A BASIS THEOREM FOR CUSP FORMS ON
GROUPS OF GENUS ZERO

John Roderick Smart

1. Let I'(1) denote the modular group, that is, the group of linear fractional

substitutions w = (az + b)/(cz + d) with a, b, ¢ and d integers and ad - bc = 1. Let
¢ denote the dimension of the vector space of cusp forms of dimension -r for I'(1).
(See Section 2 for definitions.) It is known that if r is an even integer, then
pw=[r/12] if r #2 mod 12 and u =[r/12] - 1 if r = 2 mod 12. In 1939 Petersson
[6] proved the following theorem: The fivst u Poincaré sevies (see (2.3))
g (2, 1), g_.(2, 2), «--, g_.(2, 1) span the vector space of cusp forms of dimension
-r for the modular group, wheve r > 2 is an even integey. The object of this paper
is to show that essentially the same proof applies to all real zonal horocyclic groups
of genus zero and finite signature. The modular group is such a group.

To our knowledge this theorem is not implied by any of the more recent basis
theorems. The proof fails if the genus of the group is larger than zero. In the next
section we make the necessary definitions.

2. A horocyclic group T' is a group of linear fractional transformations which
maps a disk or half-plane one-to-one onto itself, is discontinuous at each interior
point of the disk and is not discontinuous at any of the boundary points. (Equivalent
terms are Fuchsian grvoup of the fivst kind and Grenzkveisgrvufpen [9].) A real
horocyclic group maps the upper half-plane onto itself; furthermore, if it possesses
a translation it is termed zonal. The signature of a discontinuous group is an
n + 2-tuple describing certain characteristics of a fundamental region; namely, the
genus g, the number n of inequivalent fixed points (with respect to I') and an inte-
ger (possibly infinite) at least 2 associated with each of these fixed points. In case
n is finite we write (g, n; ky, ky, -+, k) for the signature. At an elliptic fixed point
we associate the order of the transformation in I" fixing the point; at a parabolic
fixed point we associate the number «, If T' is a zonal horocyclic group which has
a finite signature (g, n; k;, k;, -+, k), then we may assume that

2<k) <kp < <k <o, Kgyg=+e=ky=0, and s <n.
(For a discussion of the signature of discontinuous groﬁps and related matters see
[1; pp. 203-209], [4] and [5; Ch. VII].) With few exceptions the converse is true:
given
(g, n; ki, k2) ) kn)’ 2 S kl S kZ _<_ °te _<__ ks < oo,
kgyp ==k, =, and s<n,
there exists a zonal horocyclic group I' with the given signature. Since we are con-

cerned with g = 0, we need only require that n > 3 or if n = 3 then
1/k; + 1/k, + 1/k3 < 1 [5].
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A canonical polygon R for I'" is a fundamental region bounded by 4g + 2n hyper-
bolic lines arranged in a special order (which need not concern us) [5], [4; pp. 186
ff.]. This polygon has the special feature that each of the elliptic and parabolic fixed
points are inequivalent and it contains exactly one accidental cycle (the sum of the
angles meeting at the vertices of this cycle is 27). The following theorem can be
found in Fricke-Klein [4; pp. 310 ff.]: A hovocyclic group of finite signature pos-
sesses a canonical polygon. (See also [5; Ch. VII, 4D].)

Thus if T" is a zonal horocyclic group of finite signature (0, n; k3, **+, k,) with
2<k1 L <kg<wo, kg1 =+ =Kkp=o and s <n, then I" possesses a fundamen-
tal region R which is bounded by 2n sides, has s inequivalent elliptic vertices,

n - s parabolic vertices, and one accidental cycle consisting of n vertices. More-
over, the orders of the elliptic substitutions fixing these s vertices are
ky, kp, +--, kg, respectively.

Let T be the group of two-by-two matrices defined by I' = T/{+1}, where
I=(10 | 0 1) (we write our matrices in one line with a bar separating rows).

