AUTOMORPHIC FORMS OF NONNEGATIVE DIMENSION
AND EXPONENTIAL SUMS

Marvin Isadore Knopp

I. INTRODUCTION

In this paper we extend the methods and results of the previous paper [2]. There
we discuss the three groups G(vV1) (1 = 1, 2, 3) of linear fractional transformations
of the upper half-plane 7> 0 onto itself, where G(V1) is generated by the two
transformations S(r) = 7 + ¥1 and T(7) = -1/7, and we construct automorphic forms
of nonnegative even integral dimension, with multiplier system identically one, for
these groups. Of course, G(1) is the modular group.

Here the results of [2] are extended in the following way. The same groups are
considered, but now we construct forms of arbitrary integral dimension r > 0, with
arbitrary multiplier systems. Specifically, let I' denote any one of the three groups
in question and let M € T', Mr = (@7 + B)/(y7 + 6). Given any integer r > 0, we con-
struct functions F(7) that are regular in 37 > 0 and satisfy throughout this half-
plane and for all M € IT" the condition

(1.1) F(Mr7) = £(M) - (-ily7 + 8))7" - F(7),

where (M) does not depend on 7 and ]s(M)| =1 for all MeT.

With each fransformation M € I"' we associate the two maftrices

we(28) e e (38):

in this context we shall not distinguish between the two matrices. Therefore, apply-
ing (1.1) with M replaced by -M, we see that

(1.2) e(-M) (-i(-y7 - 6))™" = e(M) (-ilyT + 6))*.

Now, when there exists a function ¥(7) satisfying (1.1) it follows in a simple fashion
that if

o, B a, B
M=( 1 1)€I‘ =( 2 2)er‘
! Y, 9, ’ M, Y2 0Op ’

then

(1.3) e(My Mp) (-ily3 7+ 83)) 7" = (M) e(Mz) (-ily1 Ma 7+ 01)) ™" (-ily, 7 + 62))77,

* ok
where M; M, = ( ) The multipliers €(M) are said to form a multiplier system

Vs 03
Jor T' covresponding to the dimension r, provided £(M) is a complex-valued function
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defined on I" such that |e(M)| =1 for all M € T and &M) satisfies (1.3).
Putting M = S in (1.1), we obtain

(1.4) F(S7) = e(S)(-i) " - F(7) = e2T2 F(r) (0<a <1).

Applying (1.3) first with M;= M, M2 = S (q an integer) and then with M; = S9,
M, = M, and making use of (1.4), we have

(1.5) g(MS?) = g(SIM) = e271A% ¢ (p) .

Now, since S and T generate I' it follows that the multiplier system £(M) is com-
pletely determined by o and £(T), and that

(1.6) F(S7) = 2T F(7),  F(T7) = &(T) (-i7)"* F(7)

together imply (1.1). Thus in order to show that a function F(7) is a form of dimen-
sion r for I, it is necessary to prove only that F(7) satisfies (1.6). (For a similar.
discussion of multiplier systems see |3, pp. 72-73].)

We outline our procedure for the modular group. Let r and v be integers
(r >0, v > 1), and take any possible value of @ as defined by (1.4), where now

S = ((1) i ) . It is well known (see [6]) that in the case of the modular group each

dimension r has six multiplier systems and hence six values of o« connected with
it. Now define

o0
F(t; r, v) = elTMaT { e~2TiVT > am(r, V}ezmmq- }’

m=0
(1.7)
o _ (r+1)/2 4
an(r, v) =212 k"lAk,v(m) (11:1 +z ) o S (?ﬂ V(v - a)(m + a)) ,
k=1
with )
1 2ni
(1.8) B p(m) = T e M p)exp [-T v - )b+ (m+ adn} |,
0<h<k
where h' is any integral solution of hh' = -1 (mod k),
o _hh‘k+ 1
My nh= € G(1),
k -h

and I.4q is the modified Bessel function of the first kind. The dash (') over the
summation sign indicates that the sum is taken over only those h for which
(h, k) = 1.

Remark. It might seem, at first glance, that the terms of the sum Ay ,(m) are
not uniquely determined, since h' is only determined modulo k. In fact, h' can be
replaced by h'+ gk, where q is any integer. Then M, _, is replaced by
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?
h' + gk -hh—k+1 - qh q
Nk,-n = =8My
k ~-h

and, by (1.5), e(Ny,_1) = e2Miql . £(Mg,_n). The corresponding term in Ay ,(m) is
replaced by
271

g‘l(Nk,_h) exp [_T«:— {(v - @)h' + (m + a)h + (v - a)qk}]

e-2Mia® g(My ) e -2 (V-a)q exp [_2%5 {v - a)h'+ (m + Ol)h}]

E(Mk,_h) exp [—g%i-{(u -~-a)h'+ (m + oz)h}] ,

so that the terms of Ay ,(m) are unaffected by the ambiguity in h'.

THEOREM (1.9). Throughout 37 > 0, the function F(t; r, v) is vegular and
satisfies the condition

(1.10) e "H(T) (-ir)* F(T7; r, v) = F(z; r, v) + p(7; 1, 1),

wheve p(t; r, v) is a polynomial in T of degree at most r.

This theorem, the proof of which will be given in Section IV, can be thought of as
a weak converse, for integral dimension, to the main result of [6], where it is shown
that every modular form of positive (integral or nonintegral) dimension, regular in
37 > 0, has a Fourier expansion of the form (1.7). The actual converse to the result
of [6], which would say that every function defined by (1.7) is a modular form (in
other words, that p(r; r, v) = 0), is not true.

On the basis of Theorem (1.9) we can then easily construct functions satisfying

(1.6), where now S = (é i
for the modular group. The following theorem will enable us, in the same way, to

construct forms of dimension r for the groups G(v2) and G(V3).
THEOREM (1.11). Let r and v be integers (r > 0, v>1). Choose any a con-

1 VI
: 1) =2, 3). Put

) ; these functions will therefore be forms of dimension r

sistent with (1.4), wheve now S = (

Fl(‘r; r, v) = eZTTiaT/\/—l {e-zmvr/w/_l_,_ g am(r\, v, l)eZWimT/\/—i},

m=0

o0

_ - (r+1)/2
a_(r, v, 1) =2r kZ=)1 kA, m) (222 ) / et (E V@m0 - %)
k=0(mod 1)
(1.12)
21 b _ _ (xr+1)/2 -
Bt (535) " ()
k#0(mod1)

= am'l(r, v, 1) + am,z(r, v, 1).
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When k = 0 (mod 1), Ax, ,(m) is defined by

113 A pm = D' ey, pem [ <28 {(v - a)h'+ (m+ an}],

0<h<k
wheve h' is again any integral solution of hh'= -1 (mod k) and
o Bl
Mk/ﬁ’ -h = € G(ﬁ) .
-llfﬁ - h

When k £ 0 (mod 1), Ak,y(m) is defined by

(L.14) A ,m) = 2 e l(M _y7)exp [312—1 { - @)h* + (m + a)n} ] ,
0<h<k

wheve h* is any integral solution of lhh* = -1 (mod k) and

ey _ ¥+ 1
Mk, —h\/— = k € G(\/_i) .

k -hV1

Then, thvoughout 31> 0, the function F(t; r, v) is regular and satisfies the
condition

(1.15) e~1(T) (-i7)* F (T1; r, v) = Fi(7; 1, v) + py(7; 1, V),

where py(t; r, v) is a polynomial in 7 of degree at most r.

