RELATION ALGEBRAS AND PROJECTIVE GEOMETRIES

R. C. Lyndon
1. INTRODUCTION AND SUMMARY

Extension of an idea of Jonsson [1] provides a method for deriving consequences
in the algebraic theory of binary relations, as set forth by Tarski [5], from certain
familiar facts of projective geometry.

An algebra of velations is a family of binary relations, or sets of ordered
couples, over some domain D, that is closed under the Boolean operations, that con-
tains the identity relation I on D, and with each relation X contains its converse
X! and with each pair of relations X and Y their (relative) product XY. Tarski
[5] gave a list of axioms that are satisfied by every algebra of relations, and de-
fined a relation algebra to be any abstract algebraic system satisfying these axioms.
The author showed [3], by a rather complicated example, that not every relation
algebra is isomorphic to an algebra of relations. Jonsson [1] showed how to con-
struct relation algebras from a projective plane, which are not representable if the
plane does not satisfy Desargues’ theorem; he thus provided a more natural con-
struction for relation algebras that are not isomorphic to any algebra of relations.
In fact, Jonsson proved more; in particular, his algebras are all integral: XY = 0
implies X=0 or Y =0.

Jonsson’s construction will be extended here to projective geometries of dimen-
sions d > 1 and orders n > 3; the seemingly trivial case d = 1 turns out to yield
very simple examples of relation algebras not isomorphic to any algebra of rela-
tions.

A problem of Jonsson and Tarski [2] presents the conjecture that every integral
algebra of relations is isomorphic to a relation algebra whose elements are subsets
of a group, with I = {1} and the operations having their usual meanings. It will be
shown that any relation algebra derived from a ‘projective geometry’ of dimension
d = 1 and finite order n > 3 is integral, and that it is isomorphic to an algebra of
relations precisely in case there exists a projective plane of order n, while it is
isomorphic to an algebra of subsets of a group precisely in case n is a power of a
prime. Thus the existence of a projective plane whose order is not a power of a
prime would refute the conjecture of Jonsson and Tarski.

2. DEFINITIONS
We shall be concerned only with a subclass of relation algebras, for which we
shall employ simply the word ‘algebra.” An algebra A is a Boolean algebra equipped
with a commutative and associative multiplication, with neutral element I, that dis-
tributes over union, and which satisfies the further condition

Ic XY ifandonly if XNY # 0

(the symbol C indicates inclusion in the wide sense).
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It follows directly that A is integral. For, if X, Y # 0, then XN X # 0 implies
Ic XX, whence 0# Y = IY C (XX)Y = X(XY), and XY # 0. It follows also that I is
an atom. First, I # 0, since I =0 C 00 would imply 0NO0 # 0. Second, if 0 #JdJ C I,
then INJ # 0 implies I C IJ = J, whence J = I. Further, every homomorphism ¢
between such algebras is a monomorphism. For, if not, some ¢X =0 for X # 0,
whence ¢I C (pX)(¢X) = 0, and the neutral element ¢I of the image algebra would not
be an atom.

A representation of an algebra A is a complete isomorphism A of A onfo an
algebra B of relations over some domain D. A second representation A' of A by
an algebra B' over a domain D' is equivalent to A if there exists a one-to-one map
of D onto D' carrying A into A'. We note that in any algebra of relations in the
present restricted sense, each element is its own converse, that is, each relation is
symmetric. For, if (x, y) € X, then (y, x) € 1, the universal relation on D, whence
(y, x) lies either in X or in the complement X' of X; but (y, x) € X' would imply
(x, x) € INXX' while INXX'"=0, since XNX'=0 implies I ¢ XX', and I is an
atom.

An algebra over a group I' is an algebra B, in the present sense, whose ele-
ments are subsets of I' and whose operations have the usual meanings. Such an
algebra always has its ‘regular representation’ II, under which X C IT' goes into the
relation

H(X) = {(g, h): gx = h for some x € X},

with domain I'. Any isomorphism A of an algebra A with an algebra B over a
group thus induces a representation IIA of A, and we shall speak of A or IIA indif-
ferently as a vepresentation of A over a group.

