ON ε-MAPS OF POLYHEDRA ONTO MANIFOLDS

Aristide Deleanu

The compact metric n-dimensional absolute neighborhood retracts which may be mapped with arbitrarily small counter-images onto manifolds have been studied in [1] and [2]. The present note deals with polyhedra which possess the mentioned property.

By a closed manifold we mean a compact, connected, locally Euclidean Hausdorff space; no triangulability assumption is made. By $H^q(X; \mathbb{Z}_2)$ we denote the q-th Čech cohomology group of the compact space X with the group of integers mod 2 as coefficients. If $\epsilon > 0$, a continuous map f of a compact metric space X into another space Y is called an ϵ -map provided the set $f^{-1}(y)$ has diameter less than ϵ for each $y \in f(X)$.

THEOREM 1. Let X be a compact n-dimensional polyhedron such that for every $\varepsilon > 0$ there exists an ε -map of X onto a closed n-dimensional manifold (depending on ε). Then X is a closed pseudo-manifold.

Proof. By Theorem 3.1 of [2], there exists a $\sigma = \sigma(X) > 0$ such that every closed subset A of X for which diam $A < \sigma$ separates X if and only if $H^{n-1}(A; \mathbb{Z}_2) \neq 0$.

Consider an arbitrary k-dimensional simplex T^k of X with k < n, and let T^j be a simplex of maximum dimension among the simplexes which have T^k as a face. The dimension of T^j being j, assume that j < n. If x is the barycenter of T^j and S is a (j-1)-dimensional sphere centered at x, of radius less than $\sigma/2$, and contained in the interior of T^j , S separates X; and at the same time $H^{n-1}(S; Z_2) = 0$, which is absurd. Consequently, each k-dimensional simplex of X with k < n is a face of at least one n-dimensional simplex of X.

Suppose now a (n-1)-dimensional simplex T^{n-1} of X is a face of ν n-dimensional simplexes of X, T_1^n , ..., T_{ν}^n , with $\nu \geq 3$. Let x be the barycenter of T^{n-1} ; and let S be an (n-1)-dimensional sphere centered at x, of radius less than $\sigma/2$, and contained in the union of T^{n-1} and of the interiors of T_1^n and T_2^n . As is easily seen, any two points of X - S may be joined by a path contained in X - S, and at the same time $H^{n-1}(S; \mathbb{Z}_2) \neq 0$, which is absurd.

Assume T^{n-1} is a face of a single n-dimensional simplex T^n of X. Let E be a (n-1)-dimensional hemisphere centered at x, of radius less than $\sigma/2$, and contained in the union of T^{n-1} and of the interior of T^n . Then X - E is not connected, and $H^{n-1}(E; \mathbb{Z}_2) = 0$, which is again impossible.

Hence each (n-1)-dimensional simplex of X is face of exactly two n-dimensional simplexes of X.

According to Corollary 4.2 of [2], X has the homotopy type of a closed n-dimensional manifold. Hence $H^n(X; Z_2) \approx Z_2$; and, by [4, p. 89], any two n-dimensional simplexes of X may be joined by a sequence of alternate n and (n - 1)-dimensional simplexes, each of which is incident to the following one. This completes the proof of the theorem.

Received April 10, 1963.

THEOREM 2. Let X be a compact 3-dimensional polyhedron such that for every $\varepsilon > 0$ there exists an ε -map of X onto a closed 3-dimensional manifold (depending on ε). Then X is a closed manifold.

Proof. Since X has the homotopy type of a closed 3-dimensional manifold [2], its Euler characteristic is zero. On the other hand, according to Theorem 1, X is a closed pseudo-manifold and may therefore be obtained from a 3-cell by identifications on the boundary. Hence we may apply Theorem I of [4, p. 208], to conclude that X is a closed manifold.

Remark 1. Theorem 2 was conjectured independently by I. Bucur and V. Poenaru.

Remark 2. T. Ganea has shown [2] that any 2-dimensional compact absolute neighborhood retract X such that there exists for each $\epsilon > 0$ an ϵ -map of X onto a closed surface is necessarily a closed surface. On the other hand, he has produced [3] an example of a compact 3-dimensional absolute neighborhood retract which may be mapped with arbitrarily small counter-images onto the 3-dimensional sphere but which fails to be a manifold. Hence the triangulability assumption made on X in Theorem 2 cannot be dropped.

REFERENCES

- 1. A. Deleanu, On spaces which may be mapped with arbitrarily small counter-images onto manifolds, Bull. Acad. Polon. des Sciences, Série des Sciences mathématiques, Astronomiques et Physiques, 10 (1962), 193-198.
- 2. T. Ganea, On ε -maps onto manifolds, Fund. Math. 47 (1959), 35-44.
- 3. ——, A note on ε -maps onto manifolds, Michigan Math. J. 9 (1962), 213-215.
- 4. H. Seifert and W. Threlfall, Lehrbuch der Topologie, B. G. Teubner, Leipzig, 1934.

Institute of Mathematics R. P. R. Academy Bucharest, Roumania