ON THE COMPLETENESS OF TOPOLOGICAL
VECTOR LATTICES

H. H. Schaefer

Nakano [6, Theorem 4.2] has given a theorem which asserts that a topological
vector lattice, under suitable relations between order and topology, is topologically
complete, that is, complete for the unique translation invariant uniformity associated
with its topology. (For basic definitions, see [2] or [3]. Definitions specifically used
in this paper are explained in Section 1.) For the metrizable case, weaker sufficient
conditions have been given, for instance, in [1] and [10]; but the most interesting fea-
ture of Nakano’s theorem (see below, Theorem 2) is that it does not require the
hypothesis of metrizability. The surprising fact is that the theorem derives, roughly
speaking, the convergence of a class of (in general unbounded) filters (namely, the
Cauchy filters) from the order-convergence of a certain family of bounded filters
(namely, the section filters of directed, topologically bounded sets). However,
Nakano’s proof of his theorem contains a gap; it is one of the aims of this paper to
fill that gap (Theorem 1). Also, it is of interest to find general classes of topologi-
cal vector lattices to which Theorems 1 and 2 apply. We exhibit one such class (see
Theorem 3 and the Corollary) that includes all reflexive locally convex lattices.
Goffman [4] has applied Nakano’s theorem to Kéthe spaces. Further, for a certain
class of locally convex lattices, a characterization of the decisive completeness con-
dition of Theorem 2 is given (Theorem 4), and a stronger form of Theorem 2 is ob-
tained.

1. DEFINITIONS

Let L be a vector lattice. A subset A is solid [7]if x € A and |y| < |x| imply
that y € A. If L is also a topological vector space (over the real field), it is said to
be locally solid if the family of all solid 0-neighborhoods forms a neighborhood base
of 0. A fopological vector lattice is a vector lattice and a real topological vector
space which is locally solid. An equivalent property is as follows: K = {x: x> 0}
is a normal cone, and the lattice operations are continuous. (Here, K is normal if
lim ¢ = 0 implies lim[¢] = 0 for every filter ¢ on L [10, (l.a)], where
[¢] = {[F]: F € ¢} with [F] = (F + K)N (F - K). The notion of normality plays a
fundamental role in the theory of partially ordered topological vector spaces; see
[7] to [10].) A locally convex vector lattice is a locally convex Hausdorff space and
a topological vector lattice.

A subset A C L is order-complete if for each directed subset X C A, majorized
in L, sup X exists and is a member of A. (Throughout this paper, “directed” will
mean “directed for <.” The term “bounded” will be used exclusively in its topologi-
cal sense, and “majorized” will be substituted for the common “order-bounded
above.”) A topological vector lattice is locally ovder-complete if there exists a 0-
neighborhood base consisting of solid order-complete sets. Finally, we shall say
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that a topological vector lattice is boundedly ovder-complete if for every bounded,
directed subset X of L, sup X exists.

Let L be a vector lattice that is order-complete (as a subset of itself). A filter
¢ on L is ovder-convergent if ¢ contains a set X, such that both X, and -X, are
majorized, and if

sup (inf X NXy) = inf (sup XNX,).
X e Xed

The common value of these expressions is called the ovder-limit of ¢ [3, p. 28, Ex.
9]. We say that an order-convergent filter converges in a topological vector lattice
L if ¢ converges to its order-limit for the topology of L, that is, if ¢ is finer than
the neighborhood filter of its order-limit.

An ovder-interval in L is a nonempty subset [u, v] = {z: u <x< v}.

The term “complete” (without specification) or “topologically complete” is em-
ployed in its usual meaning for uniformities. What uniformity is meant will gen-
erally be clear from the context.

2. TOPOLOGICAL VECTOR LATTICES

Nakano based the proof of his theorem [6, 4.2] essentially on his Theorem 3.3,
whose proof, however, is insufficient in the nonmetrizable case [6, p. 94]. By prov-
ing the following theorem, which is equivalent to [6, 3.3], we shall fill this gap. The
proof for the metrizable case is included.

THEOREM 1. In every locally ovder-complele topological vector lattice, each
ovder-intevval is a complete uniform space (for the induced uniformity).

