FACTORS OF N-SPACE

Kyung Whan Kwun

1. INTRODUCTION

Bing [2] showed that a certain locally bad 3-gm is a cartesian factor of E⁴. Curtis and Wilder [5] showed that the space of Bing, although pathological, is nevertheless locally like E³ in the sense of homotopy. Raymond [8] proved that every 3-dimensional cartesian factor of E^4 is necessarily locally like E^3 in the sense of homology. Later, Rosen [9] used Bing's construction to show that there exists a nowhere euclidean cartesian factor of E4. However, it follows easily from our result [7] that his space is a homotopy manifold. It was Curtis [4] who first showed that there exists a cartesian factor of E4 that is not a homotopy manifold, and who thus answered in the negative a question raised in the original draft of [7]. By constructing a certain pseudo-isotopy of Eⁿ⁺¹, by the methods of [2], Andrews and Curtis [1] recently showed that if one shrinks an arc in Eⁿ to a point and then multiplies by the line, then the resulting space is E^{n+1} . In view of [10], this proposition enables us to obtain results similar to those of [9], for all dimensions greater than 2. Furthermore, we can construct the space so that no open subset of it is locally like Eⁿ in the sense of homotopy, and we can replace the construction and argument of [9] by simpler ones. In particular, our construction is similar to one in our earlier work [6]. We also remark that the technique of the present work gives the affirmative answer to a question raised in [6] with the proviso that the construction should be careful.

2. A CERTAIN ARC IN En

The following lemma provides us with an arc that we shall use later.

LEMMA 1. For each $n \geq 3$, there exists an arc P in E^n such that for each open set U containing P there exists a simple closed curve C in U - P which is not deformable to a point (that is, whose inclusion map is not null-homotopic) in E^n - P.

Remark. The arc that we shall use must have a property much stronger than non-simple connectedness of the complement. In the following proof of Lemma 1, we assume the reader's familiarity with the construction of Blankinship [3]. The proof mainly describes what particular set of circles should be avoided in constructing the n-cell E of Blankinship. We use the notation of [3].

Proof of Lemma 1. Let y be the simple closed curve on Bd T that is not deformable to a point in E^n - A. Let y_α be the image of y under the global homeomorphism f_α , where $\alpha = i_1 i_2 \cdots i_j$ ($i_p \le k$) denotes any array of appropriate positive integers, and $f_\alpha = f_{i_1} f_{i_2} \cdots f_{i_j}$ as in [3]. Let Y be the sum of the sets y_α . We obtain an arc as described in Lemma 1 by avoiding Y in constructing Blankinship's n-cell E and then applying his method.

207

Received October 25, 1961.

The present work was supported in part by the Air Force Contract AF 49(638)-774 through the University of Michigan.

Throughout this paper, the set-theoretic interior and the boundary of a set A in a space will be denoted by int A and bdy A, respectively, while the symbols Int A and Bd A are reserved to denote the interior and the boundary of a manifold A with a boundary.

For later use, we formulate the result of Andrews and Curtis as follows.

THEOREM 2 (Andrews and Curtis). Let α be any arc in E^n . Then there exists a sequence of compact neighborhoods T_0 , T_1 , T_2 , \cdots of α such that $T_i \subset \operatorname{int} T_{i-1}$ for each i, such that $T_0 \cdot T_1 \cdot T_2 \cdots = \alpha$, and such that the following condition is satisfied:

To each $\epsilon>0$ and each positive integer i there correspond a positive integer N and a uniformly continuous isotopy μ of E^{n+1} onto itself such that

- (1) μ_0 is the identity,
- (2) each μ_t is the identity outside of $T_i \times E^1$,
- (3) μ_t moves no point of E^{n+1} along the w-direction as much as ϵ , where w denotes the (n+1)st coordinates of the points of E^{n+1} , and
- (4) for each w, the diameter of $\mu_1(T_N \times w)$ is less than ϵ .