This theorem will be proved in Section V. The same remark that was made pre-
ceeding the statement of Theorem (1.9) can now be made in connection with the sums
defined by (1.13) and (1.14). The proof is the same and will not be repeated here.

When r > 0, the changes that are needed in transferring the methods of [2] to
arbitrary multiplier systems are almost all purely formal ones. The computations
are more complicated, of course, but no essentially new problems arise. In particu-
lar, the trivial estimate Ak'V(m) = O(k) for the exponential sums defined by (1.8),
(1.13), and (1.14) will enable us to carry through the analysis.

However, when r = 0 we need an estimate of the form Ak’v(m) = O(kl-9) (6 > 0),
and it is shown, in fact, that for r = 0,

(1.16) Ay (m) = O(2/37€) .

We accomplish this in Section II by showing that these exponential sums, which re-
semble the classical Kloosterman sum, can indeed be reduced (in a certain sense)
to the Kloosterman sum when r = 0. We then apply the well-known estimate [7] for
the Kloosterman sum to obtain (1.16).



AUTOMORPHIC FORMS AND EXPONENTIAL SUMS 261
II. ESTIMATION OF THE EXPONENTIAL SUMS

In order to reduce the exponential sums of (1.8), (1.13), and (1.14) to the classi-
cal Kloosterman sum we employ, among other things, a procedure used by Lehner
[3, pp. 82-85]. Lehner estimates such sums connected with the modular group and
the dimension r = -2, by making use of a parametrization (given by Rademacher and
Zuckerman [6] ) of the set of all modular forms. Now the sum defined by (1.8) is
connected with the modular group, and we are interested in such a sum which occurs
for the dimension r = 0. As might be suspected, it turns out that the sum can be
handled by following Lehner’s procedure almost exactly. Hence the reader is re-
ferred to Lehner’s paper for the treatment of the sum (1.8).

The sums (1.13) and (1.14), on the other hand, are connected with the groups
G(¥2) or G(V3), depending on whether 1= 2 or 1= 3, and we proceed somewhat dif-
ferently. Use is made here of the results of [1], in which all possible multiplier sys-
tems for these two groups corresponding to the dimension r = 0 are computed. The
groups G(V2) and G(vV3) will be treated separately below.

1. THE GROUP G(V2)

As is shown in [1], this group has the four values a = 0, 1/4, 1/2, 3/4 connected
with the dimension r = 0. For each such value of @ we can also choose
€o=¢(T) = £1. Since, as was previously mentioned, a multiplier system is com-
pletely determined by @ and g,, it follows that there are eight multiplier systems
for G(V2) corresponding to r = 0. The proof of (1.16) is divided into four cases
according to the value of @, and each case into two subcases according to whether
or not k= 0 (mod 2). In order to avoid a great deal of repetition, we discuss only the
cases @ = 1/2 and o = 1/4.

Case (i): a =1/2
(a) Assume first that k is even; we then need to consider the sum (1.13). Ac-
cording to [1], we have, for a=1/2,

e(My/y7Z,.pn) = exp [“i(hh'—;lh - h'k/z)] ’

and (1.13) becomes

oot = B e[t (B E ) ] e[ (5B (o o)

- exp [ 'éf{h(hh' + 1) - h'k%/2 + 2vh' - h' + 2mh + h}] .
0<h<k

Now, hh' = -1 (mod k) implies that there exists an integer c such that hh' + 1 = ¢k,
and furthermore, since k is even, h is odd, and we can choose ¢ even. For if c is
odd, replace ¢ by ¢+ h and h' by h' + k. This choice does not affect the value of

Ak,V(m), as we have previously remarked. Then, hh' = -1 (mod 2k) and
1 ary
Ak,,,(m) = 2 exp [%(chk - h'k%/2 + 2vh' - h' + 2mh + h)]
0<h<k

=0_<—h2<|kexp[2§7l%i{h'(%€+ 1- Zv) + h(-2m - 1)}] .
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From here we follow Lehner [3, p. 84], with some notational changes. Put
a=k%®2+1 -2y, b=-2m - 1, and define

t
Bk’y(m) = Z) €xp [ 2k (a] + b])]
0 <2k
where j' is any integral solution of jj' = -1 (mod 2k). In By, p(m), put j = gk + h,

where 0 <h <k, (hyk)=1,and q is 0 or 1. We can choose j' = h'(1 + gkh'),
where hh'= -1 (mod 2k), for

(gk + h)h'(1 + gkh') = gkh'(1 + hh') + q®k®h’2 + hh' = hh' = -1 (mod 2k).

Then we have

1
By, y(m) = > T exp [Zm{ ah'(1 + gkh') + b(h + qk)}]
0<h<k gq=0

1
= 2 exp [%2717{1 (ah' + bh)] 2. exp[miq(ah'?+ b)].
0<h<k q=0

But a+ b =k%/2 - 2v - 2m = 0 (mod 2); also, since k is even, h' is odd. Therefore
ah'> + b = 0 (mod 2), the inner sum equals 2, and By ,(m) = 2Ak p(m). But By, p(m)
is a classical Kloosterman sum and has, by [7] the estimate

By, »(m) = O[(2k) %/ 3 (2k, a)1/3].
Hence,

Ay, (m) = 0| @02/3+8 (2,5 41 - 2,,)1/3] :

But

k k?
2k2+1-2v)=(k +1-—2v)=(k,1—2u)§2u—1,

since k is even. Therefore, Ax,p(m) = O(k2/3+8).

(b) Now assume that k is odd; then we must consider the sum (1.14). By [1], we
have, for a = 1/2,

. { 2hh* + 1
S(Mk,-h\/?) = g, exp [171(—-—1—{—}1 - h*k) ] ,

and (1.14) becomes

o 2 opf (- B2 10) ] oy [B5 (- Daes (m o]

0<1r<k

]

, .
€0 2. exp[—zé%{h*kz-h(Zhh*+ 1)—2vh*+h*-—2mh—h}] .
0<n<k



and (1.13) becomes

A,

Now 3k? + 1 =0 (mod 4), 4|3k%+
sum. As before, Ay V(m) = O(k3/3+8)

= 1/4
(a) Let k be even. By [1], we have, for o

(m) = ' exp %(_ hh'+ 1

AUTOMORPHIC FORMS AND EXPONENTIAL SUMS
Since 2hh* =
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-1 (mod k), there exists an integer c¢ such that 2hbh* + 1 = ck, and it is
clear that c is odd. We obtain

