FACTORS OF N-SPACE

Kyung Whan Kwun

1. INTRODUCTION

Bing [2] showed that a certain locally bad 3-gm is a cartesian factor of E*.
Curtis and Wilder [5] showed that the space of Bing, although pathological, is never-
theless locally like E2 in the sense of homotopy. Raymond [8] proved that every
3-dimensional cartesian factor of E* is necessarily locally like E3 in the sense of
homology. Later, Rosen [9] used Bing’s construction to show that there exists a
nowhere euclidean cartesian factor of E* However, it follows easily from our re-
sult [7] that his space is a homotopy manifold. It was Curtis [4] who first showed
that there exists a cartesian factor of E* that is not a homotopy manifold, and who
thus answered in the negative a question raised in the original draft of [7]. By con-
structing a certain pseudo-isotopy of E*l, by the methods of [2], Andrews and Cur-
tis [1] recently showed that if one shrinks an arc in E™ to a point and then multiplies
by the line, then the resulting space is E*tl, In view of [10], this proposition en-
ables us to obtain results similar to those of [9], for all dimensions greater than 2.
Furthermore, we can construct the space so that no open subset of it is locally like
E™ in the sense of homotopy, and we can replace the construction and argument of
[9] by simpler ones. In particular, our construction is similar to one in our earlier
work [6]. We also remark that the technique of the present work gives the affirma-
tive answer to a question raised in [6] with the proviso that the construction should
be careful.

2. A CERTAIN ARC IN E-

The following lemma provides us with an arc that we shall use later.

LEMMA 1. For eachk n > 3, theve exists an arc P in E™ such that for each
open set U containing P there exists a simple closed curve C in U - P which is
not deformable to a point (that is, whose inclusion map is not null-homotopic) in
E™ - P,

Remark. The arc that we shall use must have a property much stronger than
non-simple connectedness of the complement. In the following proof of Lemma 1, we
assume the reader’s familiarity with the construction of Blankinship [3]. The proof
mainly describes what particular set of circles should be avoided in constructing the
n-cell E of Blankinship. We use the notation of [3].

Proof of Lemmal. Let y be the simple closed curve on Bd T that is not de-
formable to a point in E™ - A, Let y, be the image of y under the global homeo-
morphism f,, where o = i;i, --- i (ip < k) denotes any array of appropriate posi-

tive integers, and fy = f; f;, - fij as in [3]. Let Y be the sum of the sets yy. We

obtain an arc as described in Lemma 1 by avoiding Y in constructing Blankinship’s
n-cell E and then applying his method.
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Throughout this paper, the set-theoretic interior and the boundary of a set A in
a space will be denoted by int A and bdy A, respectively, while the symbols Int A
and Bd A are reserved to denote the interior and the boundary of a manifold A with
a boundary.

For later use, we formulate the result of Andrews and Curtis as follows.

THEOREM 2 (Andrews and Curtis). Lef o be any arc in E®. Then there exists
a sequence of compact neighbovhoods T, T,, T,, --- of & such that T; C int T;j_;
for each i, such that T,-T,-T,--- = &, and such that the following condition is
satisfied:

To each & > 0 and each positive integev i theve corvespond a positive integer N
and a uniformly continuous isotopy u of EPTl onto itself such that

(1) w, is the identity,
(2) each . is the identity outside of T; X El,

(3) ny moves no point of Entl glong the w-divection as much as €, where w
denotes the (n+ 1)st coordinates of the points of E™L, and

(4) for each w, the diameter of u1(Tn X W) is less than €.

We shall construct an upper-semicontinuous decomposition G of E® such that
the decomposition space X has the desired property.

3. CONSTRUCTION OF G

Let o be the arc P of Lemma 1, and T,, T,, --- a sequence of compact neighbor-
hoods of @ as in Theorem 2. Now let h be a homeomorphism of E® onto itself.
Then Theorem 2 holds, with h(a) and h(T;) replacing @ and T;, respectively, if we
take a sufficiently large N. This is true because h and the identity of E! induce a
global homeomorphism of E™*! and h is uniformly continuous in T,. Let K be a
tame n-cell in E™ such that ¢ ¢ Int K (an n-cell D in E® is called fame if
Cl(E™ - D) is homeomorphic to an n-ceil minus an interior point). If K' is another
tame n-cell and h is a homeomorphism of K onto K', there exists an extension
homeomorphism H of h such that E™ is mapped onto itself under H. Hence H(x)
in Int K' satisfies Theorem 2. This fact will be used later. Throughout the paper,
we use o, Tj, and K exclusively for the sets defined here.

1. Let 9,, 6,, --- be a sequence of positive numbers, converging to 0, whose
terms are yet to be determined.

2. For each positive integer m, let F,, denote the compact subset of E2 con-
sisting of the points x with x" < m. Then E™=2XZ Fp,

3. For each integer m, let &™ = {Um1, Umz, ***» Umk_f denote a collection of

open subsets of E™ such that each U, ; is the interior of a tame n-cell K, j,
Fm € ZUpj, and each Uy,; is of diameter less than 6.,.

4. Now we want to find homeomorphisms hpq of K onto Kpq. We construct

ose i 3 1
hy,y, hpp, o, hPkp simultaneously after all homeomorphisms h., (p' < p) have

been constructed. For each positive integer m and each integer k < k,,, we con-
struct an h,,x such that the h ;1 (Tg) (m fixed and k =1, 2, ---, k,,)) are mutually
disjoint and lie outside of the set
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m-1 P oo
= Z=) 2 Zz) [ (bdy T,) + hpq(oe) + Bd KPq] + Zt) BdK .