We shall construct an upper-semicontinuous decomposition G of E^n such that the decomposition space X has the desired property.

3. CONSTRUCTION OF G

Let α be the arc P of Lemma 1, and T_0 , T_1 , \cdots a sequence of compact neighborhoods of α as in Theorem 2. Now let h be a homeomorphism of E^n onto itself. Then Theorem 2 holds, with $h(\alpha)$ and $h(T_i)$ replacing α and T_i , respectively, if we take a sufficiently large N. This is true because h and the identity of E^1 induce a global homeomorphism of E^{n+1} and h is uniformly continuous in T_0 . Let K be a tame n-cell in E^n such that $\alpha \subset \text{Int } K$ (an n-cell D in E^n is called tame if $Cl(E^n - D)$ is homeomorphic to an n-cell minus an interior point). If K' is another tame n-cell and h is a homeomorphism of K onto K', there exists an extension homeomorphism H of h such that E^n is mapped onto itself under H. Hence $H(\alpha)$ in Int K' satisfies Theorem 2. This fact will be used later. Throughout the paper, we use α , T_i , and K exclusively for the sets defined here.

- 1. Let δ_1 , δ_2 , \cdots be a sequence of positive numbers, converging to 0, whose terms are yet to be determined.
- 2. For each positive integer m, let F_m denote the compact subset of E^n consisting of the points x with $\|x\| \le m$. Then $E^n = \Sigma F_m$.
- 3. For each integer m, let $\mathscr{U}^m = \{U_{m1}, U_{m2}, \cdots, U_{mk_m}\}$ denote a collection of open subsets of E^n such that each U_{mi} is the interior of a tame n-cell K_{mi} , $F_m \subset \Sigma U_{mi}$, and each U_{mi} is of diameter less than δ_m .
- 4. Now we want to find homeomorphisms h_{pq} of K onto K_{pq} . We construct $h_{p1}, h_{p2}, \cdots, h_{pk_p}$ simultaneously after all homeomorphisms $h_{p^{\dagger}q}$ (p' < p) have been constructed. For each positive integer m and each integer $k \leq k_m$, we construct an h_{mk} such that the $h_{mk}(T_0)$ (m fixed and $k = 1, 2, \cdots, k_m$) are mutually disjoint and lie outside of the set

$$R_{m} = \sum_{p=1}^{m-1} \sum_{q=1}^{k_{p}} \sum_{r=1}^{\infty} \left[h_{pq}(bdy T_{r}) + h_{pq}(\alpha) + Bd K_{pq} \right] + \sum_{t} Bd K_{mt}.$$

This is possible, since R_m is a nowhere dense compact subset of Eⁿ.

5. Our G consists of $h_{pq}(\alpha)$ and the points not on any of these arcs.

4. PROPERTIES OF G

THEOREM 3. G is upper-semicontinuous, and the decomposition space X is finite-dimensional and contains no open subset that is a homotopy n-manifold.

Proof. A subset of E^n is called *saturated* (with respect to G) if it is the sum of elements of G. The upper-semicontinuity of G and the finite-dimensionality of X are simultaneously proved by showing that each element of G has an arbitrarily close neighborhood U such that U is saturated and bdy U is the sum of degenerate elements of G. If $g \in G$ is an $h_{pq}(\alpha)$, then an $h_{pq}(\operatorname{int} T_r)$ with a sufficiently large r is such a U. If g is a point, let $U_{m,k(g)}$ be an element of $\mathscr U^m$ containing g. Then

$$U_{m,k(g)} - \sum_{p=1}^{m-1} \sum_{q=1}^{k_p} h_{pq}(T_M)$$
,

with sufficiently large m and M, is such a U. Here of course M depends on m.