1
A ,(m)=g, 2o exp [ 2.'2’17{1 (h*k? - ckh - 2vh* + h* - 2mh - h)]
’ 0<h<k

=gp 2 [Z”I{h*(kzn - 2v) + h(- 1 - 2m - k)}]
0<h<k

But we can write h' = 2h* (where h' has its usual meaning), since h-2h¥*
Therefore

= -1 (mod k).
Ak,V(m) =g, El

E em[ (K a(22egmen))]

4
Now (-1 - 2m - k)/2 is an integer, because k is odd. Also, k2
Hence, if v is odd, 4|k?

+ 1 =2 (mod 4).
1 - 2y, A p(m) is a Kloosterman sum, and we get

2
Ak,v(m) -0 [k2/3+8 (k kK" +1 - 2v

farom) )

2
As before (k K™+ }1 2V> < 2v -1, and we have A ,(m) = O(k2/3+8)
obtain

If v is even, we can multiply each term of A, ,(m) by eT(2h*k) _ 1 and thus

*
Ay p(m) = gq > exp [ mi (Sh*k _ 2hh* + 1

o B2 14)] exp [Z2{ (v -3 )ne+ (m)n}]
“to T e B (2 en(Lgmak) ],

1 - 2y, and once more Ak p(m) is a Kloosterman

Case (ii): «

=1/4,

S(Mk/r h)_exp[1721{_hh'+1 h'

S ih- 2k—(hh'+1)}],

T
h+hk

) Jsa[ 224 (s 3o (m - o]

+ k(hh'+ 1) - 4vh' + h' - 4mh - h}]

0Sh< k

= OS§<kexp[ { h(hh' + 1)+ hk?

2
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We have hh' + 1 = ck, where again c can be chosen even since k is even. Further,

we can choose ¢ = 0 (mod 4), for if ¢ = 2 (mod 4), replace ¢ by c + 2h and h' by
h'+ 2k. Then hh' = -1 (mod 4k) and

0<h<k [ ( cn

Oszike [Zm {h'(kz -4y + 1)+ h(- 4m - 1)}]

Ay ,(m) %, k%c - 4vh' + h' - 4mh - h)]

2

Assume k = 0 (mod 4). Putting a = 1% -4v+1, b=-4m - 1, and

By,y(m) = 2 exp [ ik 2 (aj + bJ)] with jj' = -1 (mod 4k),
0<j<4k

and noting that a + b = k3/2 - 4v - 4m = 0 (mod 4), we may proceed as before to ob-
tain By, p(m) = 4Ax, p(m). Thus, since By,,(m) is a Kloosterman sum, we have

Ay p(m) = [(4k)2/3+8(4k -+ 1- 41/)1/3] = O(x2/3%€) |

Now let k = 2 (mod 4). We have chosen h' such that hh' = -1 (mod 4k); hence
hh' = -1 (mod 8). From this it follows immediately that h + h' = 0 (mod 8). There-
fore, we can multiply each term of Ay ,(m) by

exp[gll{ ];(h+h')] =exp[%i(h+ h’)] =1,

and we get
Ak,y(m)=0S§)<lkexp[ { (k —4V+1+2)+h( 4m—1+—)}]
=OS§;<rkexp[21r1{h,(kZ/2 4V2+1+.:{/2) h( 4m-21+k/2)}]

This time, let a = (k23/2 - 4v + 1 + k/2)/2 and b = (- 4m - 1 + k/2)/2. Since
k = 2 (mod 4), a and b are integers with

1/k?
a+b=—?:(—2— +k -4y —4m) = 0 (mod 2).
Hence we may put

Biym = 5 e |y np],
0<j<2k

with jj' = -1 (mod 2k), and obtain By ,(m) = ZAk’v(m) and, once again, the estimate
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1/3
Ay, (m) = O [(2k)2/3+8 (Zk, K“/2 - 4v+ 1+ k/2) -J - 0@ 2/3Ey,

2

(b) Let k be odd. By [1], we have, for a = 1/4,
i 2hh* + 1
(M, _y ) = & exp [7 (hr - 22022 15 opns ) ] ,
and (1.14) becomes

Ay, p(m) = g9 2 exp[%i (—h*k + —‘fa-h—l%i—lh + Zhh*)]exp[—im{ (V——i—) h*+ (m +31i)h}]
0 <h<k

. .
=g, 2 expl:%:il {-h*k2 + (2hh* + 1)h + 2hh*k - 4vh* + h* - 4mh - h}] .
0_-_<_h<k

Now 2hh* + 1 = ch, and we can clearly choose h* even, since k is odd. For if h* is
odd, we may replace h* by h* + k and ¢ by ¢+ 2h. Thus ck - 1 = 0 (mod 4), and we
have

A (m) =gy 2 exp [%’E {-h*k? + ckh + k(ck - 1) - 4vh* + h* - 4mh - h}]
’ 0<h<k
' .
=gy 2 exp[%%{h*(l—4u-k2)+h(ck—4m—1)}] .
0<h<k

As before, we may put h' = 2h*, and ck = 1 (mod 4) implies ¢ = k (mod 4). Thus,

1 s _ _ 12 2 _ -
A (m)=g, 2 exp[zm{h'(l v - k ) +h(k—4—m—1)}] . But since k
, k 8 4

0<h<k
is odd, k2 = 1 (mod 8), so that 4 |k? - 4m - 1.

If v is even, we also have 8 l 1 - 4v - k?, so that Ay ,(m) is a Kloosterman sum
and Ay y(m) = O(k2/3+€)  as before.

If v is odd, multiply each term of Ay, ,(m) by exp [%(-411*1{)] = 1 to obtain

t .
A, ,m)=gy 2 exp [%—’1’{—1{ -5h*k? + (2hh* + 1)h + 2hh*k - 4vh* + h* - 4mh - h}]
’ 0<h<k

R e e I e HE

Now 1 - 5k® - 4y = 0 (mod 8), and once more Ay ,(m) = 0(k2/3+8),

The case a = 0 is similar to the case & = 1/2, but somewhat simpler. The case
o = 3/4 can be handled in exactly the same way as o = 1/4.

2. THE GROUP G(V3)

It is shown in [1] that the group G(vV3) has the six values & = 0, 1/6, 1/3, 1/2,
2/3, 5/6 connected with the dimension r = 0. Again, for each value of @ we can
choose €, =¢(T) = +1. As before, we divide the proof of (1.16) into six cases
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according to the value of @, and each case into two subcases according to whether or
not k = 0 (mod 3). We shall treat only the cases o = 1/2, @ = 1/3, and @ = 1/6. The
case o = 0 is quite simple, and the cases o = 2/3, and o = 5/6 can be handled in the
same way as « = 1/3 and o = 1/6, respectively.

