contained in A or in B. But we have also shown above that every proper f-ideal of
B (or A, by symmetry) is contained in C.

Finally, we show that C contains no proper (-ideals. Let g and f be any posi-
tive elements of C; say, yf =y for all y > yg and for all y < xg. Let (a, b) be a
supporting interval of g. Then there exists an s € C such that as = xg - 1 and
bs =y + 1. Letting h = s-lgs, we see that, for some positive integer n, yg < xp h".
Hence for all x € [xg, yol, xf < yg < xgh" < xh™. And for all other x € R,
xf = x < xh™. Hence any {-ideal of C which contains g also contains f. It follows
that C has no proper {-ideals. Thus, the theorem is proved.

T. Lloyd has shown that A, B, and C are, in fact, the only normal subgroups of
G, and C is algebraically simple. (This last result is also contained in [7].)

The f-group C and the four mutually isomorphic £-groups G/A, G/B, A/C, and
B/C are examples of simple {-groups which are not totally ordered. This answers
in the negative a conjecture of Lorenz [8].
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With only minor alterations in the proof, Theorem 6 is also true for the £-groups
of automorphisms of the rationals and irrationals, respectively. In fact, these two
¢ -groups are identical, for any automorphism of the rationals can be extended
uniquely to an automorphism of the reals, and this cuts down to an automorphism of
the irrationals. The correspondence is an isomorphism.

The respective £-groups of automorphisms of the rationals and the reals differ,
however, in an important way. A sequence f; < f; < --- of elements of an {-group
H is o-rvegular (Everett and Ulam [4], also Birkhoff [2; p. 232]) if there exists a
sequence v] > vz > --- of elements of H such that AN,v, =1 and for all positive
integers n and p, fn+PfI"11 < vp and fﬁlfmupg Vn. An o-regular sequence {fi}
converges to f if f=\/;f;. H is o-complete if every o-regular sequence in H
converges.

THEOREM 7. Let H be the L-group of automorphisms of an ovdeved set L
such that

(1) L is relatively complete, and

(2) every interval of L. which contains move than one point contains the support
of some element of H.

Then H is o-complete.
Proof. Let f; < f, < .-+ be an o-regular sequence in H with {Vi} as above.
Consider the function f: L, — L defined by

xf =V (xf;).

As L is relatively complete and xf; < xv;f,, f is well defined. Also, if x,y € L,
and x <y, then xf < yf. Thus if f is one-to-one and onto, then f € H and {fi} con-
verges to f.

Suppose, by way of contradiction, that f is not one-to-one; say, xf = yf for some
x < y. Let 1< v € H such that the support of v is contained in the interval [x, y].
For any positive integer n,

yi, <yf= \n/l(xfm) .

It follows that for any z < yf, there exists a positive integer p such that z < an+p-
Hence

-1

Therefore,

XV, > \Z/(zfr;l) = (\Z/z)fr;1 =yt fil=y.

It follows that v, > v. Thus A, v, > v > 1, which is a contradiction. Hence f is
one-to-one.

In a like manner, it can be shown that the function g: L, — L defined by
xg = Nj(xf;l) is one-to-one. If S c L is the range of g, then g-1: S — L is an
onto map. But it is easily seen that g-1 and f agree on S. Therefore, f maps onto
L.
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COROLLARY. The L-group G of automorphisms of the veal line is o-complete.

The ¢-group of automorphisms of the rationals is not o-complete. For if {ai}
is a sequence of rationals increasing monotonely to V2, if {b;j} is a sequence of
rationals decreasing monotonely to V2, and if we define xf; = x + a;, then

-1 -1
XVp=X+bp-ap>x+app-ap=xf, fi,=xf,,8",

and v; > v, > ... with A v, =1. Hence {f;} is o-regular. Butif f= \/,f,, then
for all i,

x+a <xf<x+b;,

which is impossible.

We conclude with some remarks on the Main Embedding Theorem. It is clear
that any totally ordered group is a transitive ¢-group of automorphisms of an
ordered set (in its right regular representation, for example). Hence any {-group
which is a subdirect sum of ordered groups already satisfies the conclusion of
Theorem 1 in a nice way. It is well known that an ¢-group H is a subdirect sum of
ordered groups if and only if H is regular, which is to say that no element of H is
disjoint from one of its conjugates (Lorenzen [9]). Thus, for a large class of £-
groups, including all abelian {-groups, the embedding of Theorem 1 is of no value.
However, very little seems to be known about the structure of non-regular (-groups,
and the transitive group of all automorphisms of an ordered set is “almost always”
non-regular.

The author expresses his appreciation to P. F. Conrad whose critical remarks
have resulted in improvements in several portions of this paper.
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