A geometry G will be defined to consist of a set of poinis, together with certain
subsets, called lines. For axioms we take the following:

(D) theve exists at least one line, and each line contains at least four points;
(I1) each paiv of distinct points p and q lies on a unique line, Pq;

(111) if p, q,and r ave dislinct poinits, and a line meels pq and pr in distinct
points, then il meets qr.

It is clear how to define the dimension d of G, which we shall always assume is
finite. It is well known that these axioms imply that every line has the same number
n + 1 of points, where n, by definition, is the order of G. Axiom I implies that

d> 1 and n > 3; the case n =2 can be accommodated, as noted below, but is un-
interesting. In the case d = 1, which is important in this context, G is nothing more
than a set of n+ 1 > 4 points, with a single line containing all of them.

3. ALGEBRAS DERIVED FROM GEOMETRIES

With each geometry G we associate an algebra A(G). The Boolean structure of
A(G) is determined by defining it to be the algebra of all subsets of the set which
consists of all points of G together with one further element I that is not a point of
G. It will be convenient and harmless to write p and I for the atoms of A(G), rather
than {p} and {I}. If we stipulate that the multiplication in A(G) distribute over
union, then, in order to define the multiplication, it will suffice to specify the product
of each pair of atoms. Letting p, q, r, --- always denote points of G, we do this by
the following rules:
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(1) II=1I, Ip=pl=p, pp=pYI;
(ii) pa=pg-p-q for p#q.

Clearly, for the verification that A(G) is an algebra in our sense, only associa-
tivity requires attention, and this only in showing that (pq)r = p(qr). By commuta-
tivity, the case p = q = r is immediate, and the remaining case for p, q, and r not
all distinct reduces to that where p = q. Now

(pp)r = (puDr=(pr -p-r)ur =pr - p.

Using n > 3, we find that p(pr) = p(pr - p - r) = pr - p, since, for all x C pr - p,
choosing t+# p, r, X, we have tC pr - p - r, and xC pt = pt - p - t. Next, if p, q,
and r are distinct but collinear,

(pg)r = (pq - p - q)r = pqUI,

where each x C pq - r is obtained from some sr - s - r (s # r, x), and the part

r UI of the right member is rr. The result now follows by symmetry. Finally, sup-
pose p, q, and r are not collinear. Then x C (pq)r implies x C sr - s - r for some
SC pq - p - q. Since x lies on rs, which meets pq in s, distinet from p, x is not
p. Thus px, which meets sr in x and sq in p, must, by (III), meet gqr in a point t,
which cannot be any of p, q, r, or X, since no three of these points are collinear.
Thus tc qr -q-r=gqr, and x C pt - p - t = pt C p(qr), showing that (pq)r < p(qr),
and equality follows by symmetry.

This completes the proof that A(G) is an algebra.

It may be of some interest to note that the algebras isomorphic to algebras A(G)
have a simple intrinsic characterization: an algebra A is isomovphic to A(G), for
some geometyry G, if and only if (i) A is complete and atomistic, with move than two
atoms, (ii) pp = pUI for each atom p + 1, and (iii) the univevrsal element is expres-
sible as a finite product in the form 1 = [[(p;U 1), where the p; are atoms.

The last condition is merely a paraphrase of the condition that G have finite di-
mension; with this observation, it is clear that each A(G) has the required proper-
ties. For the converse, suppose an algebra A with these properties is given. We
shall make the set G of all atoms p # I of A into a geometry by specifying as lines
of G all_—ﬁa =pqUpUq for p # q. Axiom III is the easiest to verify: suppose a line
meets pq in q' and pr in r' (we may assume that the five points are distinct). Then
0+#pcCqq' Nrr', whence I C qq'rr' = qrq'r', which in turn implies that q'r'n qr # 0.
For Axiom II it w111 suffice to show that if p, q, and r are distinct, and r C pq, then
pq = pr. Since r C pq is equlvalent to the hypothesm (symmetric in q and r) that
I C pqgr, it will suffice to show that pq c pr. For s cC pq (s # p, q, r), it will suffice
to show that s C pr. Now r C pq and s C pq implies I C pqrn pqgs, hence
q C prn ps, and