This is possible, since R, is a nowhere dense compact subset of E".

5. Our G consists of hpq(a) and the points not on any of these arcs.

4. PROPERTIES OF G

THEOREM 3. G is upper-semicontinuous, and the decomposition space X is
finite-dimensional and contains no open subset that is a homotopy n-manifold.

Proof. A subset of E™ is called safurated (with respect to G) if it is the sum of
elements of G. The upper-semicontinuity of G and the finite-dimensionality of X
are simultaneously proved by showing that each element of G has an arbitrarily
close neighborhood U such that U is saturated and bdy U is the sum of degenerate
elements of G. If g € G is an hpg(a), then an hpqg(int T;) with a suff1c1ent1y large
r issucha U. If g is a point, let Up, x(p) be an element of ™ containing g.
Then

m-1 kp

Um,k(g) - szl qE=1 hpq(TM) ’

with sufficiently large m and M, is such a U. Here of course M depends on m.

To prove the last part, suppose V is an open subset of X that is a homotopy
manifold. Then for each x € V, there exists an open set V' containing x and such
that every loop in V' - x is nullhomotopic. By a theorem of Smale [10], this means
that if U = £~3(V), f is the quotient map of G, and g is an element of G in U, then g
has a sufficiently close neighborhood U' such that every simple closed curve in
U' - g is deformable to a point in U - g. But since the totality of the @™ is a base
for the open sets of E™, there exists some hpq(a) in U. Hence we bring about a
situation that is contradictory to our construction and Lemma 1.

5. CHOICES OF &_, AND ISOTOPIES IN E"*!

To prove that X X El - En+l at least for careful choices of 6,,, we alternate
between describing ™ and descr1b1ng isotopies in E™*! (compare [9]). Let
€, €5, *** be a decreasing sequence of positive numbers with a finite sum. We shall
require that dm< e€m-1 for m= 2, 3, ---. Let 6, =1 and construct %! and h;;.

(1-1) By Theorem 2, there exist a uniformly continuous isotopy £, (0 <t < 1/2)
of EP*l onto itself, and a positive integer N,, such that

f, is the identity,
ft is the identity outside of = h;;(Ty) x E!,

1-
1-
1-3. f, moves no point of Entl along the w-direction as much as €, and
1-

sbcomb-l

1-
1-
1-
1- for each w in E!, the diameter of fl/z(hli(TNl) X w) is less than g,.

(1-2) Let 6, be a positive number such that if D is any set in Entl of diameter
less than 9d,, then fl/z(D) is a set of diameter less than &, and f,,(any
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6,-neighborhood of D) is an g,-neighborhood of fl/z(D). Using this 6,, construct
2 and th'

(2-1) By Theorem 2, there again exist a uniformly continuous isotopy h;
(0 <t < 1/4) of En*l onto itself and an integer N, > N, such that

(1) h, is the identity,
(2) h, is the identity outside of

(3) hy moves no point of Ent! along the w-direction as much as 9J,, and
(4) for each w in E!, the diameter of h1/4(hmi(TN) Xw) (m =1, 2) is less than
0,.

Then fy=1f1/,-hy 1/, (1/2 <t < 3/4) is a uniformly continuous isotopy of En+!
onto itself such that

2-1-2. f;,= f.l/z outside of

2-1-3. f) /) (E"x[w -2, w+g2]) D f3/4(E" X w) for each w € E?, and
2-1-4. for each w in E’, the diameter of f3/4(h,;(Ty,) X W) (m =1, 2) is less
than ¢,.

Continuing in this manner, we find a sequence {6}, an increasing sequence of
positive integers N, and isotopies f; (1 - 21-m< t < 1 - 2-m) guch that

m-1-2. ft = fl-zl om outside of

Py

P

1
El hpq(TNm-l) X B s
q:

22
p=

1

m-1-3. £ ;, (E"Xx[w-e,w+e])Df

(E"X w) for each w € El,
1-2 m

1-2-
and

m-1-4, fl _z'm(hpq(TNm) X w) is of diameter less than ¢, for p < m.

We let f = limP f1 »-P That f is a continuous map of E™*! onto itself, sending

each gX w (g € G, w € E') to a point, is verified as in [2]. Using m-1- 3, we can
also verify that g X w and g' X w' are mapped into distinct points under f, if w % w'.
We finally want to show that g X w and g' X w are mapped into distinct points if

g # g'. This is clear if some hpq(bdy T,) separates g and g' in E®. Otherwise,
each of g and g' is contained in only a finite number of hp q(int Tr). Hence there
exists an integer N such that if m > N, then

fl_z—m(g Xw) =flgxw) and £ mlg' X w) = f(g' X w).

This proves that X X E! = gotl, Combining this result with Theorem 3, we have
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THEOREM 4. For each n > 3, there exists an n-dimensional generalized
manifold X such that X X El - B2t while no open subset U of X is a homotopy n-
manifold (in particular, U is not an open n-cell).

Proof. That X is a generalized n-manifold follows from [8] or [11].

If we compactify E® by adding a point p, then G + p is an upper-semicontinuous .
decomposition of S™. We observe that during the isotopies described above, p X E?!
remains pointwise fixed. Hence,

THEOREM 5. Theovem 4is true with EPT1 yeplaced by s* x EL.

Similar theorems and results about the fixed point sets of involutions of certain
spaces may also be obtained as in [2] and [9].
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