An everywhere regular automorphic form of dimension -r for I', r integral and
even, is a function f regular in s#, the upper half plane, which satisfies the equation

(2.1) - f(Vz) = (cz + A)* £(z)

for each V= (- . |cd) €T and each z €. It is further assumed that f is regular
at each of the parabolic cusps p;» j=1, +-n - s. Thatis, f possesses the “Fourier
expansions” :

o0
- 2minAsiz/Aj
(2.2) £z) = (cjz+ &)F T ap(4y) e2 ™A/ A
' n=0
where Aj'loo = Dj, AJ- = (. | C; dj) is a real two-by-two matrix of determinant 1 and

A;luNAjeT (>0, U=@1]|01)

generates the subgroup of transformations fixing pj. We take Aj; = I. We say that
f(z) is a cusp form if aO(Aj) =0 for j=1,2, -, n- s.

Let r > 2 be an even integer and consider the Poincaré series

(2.3) g_(z,v)=v™"l 27 (cz+ d)-T e2MivVz/A
Ve M)

where V = (- - [ c d) ranges over all matrices in T with distinct lower rows and v
is an integral valued parameter. If r > 2, these series converge uniformly and ab-
solutely on compact subsets of o, and thus they represent automorphic forms of
dimension -r for I'. The Poincaré series (2.3) with v > 0 are everywhere regular
cusp forms.

The everywhere regular automorphic forms of dimension -r for I" form a fi-
nite dimensional complex vector space denoted by € *(I', -r). The cusp forms form
a subspace denoted by #O%(I', -r). Let the dimension of €0 be u, and let
$1, $2, ***, ¢ be a basis. Then each of these functions has an expansion like (2.2)
at o, Let
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=]

(2.4) ¢ (2) = 2 b_ (k) e2Minz /A (b, (k) = b, (I, K); k=1, 2, =, )

n=1
be their expansions. The vectors
(2.5) B, = B, (D) = {b,(1), b,(2), >, bpy(W)},

with g components, are called the Fourier vectors of the basis ¢1, ¢, ***, dpu.

Petersson [7] introduced the inner product

(2.6) (f, g) = SS f(z)g(z)y* -2 dxdy
R

between cusp forms f, g € €%, -r), r > 0. The integral can be shown to be inde-
pendent of the choice of the fundamental region R used. In particular, if
g(z) = g _{z, v), we have the important formula [7; p. 505]

(2.7) (f, g_.(z, 1) =e.a,d (e,=(r-21ml-Tr7),

where ay(I) is the v-th coefficient in the expansion (2.2) with Aj = 1. With the aid
of (2.7) one can prove the Fundamental Theorem on Linear Relations between Poin-
caré Series [7; p. 517]: The linear velation

L
(2.8) 22 £,.g_(z,v)=0
k=1

holds if and only if

32
(2.9) 2 EB, =0,
k=1 k

wheve the &, are complex constants and the BVk are the Fourieyv vectors of a basis.

3. We are now in a position to state and prove our theorem.

THEOREM. Let I' be a real zonal hovocyclic group of signatuve
(0, n:ky, kp, »+s, ky) (2<k; Sk o Skg<0j Koy = = k=),

Let r be an even integer greatev than 2. Then the first u Poincaré servies
g_.(z, 1), *=-, g_(2z, p) span the space €0(r, -r) of cusp forms of dimension -r
on T'.

Proof. We suppose to the contrary that there exist constants £, not all zero
such that

ik
2 &g (2,K)=0.
k=1
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Then by the theorem on linear relations,

u —
Z) ngk:‘ O,
k=1

where By is the Fourier vector of a basis ¢y, ¢,, **-, qb“. Writing out the above re-
lations for each component of the Fourier vectors we find

Z kbk(]) = (j = 1: 2’ % “)-

k=1

This homogeneous set of equations has a non-trivial solution by assumption; hence,
the transposed set also has a non-trivial solution £j, &3, *, £);:

(3.1) 25 b®=0  (G=1,2 -, 1.
k=1 ~ 7
Now consider the cusp form

u
(3.2) 8(z) = L £ 6,(2),
k=1

which is not identically zero; therefore, it has a zero of finite order n; at «, Ex-
panding & at «, we find that

&(z) = E (Z) &b (k) e2Minz/X

Thus by (3.1),
(3.3) ng> p+ 1.

