DERIVATIONS AND EMBEDDINGS OF A FIELD
IN ITS POWER SERIES RING, II

Nickolas Heerema

1. INTRODUCTION

Let F be a field of characteristic zero, and let 7 be a derivation on F with
values in F. Let F[[x]] be the power series ring in x over F. The mapping

Z m (a) x! (a2 € F)

i=0

is an isomorphism of F into F[[x]]. The familiar relation

m™(ab) = 2J Cn’ini(a) ™ -1(p)
i=0

assures that products are preserved. The above example of an embedding of F in
F[[x]] is a special case of a theorem of the author’s [2, Theorem 4'] which exhibits

a biunique correspondence between embeddings of F in F[[x], -+-, x, ]] and sequences
of derivations of F into F. The object here is to generalize this result to the case
with characteristic p (Theorem 1). The generalization is then used to investigate
the question of extending an embedding.

We begin with some definitions. The symbol F[[x;, -+, x,]] represents the
power series ring in n variables xi, :-+, X, over F. Let £ denote the natural map
of F[[x1, -**, xn]] onto F as residue field. An embedding of F in F[[x,, -+, x,]] is
a field F' = ¢(F), where ¢ is an isomorphism of F into F[[x, -, x,]] such that ¢
maps onto all of F. This is equivalent to the condition that ¢ can be extended to an
automorphism on F{[x, -, x,].

Roman capital letters I and J will always denote n-tuples of non-negative inte-
gers, $* the set of all such n-tuples, and 4 the set of all such n-tuples save
Q= ((), .o, 0).

An embedding sequence of F is a set of mappings {7-11} & Wwhose domain is F,
whose range is a commutative ring R containing F, and which satisfy the followmg
conditions for all I € 4 and all a and b in F.

(1) \ ?rl(a +b) = 1_r1(a) + ﬁl(b) ,

(2) 1_r1(ab) = E 1—r3(a) ;TI_J(b) .
J<1

Here, J <1 if each component of J is less than or equal to the corresponding com-
ponent of I. The n-tuple I - J is obtained by component-wise subtraction, and er is
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the identity map. Henceforth, mappings said to be orn F are those with F as range
and domain, whereas mappings of F, as above, have domain F and range R.

Given an embedding F' = ¢(F), where

#(a) = %* aIxI xl= xlll ---xtln, where I=i;, -+, i),
1€

then the sequence of mappings {7} ¢, where m(ag) = aj, is an embedding sequence
on F. Conversely, given an embedding sequence {7j}¢ on F, the mapping ¢ given
by ¢(a) = Z1cg * 711(a) x! is an isomorphism of F into F[[x1, --+, Xp]]. This corre-
spondence between embeddings and embedding sequences is biunique.

H. Hasse and F. K. Schmidt [1] first noted the connection between embedding se-
quences, which they called differentiations, and isomorphisms. In an adjunct to [1],
Schmidt proves Theorems 2 and 3 of the present paper, on the extension of an em-
bedding sequence of F to one of F(t), for the case n = 1, by an approach entirely
different from that used here.

If F has characteristic zero and {7;}g is a sequence of derivations on F,
then the mappings 7; of an embedding sequence on F can be obtained as simply
described symmetric polynomials with rational coefficients in those ny for which
J < I. Similar functions of the 71 also yield the original derivations [2, Relations
(5') and (7')]. The case where the characteristic is p is quite different. Here there
exists no similar functional relationship between derivations and embedding map-
pings. This fact can be demonstrated by assuming n = 1, p = 3, and attempting to
describe 74 in terms of 7, m,, and a third derivation.

2. EMBEDDINGS OF F IN F[[x;, -+, x]]

The symbol [j, I] represents the set of all ordered partitions of I into j sum-
mands from 4%, |I] denotes the largest integer in I, and kI (k an integer) repre-
sents the n-tuple obtained by multiplying each component of I by k. Throughout this
section we assume that F has characteristic p.

LEMMA 1. If {m}g is an embedding sequence on F, then for alll and J in ¥
such that |J| < p, we have

@ 7io1(@®) = [Fr@)P
and
(4) ‘ . ;TP]H_J(aP) =0.