Proof. We shall prove the theorem first in the case where the topology of the
vector lattice L in question is metrizable. Let {Vn} be a 0-neighborhood base
consisting of symmetric, solid, and order-complete sets such that V ;7 + V4,1 C V,
for all n. If p, is the gauge of V,, we shall set 7 = {pn} and refer to the topology
with 0-base {V,} as the w-topology. Let [u, v] be an arbitrary, fixed order-
interval in L; to show that [u, v] is complete, it is obviously sufficient to show that
each Cauchy sequence in [u, v] contains a convergent subsequence. Given a Cauchy
sequence in [u, v], there exists a subsequence {xy} such that x,,; - xi € V4 for
every k. Let m be an arbitrary integer (m > k); then

sup Xg - X, = sup (xp-x)< sup |x -xl
kgfgmf k k<f < {7~ *x fem 7~ *x

< ka+1 - xk| + °cc + |xm - xm_1|.

Since (Vi being solid) the last right-hand term represents an element of Vi, it fol-
lows that sup {xp: k <f < m} € X} + V). On the other hand, the set of all these
suprema (m > k) is directed and majorized by v, hence y, = sup{xp: £ > k} isin
X, + V., because V, is order-complete. Dually, it follows that z,_ = inf {x:0> k}

k k k k X
is in x; + V), and consequently y, - z € V, ;. 1y} and {z,} are directed sets
(the former for >); letting y = inf y;. and z = sup z., we obtain y - z € Vi for every
k. It follows that y = z and that lim, x; =y for the n-topology. Since [u, v] is
closed il} L (this is a consequence of the continuity of the lattice operations),
y € [u, v].
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Before taking up the proof for the general, nonmetrizable case, we shall point out
a number of consequences of our assumptions. Recall that a band in an order-
complete vector lattice is a vector subspace which is solid and order-complete as a
subset of L. If N is a band in L, the set of all y € L for which x € N implies
inf(x, y) =0 isaband N' in L; L = N + N' is a direct sum decomposition such that,
if P denotes the projection of L. onto N vanishing on N', one has 0 < P <1 (for the
order induced on the space of linear maps of L into itself). Under the present as-
sumptions, every such P is continuous (a proof of this statement and further relevant
material can be found in [5, Section 2]). Further, let X be an arbitrary directed,
majorized subset of L, and P a projection in L such that 0 < P <I; then
P(sup X) = sup P(X).

Let v denote a neighborhood base of 0 in L, consisting of symmetric, solid,
order-complete sets; let & be the family of all real-valued functions on L, each of
which is the gauge of some V € ¥. By m we shall denote an arbitrary countable sub-
family of & such that the subfamily of ¥ corresponding to 7 is a neighborhood
basis of 0 for a topology (not necessarily a Hausdorff topology) which is compatible
with the vector space structure of L. Let II be the set of all these 7; it is easy to
establish that II is nonempty and directed under inclusion. Since the intersection of
any number of bands in L is a band, the set N;r = n {p‘1 (0): p € 7} is a band. De-

note by N; the band in L. complementary to Ny, and by P, that projection of L onto
N which vanishes on N,'T It is not difficult to establish that 7 C p implies P, < P

(in the above sense). If n {p~2(0):pe @ }, N, is the band complementary to

Ny, and P, is the assomated projection onto N,, then P, = sup {Pﬂ. 7 € I}, and
P, =1 if and only if the topology of L is a Hausdorff topology.

We show now that every order-interval is complete in L. Since
[u, vl=u+ [0, v - u]

and X — u + X is a uniform automorphism of L, it is sufficient to show that every
order-interval [0, v] is complete (v > 0). Let ¢ be an arbitrary Cauchy filter in
[0, v]. Since Py (r € II) is uniformly continuous, the image ¢, of ¢ under P, isa
Cauchy filter base for the restriction of the 7-topology to N;. Since, by the defini-
tion of N7, that topology is a Hausdorff topology (hence metrizable), it follows from
the first part of the proof that there exists a unique z; € Ny such that 7-lim ¢4 = z.
If pD 7, then also p-lim ¢; = z;, since ¢; has a unique p-limit in N, that must be
identical with z;. Since the positive cone in N; is closed for the p-topology when-
ever p D 7, it follows that z; € [0, v]. Moreover, 7 C p implies Py < P, and hence,
by a s1m11ar argument, z; < z Thus, 1z4: 7 € H} is directed and majorized in L
(namely, by v); let u = sup {z-,; mE II} It follows from the remarks in the preced-
ing paragraph that for each fixed 7 € II, Pjyu = sup {Pﬂ Zpip € I}. But since

Py Pp = Py for all p> 7 (see [5, Section 2]), it follows, whenever p O 7, that

P 7%p = P, (p-lim qbp) = p-lim P_ qbp = p-lim ¢, = 7-lim ¢ = z;