We have shown that ® has a zero of order atleast u + 1 at z=o. & is a cusp
form hence it has zeros at the remaining cusps; moreover, it may have zeros at the
elliptic fixed points. It is known [2] that an everywhere regular automorphic form of
dimension -r for I' has a certain fixed number N = N(I", -r) of zeros in a funda-
mental region R. The proof now proceeds as follows. Upon adding up the orders of
the zeros of & and computing N(T", -r) and u, we find that & has more than N
zeros. Thus & is identically zero, contradicting our assumption that £&;, &;, -, £ u
are not all zero.

We now calculate p. The dimension of € (", -r) is given by [3; p. 26]

€0
(r-Dp-1)+0oy/2+ 2o [ - 1/k)r/2],
i=1

where p is the genus of T, o0g is the number of inequivalent parabolic cusps, eg is
the number of inequivalent elliptic vertices in a fundamental region, and k; is the
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order of the i-th elliptic vertex. The bracket [u] denotes the greatest integer func-
tion. In our case we obtain the number

1+@m-s-2)r/2+ 2 [(1-1/k)r/2].

i=1
Furthermore, it is known [8] that the dimension of (T, -r), where
¢*(r, -r) = 8°(T, -r) + #(T, -1)

is n - s, Thus
(3.4) p=1+@-s-2r/2+ 2 [(1- 1/k;)r/2] - (n - s).
i=1

In counting the zeros N = N(T", -r) of a form f € €+ (", -r) in a fundamental re-
gion R certain conventions are necessary for counting zeros which lie on the bound-
ary. We have already mentioned that the zero at a parabolic cusp is measured in
the appropriate local variable (see (2.2)). If f has a zero at an interior point of a
side of R, then f also has a zero of the same order at the corresponding point of the
paired side of R. We agree to count only one of these zeros. If f has a zero of
order m at an elliptic vertex of order k, then we agree to count m/k in N(T", -r).
At the points of an accidental cycle f has the same order; we agree to count only
one of these orders in N.

Ford [2; p. 114] gives the formula N=(n - 1 - = 1/k)r/2 for a group which pos-
sesses a fundamental region bounded by 2n sides. The sum X 1/k extends over the
orders of the cycles, k = 1 for an accidental cycle, and k > 2 for an elliptic cycle.
In our case we find that -

' s
(3.5) N = N(T, -r) = (n -2-27 1/ki)r/2.
i=1

At an elliptic fixed point of order k in R an automorphic form of dimension -r
has a zero unless k divides r/2 and the order m of this zero satisfies the congru-
ence (r/2+ m)/k=0 mod 1 [2; p. 110]. Suppose

r/2=m; modk;, r/2=m, modk,, ***, r/2=m_ modk_
(0<m; <kj for j=1, 2, <, s).

Then & has a zero of order at least (kj - mj/k; at the elliptic fixed point of R of
order kj (1< j< s).

We have accounted for
5
(3.6) p=n0+n—s—1+z>(ki—mi)/ki
i=1

zeros of @ at the elliptic vertices and parabolic cusps of R. By assumption p < N.
We now show that this is incompatible with (3.3). Consider the equality
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N—p:(n—Z-E 1/ki)r/2-n0-n+ s+1-2 (k; - m;)/k;.

i=1 i=1

We write ng = 4 + 1+ mgy (mg > 0) and substitute from (3.4); then

N-p=rs/2-(x/2) 2 (1/k;) - 1 -my - 22 [(1 - 1/k)r/2] - 23 (k; - m;)/k;.
i=1 i=1

i=1
We see from the definition of m; that
(r/2)(1 - 1/ky) - [( - 1/k)r/2] - (&; - my)/k; = 0
for each i=1, 2, ---, s. Thus
N-p=-1-mg (mg > 0),

which is a contradiction. This completes the proof.

Added in proof. It has come to the author’s attention that the results of this
paper are covered by a paper of Hans Petersson, Uber Weierstrasspunkie und die
expliziten Darstellungen dev automovphen Formen von veelley Dimension, Math. Z.
52 (1949), 32-59. He proves that on a discontinuous group of genus g a basis for
the cusp forms of dimension -r can be chosen from the first ¢ + g Poincaré series.
There is no restriction that r even be integral or that the group be zonal.
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