Proof. By condition 2, we have

(5) (aP) = 22 71, (@) - T _(a) .
TrpI+J : (Iln""]‘p) E[p,pI+J] nIl : WIP :

Each term on the right side of (5) occurs (r;, -I-)-, ry) times, where the r; repre-
sents the multiplicities of the distinct Ij occurring in I, ---, IP. Clearly, if J # Q,

P
p divides (ry, -, rP); and if J = Q, the only term with non-zero coefficient is
[1rI(a)]P, in which case the coefficient is one.
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Let S be a p-basis for F. (For a discussion of p-bases and derivations, see
[3].) Let & represent the set of all functions f whose domain is the cartesian
product of & and S and whose range is R. It is well known that there exists one
and only one derivation of F with prescribed images for the elements of a p-basis.
Thus, with each f € # there is associated a biuniquely determined sequence of
derivations {m1}¢ given by the condition =y(e) = f(I, €) for all e in S. In the proof
of Theorem 1, we shall show that f also biuniquely determines an embedding se-
quence {m1}g Dby the condition = (e) = £(I, e) for all e in S.

THEOREM 1. Let {m}g be a sequence of derivations of the field ¥ and let S
be a p-basis for F. There exists a unique embedding sequence {m1}g = €{m1}g of
¥ which satisfies the condition.

(6) mi(e) .= my (e)

for all e €S and 1 € . Moveover, the mapping € is a one-to-one corvrespondence
between the set of all sequences of derivations of ¥ and the set of all embedding se-
quences of F.

Proof. If the sum of the integers in I is 1, then 7y is a derivation. Proceeding
by induction, we assume the theorem to hold for sequences {7TI}I< J and sequences

{’“1}1<J

Let 73 be defined on FP, the subfield of pth powers in F, by (3) or (4), which-
ever applies. Conditions (1) and (2) are then satlsfled by {'ITI}I<J’ on FP., Let
ny(e) =ny(e) forall e in S, If a = a}l’el1 e1 , Where the e; are different ele-
ments of S and 0 < n; < p for each i, we define

(7) my(a) = 2 my, (af) 7, (e1) -+ mp_(es)
(IO ’ "':Ir) E[r'"]- ,J]

where r =nj;+ - + ng and each e; appears n; times in the product. The repre-
sentation of a in the above form is unique except for insertion or deletion of factors

e?; such factors do not change the right side of (7). Thus the definition is unambigu-
ous.

CONTENTION 1. Relatzon (2) holds for a as above and b = b S ersns, whevre
n;+m;<p,fori=1,-

This is easily verified because of the structure of the right side of (7) and the
induction assumption.

CONTENTION 2. Equation (7) vemains valid even if the conditions n; < p are
dropped.

Proof of Contention 2. From Contention 1 it can be seen that Contention 2 wili
follow if we can prove that, for each e in S and each m = pq + n with 0 <n <p, we
have

(8) 75 (ePat™) = 2 my (€) -7y (e);
ﬂJ ° (Il’---,Im)G[m’J] 1"11 ) ‘”Im °

that is, we must show that
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(9) Z s ( qp) ( )“.__ )
(I0,**,In) €[n+1,7] Trp\® ™/ My (€ ”In(e

equals the right side of (8). But 'Trlo(eqp) was defined by (3) or (4) in the case Iy = J;
and by the inductive assumption, 1'110 satisfies (2) when Iy < J. By the proof of

formulas (3) and (4) (when Iy = J) or by the generalization of (2) to products of more
factors (when Iy < J), we see that

(10) g (e9P) = 2z mp (€) -7y (e).
"o (11,5 Iqp) €[ ap, To] 1 Map™

Substitution of (10) into (9) gives the right side of (8), thus proving Contention 2.

It now follows easily that (2) holds for all monomials a and b. Define 75 for
sums of monomials by (1). This proves the existence of at least one 73 satisfying
the conditions of Theorem 1. But (7) is a consequence of (2), and the definition of
75(a}) follows from Lemma 1; therefore 7y is unique. This completes the proof of

Theorem 1. (The author is indebted to the referee for suggesting a simplification of
the original proof.)