To prove the last part, suppose V is an open subset of X that is a homotopy manifold. Then for each $x \in V$, there exists an open set V' containing x and such that every loop in V' - x is nullhomotopic. By a theorem of Smale [10], this means that if $U = f^{-1}(V)$, f is the quotient map of G, and g is an element of G in U, then g has a sufficiently close neighborhood U' such that every simple closed curve in U' - g is deformable to a point in U - g. But since the totality of the \mathscr{U}^{m} is a base for the open sets of E^{n} , there exists some $h_{pq}(\alpha)$ in U. Hence we bring about a situation that is contradictory to our construction and Lemma 1.

5. Choices of $\delta_{\mathbf{m}}$ and isotopies in \mathbf{E}^{n+1}

To prove that $X \times E^1 = E^{n+1}$, at least for careful choices of δ_m , we alternate between describing \mathscr{U}^m and describing isotopies in E^{n+1} (compare [9]). Let $\epsilon_1, \, \epsilon_2, \, \cdots$ be a decreasing sequence of positive numbers with a finite \underline{sum} . We shall require that $\delta_m \leq \epsilon_{m-1}$ for $m=2, 3, \cdots$. Let $\delta_1=1$ and construct $\widehat{\mathscr{U}}^1$ and h_{1k} .

- (1-1) By Theorem 2, there exist a uniformly continuous isotopy f_t (0 $\leq t \leq$ 1/2) of E^{n+1} onto itself, and a positive integer N_{I} , such that
 - 1-1-1. f_0 is the identity,
 - 1-1-2. f_t is the identity outside of $\Sigma h_{1i}(T_0) \times E^1$,
 - 1-1-3. f_t moves no point of E^{n+1} along the w-direction as much as ϵ_1 , and
 - 1-1-4. for each w in E¹, the diameter of $f_{1/2}(h_{1i}(T_{N_i}) \times w)$ is less than ε_1 .
- (1-2) Let δ_2 be a positive number such that if D is any set in E^{n+1} of diameter less than δ_2 , then $f_{1/2}(D)$ is a set of diameter less than ϵ_2 and $f_{1/2}(any)$

 $\delta_2\text{-neighborhood of D})$ is an $\epsilon_2\text{-neighborhood of }f_{1/2}(D).$ Using this $\delta_2,$ construct $\mathscr U^2$ and h_{2k} .

(2-1) By Theorem 2, there again exist a uniformly continuous isotopy h_t (0 $\leq t \leq$ 1/4) of $E^{\,n+1}$ onto itself and an integer $N_2>N_1$ such that

- (1) h_0 is the identity,
- (2) h_t is the identity outside of

$$\sum \, h_{\,1\,i}\!(T_{\,N_{\!{}_{\!1}}})\times E^{\,1}\,+\,\sum \, h_{\,2\,i}\!(T_{\,N_{\!{}_{\!1}}})\times E^{1}$$
 ,

- (3) h_t moves no point of E^{n+1} along the w-direction as much as δ_2 , and
- (4) for each w in E¹, the diameter of $h_{1/4}(h_{mi}(T_{N_2}) \times w)$ (m = 1, 2) is less than δ_2 .

Then f_t = $f_1/_2 \cdot h_{t-1}/_2$ (1/2 $\leq t \leq$ 3/4) is a uniformly continuous isotopy of $E^{\,n+1}$ onto itself such that

2 - 1 - 2. $f_t = f_{1/2}$ outside of

$$\sum h_{1i}\!(T_{N_i})\times E^1 + \sum h_{2i}(T_{N_1})\times E^1$$
 ,

2-1-3. $f_{1/2}(E^n \times [w - \epsilon_2, w + \epsilon_2]) \supset f_{3/4}(E^n \times w)$ for each $w \in E^1$, and

2-1-4. for each w in $E^1,$ the diameter of $f_{3/4}(h_{\rm mi}(T_{\rm N_2})\times w)$ (m = 1, 2) is less than $\epsilon_2.$