Hence sup {P;z,: p € I} = sup {P_ Z,i PO m} = z; for w fixed, and therefore
Pjru = z4. Our fpnal assertion is that u is a limit point of ¢ for the given topology
on L; this is equivalent to saying that u is a limit point of ¢ for every m-topology
(m € IT). Since for each m, L = N; + N}, is a topological direct sum, and since every
p € m vanishes on Nz, u is a 7-limit point of ¢ if and only if Pju is a #-limit
point of P, ¢ = ¢,; but we have even 7-lim ¢4 = zgq = P;u, as shown. Clearly, u is
the unique limit in N, of the projection ¢, = P,¢; the set of all limit points of ¢ in
L is u+ N;. The proof of the theorem is complete.
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THEOREM 2 (Nakano). Let L be a topological vector lattice which is both lo-
cally ovder-complete and boundedly ovder-complete. Then L is topologically com-
plete.

We shall not reproduce the details of Nakano’s proof; they can be found in [6, Sec-
tion 4]. Roughly, the proof proceeds as follows: If ¢ is a Cauchy filter, then ¢*,
the image of ¢ under x — x*, is a Cauchy filter base; it is enough to show that ¢+
converges. Let ¢} denote the Cauchy filter base which is the image of ¢+ under
y — inf (%, y), for arbitrary fixed x > 0; by Theorem 1, ¢} has a unique limit ay,
if L is assumed to be a Hausdorff space. The crux of the proof then consists in
showing that the directed set {ax: x > 0} is (topologically) bounded. Then, by as-
sumption, sup {ax: x > 0} exists, and it is shown to be the limit of ¢*. The case
where L is not a Hausdorff space is settled without difficulty.

3. LOCALLY CONVEX VECTOR LATTICES

In this section, we assume that the reader is familiar with the basic theory of
locally convex vector spaces. Recall that a locally convex space E is a disk space
(espace tonnelé) if every disk in E, that is, every convex, closed, absorbing subset
of E, is a neighborhood of 0. The dual E' of E is the vector space of all continuous
linear forms on E; the strong topology on E' is the topology of uniform convergence
on all bounded subsets of E (the bounded-open topology). Finally, if E is a locally
convex vector lattice, E' is a vector lattice whose positive cone is

K'={f€E":f(x) >0 for x> 0};

we call this the natural order on E'.

THEOREM 3. Let E be a locally convex vector lattice and a disk space.
Equipped with its natuval ovder and the stvong topology, E' is a locally convex lai-
tice which is locally orvder-complete and topologically complete.

Pyroof. Without using the assumption that E is a disk space, we show first that
E' is a locally order-complete vector lattice for the strong topology B(E', E). (It
has been shown [5, 1.18] that E' is a topological vector lattice for this topology.)
From the hypothesis it follows that the family &% of all solid bounded subsets B C E
is a fundamental system of bounded sets; that is, B(E', E) is the topology of uniform
convergence on %8. We shall show that each polar set Ug = B° (B € #) is a solid,
order-complete subset of E'. It is clear that -g <f< g € Up implies f € Ug. Fur-
ther, let f € Ug; in order to see that |f| € Ug, it is sufficient to show that |f|(x) <1
for x € BNK. By definition of |f| [3, p. 36], we have

| £] (x) = sup {£(u) - f(v): u> O,V_>_O,u+v=x} .

But for each such pair (u, v), one has -x <u - v < X, hence u -v € B if x € B; thus
|f|(x) <1 for x € B. Now let F be a directed subset of E', majorized by h, say; it
is no restriction of generality to assume F c K'. The linear form f, on E, defined
on K as f(x) = sup{f(x): f € F}, is in E'; for if x — 0 in E, then ]x] — 0, since the
lattice operations in E are continuous, and hence

lim sup Ifo(x)|_<_1im sup fo(lxl) < lim h(|x|) = 0,

x—0 x—0 x—0

because h is continuous. Assume further that F is directed and majorized in E’,
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and that F ¢ Ug (but not necessarily F c K'). If f; = sup F, then
f,(x) = sup {f(x): f € F} for x € K.

Since E = K - K, {, is in the weak*-closure of F. Hence Ugp, being weak*-closed,
is order-complete.

The proof will be complete if we can show that E' is boundedly order-complete;
here we shall have to use the assumption that E is a disk space. Let F c E' be
directed and bounded. Then, since every bounded set is relatively weak*-compact,
F has a limit point f, in E'. It is clear that f,(x) = sup {f(x): f € F}, for every
x € K. Hence f, = sup F exists. Now an application of Theorem 2 completes the
proof.