Case (i): a = 1/2

(a) Suppose k = 0 (mod 3); we are then considering the sum (1.13). By [1], we
have, for a = 1/2,

(bh'+1. h'k hh'+1 k
S(Mk/ﬁ’“h)=eXp[m( kK "3 Tk §)]

and

_ ' ( h h'k hh'+1 2mi 1 1
Ak,u(m)-o<§<ke"p[“{'ﬁ(hh'+1)+—3+—3—}]exl°['*1?{(V‘E)‘“*(m+§)h}]

. 2 2
- exp[%l-{—h(hh'+1)+h';{ +1—{3—(hh'+1)-211h'+h'—2mh—h}].
0<h<k

Let k be even, that is k = 0 (mod 6). Now hh' + 1 = ck, and since k is even, h is
odd, so that we can choose ¢ even, as before. Then,

Ay ,(m) = 2 exp [—g%i-{h'(l -2v) + h(-1 - 2m)}] ,
0<h<k

with hh'= -1 (mod 2k). Putting a=1 - 2v and b= -1 - 2m, we find that
a+b=-2v-2m=0 (mod 2). Thus we can put

\ .
B, ,(m)= 2 exr)[%%(aj’ + bj)] )
’ 0<h<{2k
with jj' = -1 (mod 2k), obtain By ,(m) = 2A;_,,(m), and finally Ay ,(m) = O(k2/37€),
Let k be odd, that is, k = 3 (mod 6). We break up the sum defining Ay ,(m) as
follows:

Aym= 2+ D0 =AM )+ Al oy,
oy 0<h<k 0<h<k e i)+ A m
h odd h even

In Af{l)(m), h is odd, and we may choose c¢ even, as before, where again hh'+ 1 = ck.

W
Then
. . 2
A1(<13:(m)= 2 exp[%(-hck+—}-l%§—+%ck—21/h'+h'—th-h)]
’ 0<h <k
h odd
s 2
-, B e[t () ey ]
0<h<k
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where we have multiplied each term by ek = -1, ‘Since k is odd,
kK¥/3-2v+1=-2m -1+ k=0 (mod 2),

1
so that Af{,)u(m) is a generalized Kloosterman sum and by [7],

Al(:-) (m) = O [k2/3+8(k’ kz/3 -2vr+1 ) 1/3 ] - O(k2/3+8) .
»V '

2

Now consider Alizl)l(m). In this sum, h is even, and therefore c is odd. Hence

A= o xp[k( hek + M52 4 Ko unts b - 2mh - h)]
2 O§1<k
h even
I exp[2wi{h,(k2/3_2v+1)+h(-2m-1+k)}],
o<k K 2 2
h even

where we have used the fact that e”iCk/ 3 -1, and mu1t1p11ed each term by eTih = 1,
Again, Ay ,(m) is a generalized Kloosterman sum, so that Ak 2) (m) = O(2/ 3¢y,

Combining this with the previous result, we have Ay p(m) = O(kz/ 3+g),

(b) Assume k # 0 (mod 3); we are then considering the sum (1.14). By [1], we
have, for a = 1/2,

&My, _p./3) = £ €xp [m(@T*—lh - h*k - bh* ) ] ,

and thus

£ > exp [-’E{-h(shh* + 1) + h*k% + hh*k - 2vh* + h* - 2mh - h}]
0<h<k

A ,(m)

€ 2" exp [ETEI (-hck + h*k2 + 3hh*k - 2vh* + h* -~ 2mh - h)] ,
0<h<k
where, as usual, 3hh* + 1 = ck.

Let k be even. Then h is odd, and we may assume that ¢ is even (if ¢ is odd,
replace ¢ by ¢ + 3h and h* by h* + k). Then, we have

Ay, (m) = -eoo<§<'kexp [%i{h' (1 '32”) +h(-2m - 1)} ;l ,

where we have put h' = 3h*, so that hh' = -1 (mod 2k). If v = 2 (mod 3), put
a=(1-2v)/3, b=-2m - 1; if v =1 (mod 3), write

Ak,u(m) = —800<Zh)<'kexp [%{ h'(-k2—+31—-——g—li) + h(- 2m - 1)}]
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and put a=(k®+ 1 - 20)/3, b= -2m - 1; if v = 0 (mod 3), write
1 : 2 _
Apy(m) = gy 2 exp [-’{{i{h'(gl‘%—z-‘i) + h(- 2m - 1)}]
0<h<k

and put a = (2k?® +1-2v)/3, b= - 2m - 1. It is easy to verify that in each case a and
b are integers such that a + b = 0 (mod 2). Hence we let

By ,(m) = -¢g > exp [%(aj' + bj)] ,
0< j< 2k

obtain Bk,y(m) = 2A; ,(m), and finally Ak,y(m) = O(k2/3+€),

Let k be odd. Let 3hh* + 1 =ck. If h is even, ¢ is odd; on the other hand, if h
is odd, we may choose c¢ odd, by replacing ¢ by c + 3h if necessary. Then,

1 s 2 _ _ _ _ N
Ay m) =g, 2 exp[?%{{hv(i‘__éz_fj_l) +h( k ;m 1)}] ,
0<h<k

where again we have put h' = 3h*. Since k is odd,
kK2-2v+1=-k-2m -1=0 (mod 2).

Also, since k # 0 (mod 3), k®+ 1 = 2 (mod 3). Thus, if v = 1 (mod 3), then
3| k? - 2v + 1, so that k2 - 2v + 1 = 0 (mod 6). If v = 0 (mod 3), write

o (21222t Ly (2hmgmet) )],

s

27
A, (m)=¢ 2. exp [
e 0 0<h<k k

if v =2 (mod 3), write

Ak’v(m)=800<Zl;la<kexp[2l1;i{h,(3k2 _62V+ 1) +h (—k—22m - 1)}] .

In each case, h' is multiplied by an integer, Ak’y(m) is a Kloosterman sum, and
Ay, p(m) = O(k2/3+¢€).

Case (ii): a =1/3

(a) Assume that k = 0 (mod 3); we are then considering (1.13). By [1], we have,
for a =1/3,

05,0 o (B i) ],

and thus

. 2
A ym)= X' expl:%zkl-{—}l:;k—-h(hh'+1) ~ 3uh' + h! -3mh-h}] .
’ 0<h<k

As before, write Lh' + 1 = ¢k, and choose c = 0 (mod 3). This is possible, since
k = 0 (mod 3) and (h, k) = 1 together imply that (h, 3k) = 1. With this choice of ¢
(and h'), hh' = -1 (mod 3k). Then

Il
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Ay ,(m) = > e [ 2"“{hr<k 3 + 1) + h(- 3m - 1)}] :

0<h<k

If weput a=k%/3 -3v+1, b= - 3m - 1, we find that a + b = 0 (mod 3).

before, we may put

B, (m)= X exp|2(aj' + bj)
v 0<j<3k [ 3k ]

and we find that Bk,y(m) = 3Ay ,(m). Thus A V(m) = O(k2/3+¢).

(b) Let k # 0 (mod 3). We have from [1], for a = 1/3,

(M

and therefore

Ak,V(m) = gg E' exp [—z—ﬂ{h(3hh* + 1) - h*k2 - 3yh* + h* - 3mh - h}] .

0<h<k 3k

Putting 3hh* + 1 = ck, we find that ¢ = k (mod 3), since ck =1 (mod 3).