I c (pr)(ps) = (pp)rs = (pU Drs = prsUrs;

since I is an atom, and rN s = 0 implies I ¢ rs, it follows that I ¢ prs, whence
s C pr. For Axiom I: By hypothesis, G contains p # q, and hence G contains a
line. If pq is any line, then p # q, and pg # 0 must contain at least one atom r,
which cannot be p or q, since, for example, p C pq would imply I C ppg = qU pq
and either q =1 or p = q. Thus pq contains at least the three points p, q, and r.
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If this were all, we should have pq = r and qr = p, which would give (pg)r =rr = rUl,
different from p(qr) = pp = pUL

[The case of order n = 2 can be accommodated by replacing the condition
pp = p UI by pp = I; the trivial geometries of dimensions d = -1 and d = 0 corre-
spond naturally to the trivial algebras with only one or two atoms.]

4. REPRESENTATIONS

Suppose that the geometry G can be embedded as a hyperplane in a geometry H
of one higher dimension. Let D be the affine space D = H - G. With each point p of
G, associate a relation A(p) on the domain D defined by

Alp)={(x,y):x#y and p €y},

and let A(I) be the identity on D. Then A has a unique extension to an affine repre-
sentation of A(G), that is, to a completely additive homomorphism of A(G) as
Boolean algebra onto a Boolean algebra of subsets of the Cartesian product D X D.

THEOREM 1. Each affine vepresentation of A(G) is a representation, and each
completely additive vepresentation of A(G) is equivalent to some affine vepresenta-
tion.

To show that an affine representation is indeed a representation, it suffices to
show that A(p) A(q) = A(pq). If p = q, two points x and y of D stand in the relation
A(p) A(q) precisely in case there exists z # x, y in D such that both Xz and zy meet
G in p. This will be the case if and only if x and y lie on a common line passing
through p, that is, if x and y stand in the relation A(p) UA(I). If p # q, the relation
holds precisely in case Xp and yq meet in some point z # X, y. This implies that
X # Y, and that Xy meets zp in x and yq in y, and hence meets pq in some point
r C pq - p - q, which gives (x, y) € A(r) € A(pq). Conversely, if (x, y) € A(r), for
some r C pqg, then from r Cc xyNpq (x, v, p, q, r all distinct) it follows by Axiom
III that Xp and yq meet in some point z of D.

To prove that every completely additive representation is equivalent to some
affine representation, we suppose that A is a representation of A(G) over some
domain D, and we show that if D and G are disjoint, then the set H consisting of D
together with the set of all points of G can be made into a geometry which contains
G as hyperplane and for which the corresponding affine representation is exactly A.

Among the lines of H we must count the lines of G; as the remaining lines of H
we take the sets

L(x,'p) = {x} u{p}u {y: (x, y) € AD)},

for all x in D and p in G.

H contains a line, since G does. Each line of G contains at least four points,
by hypothesis, while for the lines L(x, p) this follows from A(p) c A(p)2. Thus
Axiom I holds. Axiom II follows from the observation that L(x, p) = L(y, q) pre-
cisely in the case where p = ¢ and either x =y or (x, y) € A(p); and that, since A
is completely additive, each (x, y), for x # y, is contained in exactly one of the
atoms A(p).

For Axiom IO, it will suffice to show that if A, B, B', C, C' are five distinct
points such that BB' and CC' meet in A, then BC and B'C' meet in some point A’'.
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If all five points lie in G, this conclusion follows from Axiom III for the geometry G.
Otherwise, by symmetry, we assume that neither CC' nor B'C' lies in G. We de-
note by a, a', b, ¢, and d the intersections with G of those of the lines BC, B'C’,
BB', CC', and BC' that do not lie in G.