3. EXTENSIONS OF EMBEDDINGS

Given an embedding of F in F[[x), -+, Xp]], in how many ways can we extend this
embedding to an embedding of a simple extension F'= F(t) in F[[x1, ***, xn]] ? This
question is answered in terms of embedding sequences by the following. Let t be an
element in some containing field of F.

THEOREM 2. If t is transcendental over F and {uI} g is any set of elements in
in F(t) indexed as indicatled, then theve exists one and only one extension of a given
embedding sequence {1}y on F to an embedding sequence {m'}g on F(t) such
that mp(t) = u.

Proof. Clearly, if the extension {71'} g4 exists, it is unique. If F has charac-
teristic p, the existence of {1?1'} g follows from Theorem 1 and the fact that the ad-
junction of t to a p-basis S of F yields a p-basis for F(t).

If F has characteristic zero, we observe, using the notation of [1], that each
derivation #j' of the sequence D'{7'} g 1is an extension of the corresponding deri-
vation =1 in the sequence D'{%I} &+ Next we observe the well-known fact that if
u € F(t) and 7 is a derivation on F, there exists one and only one extension 7' of 7
to F(t) such that 7'(t) = u. We extend 7, by choosing 7'(t) to be

up - 2 [m]@® .
(r,I):r>1 (x,D)

The resulting sequence of derivations {1r1'} ¢ on F(t) yields an embedding sequence
€{n'} g with the desired properties.

THEOREM 3. If F(t) is a separable algebraic extension of F, an embedding se-
quence { 1—11} g on ¥ can be extended, and in only one way, to an embedding sequence
{m'}g on F(t).



DERIVATIONS AND EMBEDDINGS OF A FIELD, II 133

Proof. 1f F has characteristic p, the result follows from the fact that if S is a
p-basis for F it is also a p-basis for F(t). If F has characteristic zero, we appeal
to the fact that a derivation 7 on F has one and only one extension to F(t).

THEOREM 4. If F has characteristic p and t is a root of the irvveducible equa-
tion xP - a = 0 over F, an embedding sequence {m } g on F can be extended to an
embedding sequence {m1'}g on F(t) if and only if n,;(a) € FP(a) for all 1 and
ny(a) = 0 for all J not of the form pl. If these condi?z'ons are fulfilled, the extension
is unique and

(11) i) = [ (@)]/P.

Pyoof. The “only if” portion of the theorem follows directly from Lemma 1, as
does condition (11) if the extension exists.

_ Thus, assuming that 1?1(3) satisfies the conditions of the theorem, we define
{7y on F(t) as follows.
159

a) m'(c) =m(c) for c in F.

b) i (%) = [7p1@)]/P  for 0<r <p.

c) mp(ct®) = 2 7;(c)mp_;(t¥) for c in F and 0 <r <p.
J<1

d) ?rll(c0+ c t+ -+ cp_ltp'l)

= mp(eg) + mt(ey t) + -+ Wpi(e, -1y for ¢; in F.

The mapping 71' as defined is a single-valued additive mapping of F(t) into F(t).
we need to verify condition (2). First we note that, for positive integers r and s
less than p,

|

T ap @) ap_t%) = 2 [7,;a0]Y P70 5@ /P
<1 <1

(12)

Z [Fps@d Ty g)@9]/P = [wyarts)] /P,
pJ<pI

If r + s <p, then (12) is equal to w(t**S). If r + s = p + k, then (12) is

2. [mp7 @) 1/p [WP(I_J)(ak)]l/P = 20 my@) 7y {(tH = 7atH.

pI<pl <1

From these observations it follows directly that condition (2) is satisfied by the

sequence of mappings {7'}s on F(t). The uniqueness of the extended embedding
sequence is immediate.

We conclude with a proposition which follows from Theorems 2 and 3, by a
standard proof based on Zorn’s Lemma.

COROLLARY. If K is separably genevated over F, then every embedding se-
quence on F can be extended to an embedding sequence on K.
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