Ay p(m) = g Z)' exp [gf—i-{h*(l - k% - 3v) + h(k? - 3m - 1)}]

0<h<k 3k

Now, k # 0 (mod 3) implies that 1 - k® - 3v=k® - 3m - 1 = 0 (mod 3). If

1 -k? - 3v =0 (mod9), we are done, for we write h' = 3h*, and

Ay (m) = g ' eXp[Zm{ (1-k2—3u> (kZ-Bm—l)}]

0<h<k

is a Kloosterman sum. If 1 - k% - 3v = 3 (mod 9), write

Ay, y(m) = g > exp [@{h*u - 4k? - 3v) + h(k? - 3m - 1)}] ,

0 <ns 3k

and proceed as before. If 1 - k% - 3v = 6 (mod 9), write

Ak,y(m) =€y El exp [2171 {h*(1 + - 3v) + h(k? - 3m - 1)}]

05h<k 3

and again follow the same procedure.
Case (iii): o =1/6
Suppose k = 0 (mod 3). By [1] we have, for a = 1/6,

hh' + 1 h'k

e(My /3, h)—exp[3{ S -(hh'+1)}] ,

so that

2mi 3hh* + 1
L, -hy3) = €g eXp[ 3 (“ K h+h*k)] ’

269
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1.2
A_ fm) = > exp[zm{—h(hh'a— 1)+h;‘ + (hh' + 1)k - 6vh' + k! -emh-h}] :
: 0 <hek K

Assume that k is even, that is, k = 0 (mod 6). Since (h, k) = 1, it follows that
(h, 6k) = 1; therefore we can choose h' such that hh' = -1 (mod 6k), and we have

Ay, (m) = OS§<'_kexp [2’”{11'(1‘— - 6+ 1) + h(- 6m - 1)}]

Let a=k?®/3-6v+1, b=-6m - 1, and

B, ,(m) = > exp (a] + bj) (ji' = -1 (mod 6k)).
v 0<h<6k [ Bl ]

We find that a + b = 0 (mod 6) By, ,(m) = 6Ay ,(m), and Ay ,(m) = O(k2/3+€), as be-
fore.

Suppose that k is odd, that is, k = 3 (mod 6). We write hh' + 1 = ck and notice
that 3 [k and (h, k) = 1 together imply that (h, 3k) = 1, whence we can choose h' such
that hh'= -1 (mod 3k). With such a choice of h', ¢ =0 (mod 3). Now, if h is even, ¢
is odd, and if h is odd, we can choose c¢ odd by replacing ¢ by ¢ + 3h and h' by
h' + 3k, if necessary. After such a replacement, we still have ¢ = 0 (mod 3). In any
case, we have c¢ = 3 (mod 6). Therefore

1,2
A ym) = - 2 exp [ 2. 3+ BEY gunr + b - 6mn - h) ]
’ 0<h<k
2
L exp[2w1{h,<k/3-26u+1 —3k-26m—1)}] _
0<h<k
2 — — — _—
If we put a = k%/3 -26V + 1 and b = 3k 26m 1, we find that a and b are integers

with a + b = 0 (mod 3). Thus we put

By, (m)=- X' exp [%’;—i(aj' + bj)] (Gi' = -1 (mod 3Kk)),
0<h<3k

obtain By ,,(m) = 3A; ,(m), and finally A, ,(m) = O(k2/3+€),
(b) Suppose that k # 0 (mod 3). By [1] we have, for a = 1/86,

’ i 3hh* + 1
(M _p,/3) = £¢ €D [ %(h*k - —h- 3hh*)] ,

so that

A V(m) = g Z' exp [ 26171{ h*kZ + h(3hh* + 1) + 3hh*k -~ 6vh* + h* - 6mh - h} ]
’ 0<h<k

Suppose that k is even. Write 3hh* + 1 = ck; since k is even we can choose h*
so that ¢ is even, that is, 3hh* = -1 (mod 2k). Now ck = 1 (mod 3) implies that
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¢ = k (mod 3); but since ¢ and k are both even, we actually have c¢ = k (mod 6). Also,
hh* is odd, and we obtain

\ :
Ay y(m)=-g¢9 2 exp [%’E (- h*k2 + hk% + 6vh* + h* - 6mh - h)]
0<h<k
' . _ 12 2 _ _
= e D em| F{n (T ) en (B ]
0§h<k

where again we have put h' = 3h*, so that hh'= -1 (mod 2k). Now, since k # 0 (mod 3),
-k*-6r+1=k®-6m-1=0 (mod 3).

2 _ _ IR
Pmb:l{‘_?;L'l- If ~k?2-6v+1=0(mod9), put a= L3 96V+1. If

-k? - 6v+1=3(mod9), write

ol =y o[ (2= ) (=gt ]

and put a = (- 4k%2 - 6v + 1)/9. If - k%2 - 6v + 1 = 6 (mod 9), write

Ak,v(m) = -gg 0<Zh;<'kexp [%{h'(w) + h(kz - 6m - 1)}]

2kZ - 6v + 1
—g -
a+ b =0 (mod 2). Hence we put

and put a = In every case, a and b are integers such that

By =-co 2 ex[Z(aj +bj)| (i = -1 (mod 2K)
Osh<2k

and obtain Bk,y(m) = 2Ak’V(m). Thus Ak’V(m) = O(k2/3+¢€),

Suppose that k is odd. As before, ¢ = k (mod 3); furthermore, whether h is even
or odd, we can choose h* so that c is odd. Since k is odd, it follows that
¢ = k (mod 6), and 3hh* = ck - 1 = 0 (mod 6). Then,

! 27Ti 2 2
Ay y(m) =gy 20 exp| (- h*k2 + hkZ - 6vh* + h* - 6mh - h)
’ 0<h<k
. w2 2 _ _
. 2% exp[zlil{h'( k 186v+ 1)+h(k gm 1)}] ’
0<h<k

where again 3h*=h' Now, -k%? -6r+ 1=k% - 6m - 1 =0 (mod 6). If
-k%?-6v+1=0 (mod 18), Ay, ,(m) is a Kloosterman sum, and we have our esti-
mate. If - k% - 6v+ 1 =6 (mod 18), write :

' 2ni -TkZ - 6v + 1 k% - 6m - 1
A, (m)=¢ 20 exp[—{h'( + h —————) .
k,v OOSh<k 2 18 ( 6 }
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If - k%2 - 6v+1=12 (mod 18) write

A i 2
kV(m)=80 E' exp[zm{hl(5k "6V+1 h(k -6m-1)}]
’ k

0<h<k

Since 6k® = 6 (mod 18), we find that in each case Ay ,,(m) is a Kloosterman sum, so
that Ay ,(m) = O(k2/3%€).

III. THE RADEMACHER LEMMA

The method of this paper goes back, basically, to a paper by Rademacher [5] in
which the functional equation J(-1/7) = J(7v) for the modular invariant J(7) is derived
directly from the Fourier expansion of J(7). The principal analytic tool of [5] is a
lemma in which the terms of a certain conditionally convergent double sum are.re-
arranged. Several variations of this lemma can be found in [2] and [3]. Here we de-
rive several more variations which will be needed in Sections IV and V.