Continuing in this manner, we find a sequence $\{\,\delta_{\,m}\}$, an increasing sequence of positive integers $N_{\,m}$, and isotopies f_t (1 - $2^{\,l\,-m}\!\le t\le 1$ - 2^{-m}) such that

$$m-1-2$$
. $f_t = f_{1-2}^{1-m}$ outside of

$$\sum_{p=1}^{m} \sum_{q=1}^{k_p} h_{pq}(T_{N_{m-1}}) \times E^1,$$

 $m-1-3. \ \ f_{1-2}{}^{1-m} \left(E^n \times [w-\epsilon_m,\,w+\epsilon_m]\right) \supset \ f_{1-2-m}(E^n \times w) \ \ \text{for each } w \in E^1,$ and

m - 1 - 4. $f_{1-2}^{-m}(h_{pq}(T_{N_m}) \times w)$ is of diameter less than ϵ_m for $p \leq m$.

We let $f = \lim_{p \to 1-2^{-p}} f$. That f is a continuous map of E^{n+1} onto itself, sending each $g \times w$ ($g \in G$, $w \in E^1$) to a point, is verified as in [2]. Using m-1-3, we can also verify that $g \times w$ and $g' \times w'$ are mapped into distinct points under f, if $w \neq w'$. We finally want to show that $g \times w$ and $g' \times w$ are mapped into distinct points if $g \neq g'$. This is clear if some $h_{pq}(bdy T_r)$ separates g and g' in E^n . Otherwise, each of g and g' is contained in only a finite number of $h_{pq}(int T_r)$. Hence there exists an integer N such that if m > N, then

$$f_{1-2-m}(g \times w) = f(g \times w)$$
 and $f_{1-2-m}(g' \times w) = f(g' \times w)$.

This proves that $X \times E^1 = E^{n+1}$. Combining this result with Theorem 3, we have

THEOREM 4. For each $n \ge 3$, there exists an n-dimensional generalized manifold X such that $X \times E^1 = E^{n+1}$ while no open subset U of X is a homotopy n-manifold (in particular, U is not an open n-cell).

Proof. That X is a generalized n-manifold follows from [8] or [11].

If we compactify E^n by adding a point \bar{p} , then $G + \bar{p}$ is an upper-semicontinuous decomposition of S^n . We observe that during the isotopies described above, $\bar{p} \times E^1$ remains pointwise fixed. Hence,

THEOREM 5. Theorem 4 is true with E^{n+1} replaced by $S^n \times E^1$.

Similar theorems and results about the fixed point sets of involutions of certain spaces may also be obtained as in [2] and [9].

REFERENCES

- 1. J. J. Andrews and M. L. Curtis, n-space modulo an arc, Ann. of Math. (2) 75 (1962), 1-7.
- 2. R. H. Bing, The cartesian product of a certain nonmanifold and a line is E⁴, Ann. of Math. (2) 70 (1959), 399-412.
- 3. W. A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276-297.
- 4. M. L. Curtis, Corollary to a proof due to Bing, Abstract No. 571-15, Notices Amer. Math. Soc. 7 (1960), 482-483.
- 5. M. L. Curtis and R. L. Wilder, The existence of certain types of manifolds, Trans. Amer. Math. Soc. 91 (1959), 152-160.
- 6. K. W. Kwun, A generalized manifold, Michigan Math. J. 6 (1959), 299-302.
- 7. ———, A fundamental theorem on decompositions of the sphere into points and tame arcs, Proc. Amer. Math. Soc. 12 (1961), 47-50.
- 8. F. A. Raymond, Separation and union theorems for generalized manifolds with boundary, Michigan Math. J. 7 (1960), 7-21.
- 9. R. H. Rosen, E⁴ is the cartesian product of a totally non-euclidean space and E¹, Ann. of Math. (2) 73 (1961), 349-361.
- 10. S. Smale, A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc. 8 (1957), 604-610.
- 11. R. L. Wilder, Monotone mappings of manifolds, II, Michigan Math. J. 5 (1958), 19-23.

The Seoul National University, Seoul, Korea
The University of Michigan and University of Wisconsin