We use repeatedly the following argument. If X, Y, and Z are noncollinear
points of D, and x, y, and z are the intersections of YZ, X7, and XY with G, then
from

(X, 2) = (X, Y)(¥, Z) e Ay)N A2) Ax) , '

it follows that y € zx and the points x, y, and z are collinear. Applying this to
various triangles of the configuration, and using the fact that collinearity has the
usual transitivity properties in G, we are able to conclude that all the points a, a',
b, ¢, and d actually present are collinear, whence the conclusion follows easily.
The details fall into five cases.

Case 1. None of A, B, B', C, C' is on G. Consideration of the triangles ABC
and AB'C' shows that the triples abc and a'bc are collinear. Then caa' is col-
linear, and (B, B') € A(c) C A(a) A(a'); that is, for some A' in D, (B, A') € A(a) and
(A, B') € A(a'). But then BC = L(B, a) and B C' = L(B', a') meet in A'.

Case 2. A, but none of B, B', C, C', is on G. The triangles BCC' and BB'C'
give acd and a'cd collinear, hence caa' collinear, and the conclusion follows as in
Case 1.

Case 3. B, but none of A, B', C, C', is on G. The triangle AB'C' gives caa'
collinear, and the conclusion follows as before.

Case 4. B and C' are on G, but none of A, C', B' is on G. The triangle AB'C'
gives BCa' collinear, and B'C' and BC meet in a'.

Case 5. B and B', hence also A, are on G, but C, C' are not on G. Then, from
the given collinearity of ABB' we have

(C, C") e A(A)N A(B)A(BY),

and there exists A' with (C, A') € A(B), (A', C') € A(B'), that is, with A' on both
CB and C'B'.

COROLLARY 1.1. If d> 2, or G is a Desarguesian plane, then A(G) is repre-
sentable, and all completely additive vepresentations of A(G) are equivalent.

COROLLARY 1.2 (Jénsson [1]). If G is a non-Desarguesian plane, then A(G) is
not vepresentable.

COROLLARY 1.3. If G is a line of order n, then A(G) is vepresentable if and
only if theve exists a projective plane of ovder n. The number of equivalence
classes of completely additive vepresentations is the number of ways of embedding
G in planes H that are not isomorphic undey some isomovphism keeping G point-
wise fixed.

The case d =1 and n = 6 yields an algebra A with eight atoms, the smallest
known nonrepresentable relation algebra. Explicitly, A has atoms

I: po: pl: "t pﬁ’

with the multiplication table
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II=1, Ip; =p;I=p;j, pijp;j=p;VUIl,

and, for i+ j,

PiPj = U Pk -
k#i,j

5. REPRESENTATIONS OVER A GROUP

THEOREM 2. Let A be an affine vepresentation of A(G) over an affine space
D = H - G such that the translation gvoup T of D is transitive on D. Then A is
equivalent to the vepresentation N' of A(G) over the group T' defined by mapping
each atom p of A(G), consisting of a point p of G, into the set of all translations in
', in the divection p.

To prove this, choose as ‘origin’ any point w of D. Since I' acts transitively
on D and only the identity has fixed points, the map £ from I' into D defined by
Q(g) = w8 is a one-to-one correspondence between I and D. Now (g, h) € A'(p)
means that, in I', h = gk for some translation k in the direction p. And
(Rg, h) € A(p) means that, in D, wg and wh are distinct, and that the line deter-
mined by them in H meets G in p, hence that some translation k in the direction
p carries w8 into w&k = wh, Since the two conditions are clearly equivalent,
carries IIA', corresponding to A' under the regular representation, into A.

COROLLARY 2.1. If d > 2, then every vepresentation of A(G) is equivalent to
a vepresentation over a group.

COROLLARY 2.2. If d=1, and n is mfzmte ov is a power of a prime, then
A(G) possesses 'representatzons over a group.