We make essential use of the asymptotic estimate of the sums Ak, V(m) that was
obtained for the case r = 0, in Section II. Define

(3.1) oAy, (m) =k Ay (m).

When r = 0, Ay U(m) = Ay, (m) = O(k2/3+8) by the results of Section II. When

r> 0, Ak, 1,(m) = O(k!-T), smce Ay V(m) = O(k), a trivial estimate, in every case.
For the sake of simplicity, we shall assume that r is a nonnegative integer, al-
though the lemmas that we shall state can actually be proved for any real r > 0. Of
course we apply these lemmas only when r is an integer. Therefore, when r > 0,
we again have the estimate .y ,,(m) = O(k2/3+€), so that, in all cases considered.

(3.2) | ol 1 (m) = O(k2/3+€)

In the remainder of this paper we shall assume that o + 0. This is done since the
inclusion of @ = 0 would complicate the use of the Lipschitz summation formula, to
be stated below, and the proofs of the lemmas, and since the case o = 0 was treated
in [2].

LEMMA (3.3). Let 7=1iy (y> 0), let r and v be iniegevs (r > 0, v > 0), and
let1=1, 1=2,07v 1=3. Then

o o 1 -27i _ .
. 2 € (Mk/ﬁ,_m)exp[ " (v a)m]

k=1 m=-oo kTH(Ci(kT - m))
1|k (m,k)=1
(3.4)
K "l(M [—2”1 .:'
T D /Y1, o) &P | T O - e
K—oo k=1 |m|<K k™ -i(kr - m))
1|k (m,k)=1

LEMMA (3.5). Let 7,y,r, and v be as before, and let 1 =2 orv 1 =3. Then
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s = et0n om0 - am]

k=1 1= oo k"1 ik - m)

l‘i’k llm

(3.6) .
K—xo k=1 |ml|<K k**1(-i(kr - m))
1k 1]k
(m,k)=1

Remark., Lemmas (3.3) and (3.5) are used in an important way in the proofs of
Theorems (1.9) and (1.11), and since the lemmas are proved only for purely imagi-
nary 7, these theorems follow only for such 7. We can, however, extend the results
to 87> 0 by analytic continuation.

Proof of (3.3). The Lipschitz summation formula (see [4]) is

- _2mt(nta) _ T+1) sv 27 ~-p-1
(3.7) IIZ:)o (n+ a)Pe ﬂt( +a) = (217)——5?3: Z e Tiq® (t+ q1) P s

g=-—co
where Rt> 0, 0 <a <1, and p> -1. First, we show the convergence of the left-

hand side of (3.4). Put m =gk + h, with 0 <h <k and (h, k) = 1. Then
My /JT,-h = Mi/y1,-mS%, so that, according to (1.5),

S(Mk/ﬂ’ -h) = 2T, E(NIk/ﬂ’_m) ’

and we can choose h'=m' Therefore,

© o1 (le/\[—,—m) e-2m (v-a)m'/k

22
M=o k*t1(-i(k7 - m))
(m,k)=1
1 ' ) ' b L2Taa
=—= 2 e~ )e—Zm(u—a)h [k .
o TR = (4( )

We now apply (3.7), with p = 0 and t = -i(7 - h/k), and the above becomes

1L 5 -y )e-2TW-a)h /K 5 SN 2i(r-b/K) (@)
kr+20§h<k8 Y/, ) € fort

2 - - n - 1 _ ~27i '
= E%nZ:)Oe 27T( +a)Yk OS§<k € 1(Mk/ﬁ’ —h) exp[ k?Tl {(V _ a)h + (n N a)h}:l

27 S -27(n+ay -4/3+g  e~2T0Yy
NI S oty ) = o k4/3ve 2T\
K* =0 : 1 - e~2mQy
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where we have made use of (3.1) and (3.2). This proves that the left-hand side of (3.4)
converges.

Now we can state the lemma in the form

(3.8) - ; - 5—1(Mk/ﬁ,_m) e—Z‘H’i(V—-Ol)m [k =O
K —wk=1 |m[>K K" (-ikT - m))
1|k (m,k)=1
Put
—1( -27mi(v-a)m'/k
T, (K) = 2 © Mh/VT, ) © ,
|m [>x k* 1 (-i(k7 - m))
(m,k)=1

and define the function .

et (My /T ) €™ 2R -@)m!/k 45 (m, k) = 1,
g(m) = {
0 otherwise.
If we replace m by m + k, we have Mk /¥, -m replaced by Mk/ﬁ,_m' S—1 and, by
{1.5), &1 (Mk/\/—l,_m) goes over into e2M g-1 (Mk/wf_l,-m)' Hence e~ 2Ti m/kg(m) is
periodic in m with period k, and it can be expressed as a finite exponential sum,
k=1

e=2Mom/kg(m) = 3 B; e2mijm/k
j=0

in other words,

k=1 .
gm)= 3 B e | 2HB (G4 a) ],

j=0

A little computation shows that

1 ! -27i
(3.9) Bi== 2o g-YM _m) €XP {v -a)m'+ (j+a)m} |.
ik o ek k/V1, [ K ]
Now
’ 27im
k-1 exp G+a)
T = L — & - % O s 50
|m|>Kkr (-i(kT - m)) lm |>K §=0 k1 (Li(kT - m))
k=1 o7i
-2 B X exp[ G a)] kF L (-ikr - m))-t,
j=0 Im >k

and we notice from (3.9) that k™" "1 B; = .y ,(j). Therefore
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k1o exp | MMM g |
i, () ilkr - m)

(3.10)

k-1 00 exp [ Zﬂkm G+ a):l

K? j=0 W m=K+1 (-i(k7 + m))

=SI+SZ'

In order to handle S,, put

27 (+a)(m+1/2)/k _ eZni(j+a)(K+1/z)/k
eTi(+a)/k _ o-m(+a)/k

E_ - g ezm(j+a)p/k _e

p=K+1
Since 0<a <j+a <k-1+a<k, wehave

ml < 7= 2_ S
|e771()+05)/k _ e—m(;+oz)/k| sin 7(j + a) /k

|E

K Kk k({ 1
= max{2(j+a)’2(k—j—a)}s_ j+a+k—j-a)>‘

But
2 k .y fmtPml osv Lo ( 1 1 )
: = _ = - _ ,
mers1 kT -m) gy —1ET -m) k7 -m kT -m -1
and therefore
) LY k(1 1 ) > 1
me=ks+y kT - m) —2\j+o k-j-oa/ o (k?y2+ m2)V/2{k2y2+ (m+1)2}1/2

k( 1 1 )5‘ dx _ 1_:( 1 1 ) 1
S2\jratk-j-alk 27 2\Tra k7o)

From this it follows that

LR = exp| 2MG, ]
g =—ZZ=) D m=ZI>{+1 -1k - m)
(3.11) k-1
_ k-2 2/3+e kK 1 _ -1/3 -1
_o{ JZ)Ok/’fS (J+a+k_]._a)}_o(k /3t g-110g k),

where we have used (3.2) and replaced the summation on j by an integral.