Let E denote a locally convex space, E" its strong bidual, ¥ the evaluation map
of E into E". Then E is reflexive if y is a homeomorphism of E onto E". If, in
addition, E is a topological vector lattice, then ¢ is also a lattice isomorphism.
Since every reflexive space is a disk space, and since the strong dual of a reflexive
space is reflexive, we obtain from Theorem 3 the following result.

COROLLARY. Every veflexive locally convex vector lattice is locally ovder-
complete and topologically complete.

It is not known whether every reflexive locally convex space is complete.

The following theorem has resulted from the attempt to give a characterization,
in terms of topological completeness, of boundedly order-complete locally convex
vector lattices. Although the condition given is sufficient without further restriction,
it fails to be necessary in the general case. As the proof of Theorem 4 shows, to ob-
tain necessity one has to require at least that every order-convergent filter converges
weakly in E; this is the case if and only if sup X = %, implies sup £(X) = f(x,) for
every directed subset X and every continuous positive linear form f on E. If in the
latter statement the continuity of f is omitted, one is led to the algebraic condition
of minimality [10, Section 14].

THEOREM 4. Let E be a locally convex vector lattice in which every ovdey-
convergent filter convevges weakly. Then E is boundedly ovdev-complete if and

only if E is topologically complete for the topology of uniform convevgence on all
ovdey intervals in E'.

Proof. Since the polars in E of the sets [-f, f] (f € K') are convex solid sets, it
follows that E, equipped with the topology o(E, E') of uniform convergence on all
order-intervals in E', is a locally convex vector lattice. (It follows immediately that
o(E, E') is a Hausdorff topology.) Next we observe that o(E, E') is a locally convex
topology for which the dual of E is E'. Clearly, o(E, E') is finer than the weak
topology on E; on the other hand, every order interval in E' is weak*-compact. For
this, it is enough to show that every order-interval [0, f] in E' is equicontinuous
with respect to the original topology E. (From the following argument it can be seen
that o(E, E') is the coarsest locally convex topology on E whose dual is E' and
such that the lattice operations are continuous. Under somewhat more general as-
sumptions, this result is due to A. L. Peressini.) Let U be a O-neighborhood in E .
such that x € U implies f(x) < 1. Since the lattice operations are continuous, there
exists a symmetric 0-neighborhood V such that V ¢ Vt - V* ¢ U, where
Vvt ={xt:x eV}. Hence |g(x)|< 1 for every x € V and g € [0, f]. It follows now
from a well-known theorem of Mackey that the dual of E with respect to o(E, E")
is E'.
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Assume now that E is boundedly order-complete. Then E is obviously bound-
edly order-complete for o(E, E'). We show that E is locally order-complete for
o(E, E'). Let U = [-f, f]° be a basic neighborhood of 0, and let X C U be directed.
Let x, = sup X; we must show that x, € U. By assumption, the filter of sections of
X converges weakly to x, since U is weakly closed, we obtain x, € U. Hence, by
Theorem 2, E is complete for o(E, E').

Conversely, let E be complete for o(E, E'). Let H be a directed bounded subset
of E; then the filter ¢(H) of sections of H is a Cauchy filter with respect to o(E, E?).
Since the positive cone K is closed for o(E, E'), we have lim ¢(H) = x, and
X, = sup H by [3, p. 26, Prop. 6]. Hence E is boundedly order-complete. This com-
pletes the proof.

COROLLARY. Every boundedly orvder-complete, locally convex vector lattice in
which every ovder-convergent filtey convevges weakly is topologically complete.

Pyroof. Theorem 4 implies that E is complete for o(E, E'). On the other hand,
we have observed that o(E, E') is compatible with the duality between E and E', and
that it is coarser than the given topology on E. From this we conclude by a standard
argument that E is complete for its original topology.

We could have proved the Corollary above by a direct application of Theorem 2,
observing that every locally convex vector lattice satisfying the above assumption
is also locally order-complete. This may be shown directly, as in the proof of
Theorem 4, or by using [10, (14.1)]. Theorem 1 implies that in such a vector lat-
tice every order-interval is complete. We remark in conclusion that a complete
topological vector lattice need not be boundedly order-complete. An example is
furnished by the Banach lattice of all null sequences of real numbers, equipped with
its usual order and norm. If X is the set of all vectors of the form (1, 1, ---, 1;

0, 0, --+), then X is a bounded, directed set that has no upper bound.
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