We shall establish a converse to Corollary 2.2. Let G have dimension 1, and
let A be an isomorphism from A(G) onto an algebra A over a group I'. Define
I'(p) = A(p)U I, for each atom p # 1. From the equation A(p) = A(p)~!, noted in Sec-
tion 3, and the relation (A(p)UI)2 = A(p)U I, it follows that each I'(p) is a group, and,
indeed, a proper subgroup of I'. From the fact that the atoms of A(G) are I and the
p, it follows first that I' is the union of the I'(p), and second that, for p # q, I'(p)
and I'(q) have trivial intersection. Moreover, for p # q, we have

T'(p)T(q) = (A(PUDA@UI) = Alp) A(Q)U Alp)U A(q)U I

U a@)u ap)ua@ui=r.
- T¥#£p,q

LEMMA. Suppose that a group T is the union of a family of proper subgroups
I'; such that, for Ty # T';, T'iNT; =1 while T; I'y=T. Then T is abelian and is
either wztkout torsion ov of prime exponent; moreovefr all the subgroups IT'; are
isomovrphic. -

The family must contain at least fhree subgroups. That the I'; are proper sub-
groups implies that there exist at lgast two. That I';T';=T for T'; # I'; implies that
no I';y is trivial. Therefore a product of two nontr1v1a1 elements from 1" and T
can belong to neither, and hence must lie in a third group of the family.
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The subgroups I'j are normal in I'. If this were not so, some conjugate
gh = g-lgh of an element g # 1 from some I'; would lie in a 'y # I';. Since

=TT, h=h h; for some h; €T;, h;e I';. Then g; = g™l isin Iy, and gl is
J 15 1 J J

in T';. But the latter implies that gj is in I'j as well as in T'j, hence that

g = ghi= 1, and that g = 1, contrary to assumption.

The group IT' is abelian. First, since the I'j are normal subgroups with pair-
wise trivial intersections, elements from different I'; commute. Given any g and
h in I', g will lie in some T';, and h can be written as a product h = h;hy of ele-
ments from I'; and I'y distinct from I';. Since h; and h commute with g, their
product h commutes with g.

Next we show that all the I'; are isomorphic. Given distinct I'; and T'j, choose
a third I') different from both. Since I' is the product of the normal subgroups I j
and I'y, with trivial intersection, I" is their direct product: I' =T'; X I'.. Let 7 be
the canonical projection map from I' onto IT'j with kernel I'x. Since the subgroup
I’; of T has trivial intersection with the kernel I'x of 7, 7 maps I'j one-to-one
into ;. Since also

FJ =ql = 77(1_‘1 X Fk) = Wri,
7 maps I'; onto I';. Thus the restriction of 7 to I'; is an isomorphism of I'; onto
l—'j.
We shall show that, if I" has any nontrivial element of finite order, then all non-
trivial elements of I" have a common prime order. Let I' contain a nontrivial ele-
ment of finite order, hence one of prime order m. This element belongs to some
I';, and therefore each of the isomorphic I'j contains an element of order m. If g
is any nontrivial element of T", it belongs to some I'j, and there exists an element
h of order m in some Ij different from Ij. Now gh lies in some I'y different
from both T'; and I'j. Since g lies in T'j, while gh lies in I'y, it follows that
(ghy@=g™h™ = g™ lies in both I'; and I'y, hence that g™ = 1.

COROLLARY 2.3. For d= 1, A(G) possesses a representation ovev a grvoup
only if n is infinilte ov a power of a prime.

We see this as follows. By virtue of Theorem 1, if A(G) possesses a represen-
tation over a group I', then it must be possible to equip the group I" with the struc-
ture of an affine plane of order n. Hence I' must have order n? and, by the lemma
n? must be infinite or a power of a prime.

’

Finally, Corollaries 1.3 and 2.3 together yield the following.

COROLLARY 2.4. If there exists a finite projective plane whose ovdeyr is not a
power of a prime, then theve exists a finite algebra that is vepresentable, but not
vepresentable over a group.
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