We can proceed in exactly the same way to obtain
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-1/3+¢ K1 log k) .

(3.12) S, = O(k
Using (3.10),(3.11), and (3.12), we have

Ty (K) = O(k-1/3*€ K-11og k),

and finally
K - '
-1 (M )e-Zﬂl (V—C!)m /k K K
> -
2 k/g' s =2 T (K=0 K2 k1/3+€ 100 k
k=1 k" (-i(k7 - m)) k=1 k=1
1k 1|k 1|k

= O(K-1/3+€10g K).

Therefore, (3.8) follows and the lemma is proved.

Proof of (3.5). We show the convergence of the left-hand side of (3.6). If we put
m = lgk + 1lh, it is easy to see that as q runs through all the integers and h through
the integers modulo k with the condition (h, k) = 1, the expression lgk + lh takes on,
exactly once, each integer value m such that m = 0 (mod 1) and (m, k) = 1. Now we
can choose (m/1)* = h*, since then

1 (_lm.) (=) ¥ = l(gk + h)h* = -1 (mod k) ;

likewise we may choose m' = h¥*, since mm' = (lgk + lh)h* = -1 (mod k). Then
Mg _m/Ji=M  m =My 1/7-879 so that by (1.5),
s k’__l_.\/T ] ’

e(My _ WD) = e~2Maq e(My _1y7) -

Therefore,
w 8_1(Mk,-—m/\/—l-) e-2mi(v-a)m'/k
E r+l¢ s
. k¥ (~i(kT - m))
llm
(m,k)=1

1 2 il . 2 2Titq
L R e et R e

1k T2 0<h<k q=-o (—i(} - % -q )) '

Now we again apply (38.7) with p = 0 and t = -i(T - h/k), and proceed as in the proof of
Lemma (3.3) to show the convergence of the left-hand side of (3.6).

We can state the lemma in the form
K £ —l(Mk -m/ﬁ) e—Z’ITi(V—O[)m'/k
lim 2J 2 ’r+1
(3.13) K— o0 k=1 Im|>K k' (-i(kT - m))
1k 1|m
(m,k)=1
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Let
T (K)= X2 8—1(Mk,-m/\/1‘) e-z‘ﬂi(V-Ot)m'/k
- | m|>K kK (Ci(kT - m))

1fm

(m,k)=1

21 e My, v e 2mi(v-a)m'/k
l |m||>K KT (-i(kr - m))
1|m

(m,k)=1

If we replace m by m/1, then m' is replaced by m*, and we obtain

T (K)=1"1 2 et (Mk,-mﬁ) e-2mi(v-a)m* /k
o |m|>k/1 kTt (-i(k7/1 - m))
(m,k)=1

This time, define

8’1(Mk _ e-2mi(v-a)m*/k  if (m, k) =1,
g(m) = { ’

0 otherwise.

Replacing m by m + k, we find that My, -my1 is replaced by Mk,-m\/_l' S"i, so that,
by (1.5), &My, _,y7) goes into elmia €-1(My, _y7). Thus e-27ic m/kg(m) is peri-
odic in m with period k, and, as before,

k-1
g(m) = 20 Bjexp [2’2“‘ G+ a)]‘ ,
j=0
with
1 Z' 1 -27i -
(3.14) Bj = €™ (M, -myT) exp | — {(v - @)m* + ( + a)m}
0<m<k

As in the proof of Lemma (3.3), we find that

k-1 21Tim .
T.(K)=— 2 &, ,(§) 2
k 12 i=0 k, v\ m=[5] » krH (~i(k7/1 - m))
1
(3.15) :
K1 - exp [-me G + a):l
1 . k -
" E"‘}:Eo e [E] . kK™ ikr/1+ m) P15
m=|— |+
1

For the remainder of the proof we can proceed exactly as in the proof of Lemma (3.3).
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IVv. THE MODULAR GROUP

1. This section is devoted primarily to the proof of Theorem (1.9). We begin
with ¥

LEMMA (4.1). Define cp,(1) dy

« _ (r+1)/2
@2) e =21 T kA m(525) L E V- 0)) .
k=1
k=0(mod1)

AL - /71 4 exp [ 4L @)1/ 2(m /2]

Then c_(1) ~ e T a)r/2+3/4

Proof. The first term that occurs in the sum defining c.,(1) is for k = 1. This
term is equal to

)(r+1)/2

Lm) (222 L( S Vs oG -a)).

It is a simple consequence of the power series definition of I+,

2p+r+1
(x/2)°F
(4.3) Ip41(%) = pZO TorrrDT & reab,
that
(4.4) I +1(x) < x* sinh x,

for every nonnegative integer r. Also, it is easy to see that sinh x < (x/B) sinh B
for 0 <x < B. Hence

(r+1)/2
Jom® - 2m Ay fm) (L22)™ & (4—1”4(m+a)(y_a))|

y-a\(rt1)/2 & -1 4x

= ‘2w(m+a) k§21 k Ak,v(m)IrH(T{— Vim + a)(v - a))’
k=0(mod1)
47

o\ (zxH1)/2 *© r+1 sinh {m+0) (v - )

ce(Z22) N E (i) i)
k=21 (71 (m+0!)(V—0!))
k=0(mod1) ‘
AUTF (v - 0)TH/2  r4g - 1

=C, - +Va)1/2 sinh (71 V(m + a)(v - a)) k=zz)1 —lzz|dk,y(m)|

k=0(mod1)
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< C,(m+ @)"1/2 ginh ( T m + &)y - a)) Z) k-4/3+€
k=21
k=0(modl)

<Cy(m+a)t/ 2exp [2Tﬂ\/(m+ ) - a)],

where we have used (3.1) and (3.2). Now in [8, p. 203] it is shown that
I.q(x) ~e*/V2mx,

so that

47 exp[4ml~1(v - a)t/2 (m + 0)1/2]
Ir+1(Tw/(m+a)(V-a)) ~ 217\/_2_71(1} _a)1/4(m+a)17—’
and the result follows.

Lemma (4.1) with 1 =1 shows that the Fourier coefficients a,, (r, v) of F(r; r, v),
defined by (1.7), satisfy

£~1(T) (v - a)*/2+1/4 explan(v - a)1/2 (m + a)1/2]

4.5 ~
(4.5) a(r, v) V7 (m 1+ @)

In particular, therefore, the series defining F(7; r, v) converges absolutely for
S$7> 0, and F(r; r, v) is regular there.

In order to derive the transformation properties of F(7; r, v), we transform (1.7)
into a certain double series. The computations are repetitions of those found in [5, pp.
244-5] and in [2] and [3], and we omit them here. Briefly, the series definition of
a . {r, v) is inserted into the series for F(7; r, v), I.41 is replaced by the power
series (4.3); the inequality (4.4) and (4.5) are used to justify several interchanges of
summation, and use is made of the Lipschitz formula (3.7). We obtain

F(r;r, v) = e—ZWi(V—-O[)T

+ 2 ety _h)e‘zm(’"a)h'/k 27 e®™MA9[ j(kT - h)+ikq]
k=1 0_<_h<k ’ =~c0

x (eXp [k(iiisyh-—a&q)} " p’ k(iii(-yh——alzq) }p ) :

2. In (4.6), put m = h + gk. Then (m, k) = 1 follows from (h, k) = 1, m' = h', and
My, -h = My, .mS% Therefore, if we apply (1.5), e (M, ) = e27i0q. s(Mk m), and
(4. 6) becomes

(4.6)

(4.7) F(r; r, v) = e 2T (V-)7

© - (v-a)x' . (- i i -
cB D eton e Lt ml e FRESS] - B (2R
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Expand the expression in the braces in (4.7) into a power series to obtain

F(1; T, v) - e-2mi(v-a)T

27i
b b _ -—(V a)m' r °° 1 /27i(y - @) P
1
= kz mEOOs (Mk,_m)e [-i(k7 - m)] 1p' Kkt —m)
(m,k)=1
0 ) 2mi 1
(4.8) S Y et M, )e—T(V-a)m 27 (v - @)
k=1 m=-w g r + 1) 1k* ikt - m))
(m,k)=1
5 g 8__1 (M ) ‘Z—IT(V—a)m'[ .(k )]I‘ io) 1 21]’1(1} - a)
’ k=1 m=_co k,-m/ € THET - m 'p=r+2_' k(kT - m)
(m,k)=1

This separation into two sums is justified, since the first converges by Lemma (3.3),
with 1 = 1, and the second is an absolutely convergent triple sum. The second sum
can therefore be rearranged in any fashion. Make use of this fact and apply Lemma
(3.3) (with 1 = 1) to the first sum, and (4.8) becomes

F(r; r, v) - o-2m(v-a)7

ZTTl(y a)m!’ 9
= lim 2 2 8'1(Mk_ e 171(_1;-01)
K—w k=1 |m|<K ’ (r + 1) k"7 (-i(k7 - m))
{(m,k)=1
(4.9)
Eﬁ v-o)m! 2 1 /27i(v -0)
. -1 s r =
(m,k)=1
Therefore

F(r; r, v) = e 2M-0)7 . -1 () (—ir)r{exp Zniv-0) » L (——————-27”(” - a)) }

T p=0p!
(4 10) K K -2"1(1}—(1) '
' + lm X X el __Je K [-i(kr - m)]*
K—wk=1 |m|=1 '
(m,k)=1

27i(yv - a) 27i(v - )
><{eXp[k(k'r—m)jl pop' k(kr - m) }'

where we have combined the two sums of (4.9) and separated out the term correspond-
ingto m=0 and k = 1.
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Now let
K K Z‘Trl
_ : T (r-a)m! 2mi(v - o)
— 1 r Tk iy
(0= Bt ) it - m e exp [ 2 =) |

and put -k' = (mm' + 1)/k, so that kk' + mm' + 1 = 0 and thus kk' = -1 (mod m).
little computation shows that

K K

_ -1 s _ i, _ oy — K- m'T
Sk (1) = kZ=>1 iji e (My, _py) (-i(k7 - m))* exp [Zm(u o) T —m :I
(m,k)=1
(4.11)
K K . \
+ 20 22 8'1(Mk’m) (-i(k7 + m))T exp [Zwi(v - a)—_li{%_:—%:l ] ,
L

where we have separated the terms for m > 0 and m < 0, and used the fact that if
m is replaced by -m, then m' is replaced by -m'. Therefore,

g "L(T) (i)™ Sy(T7)

= §1 mé:i g1 (T)e (Mk,—m) (-iT)* (-i(kT7T - m))T exp [Zm(v - a)——lii—TinTr’rrl—l—]
(m,k)=1
K K . '
+ 121 mZ=)1 e H(T) et (M ) (-in)™ (-i(kT7 + m)) exp [2171(v - a)_—kﬁ—].
(m,k)=1
Now apply (1.3), and this becomes
e~ 1(T) (-i7)* SK(TT)
K K 'y k!
- T D e, 1 il - WY exp [ 2mi0 - o) SRR ]
(4.12) (m,k)=1
K K 1 '
+ kg ijl g1 (M, k)( -i{m7 - k))* exp [2771(V - a):——rnr—;_—__—lf{—z] .
(m,k)=1

By (1.2), g1 (M_m _1) (-i(-m7 - kK))* = z;'l(Mm k) (-<i(m7 + k))*. Inserting this into
the first double sum of (4.12), interchanging the roles of m and k, and comparing the
result with (4.11), we find that

(4.13) g™ 1(T) (-i7)T S (TT) = S (7).
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From (4.10), it follows that

e~ 1(T) (-in)* F(TT; 1, v) = £ (T) (-in)* 2MW-0/7 , g-2milv-a)r _ 7 p—l,{-zm(u - a)3?
p=0""

K K
+ lim {5'1 (T) (~i7)* Sk(TT) - > > 8'1(M ) e-Z'ni(v—a)m'/k

K—wo

. r 1 [ -27i(v - a)7
X (-i(-m7 - k) pg p! [ k(mT + k) ] } ’

where we have used (1.3) and the fact that €*(T) = 1. We now compare this with (4.10)
and apply (4.13) to obtain, finally

F(r; r, v) - £ 1(T) (-i7)* F(T1; T, v)

: °° 27 (v-a)m’ - : T i 1 [ -27i(y - p
- éinooka |mz|)<Ke 27 (v-0)m'/k {5 1(M-m,.k) (-i(-m7 - K)) pal—)_!{ kg;iu%_ kc;z)r]

(4.14) (m,k)=1

; . ¢ s 1 [20i( - @) 1P
- et (M ) (1T - m)) Eoﬁ[m] }

But the right-hand side of (4.14) is a polynomial in 7 of degree at most r, which we
denote by -p(7; r, v), and the proof of Theorem (1.9) is complete.

3. CONSTRUCTION OF MODULAR FORMS

Let o and r be fixed, and let 1 <vg <vp<-.-- <vy be integers. Consider the
function defined by

u
(4.15) F(r) = 27 a_; F(r; 1, 15) .
j=1
From Theorem (1.9), we have
U
(4.16) £~1(T) (-in)* F(T7) = F(7) + 27 a_p, p(7; T, v5).
j=1

Putting p(7) = Z.“zi a_jp(7; r, vj) and replacing 7 by T7 in (4.16), we see that
e -1(T) (-iT)* p(-1/7) = -p(7). Therefore the zeros of p(7) occur in pairs (with some
obvious exceptions). Let [x] denote the greatest integer less than or equal to x. Let
T, (n=1, ==+, [r/2] + 1) be nonexceptional values of 7, so that p(7) = 0 implies
p(-1/7n) = 0 and 7,# -1/7,1. If we can guarantee that p(7,) = 0 for n=1,---,{r/2] + 1,
then p(7) has 2([r/2] + 1) > r roots and therefore, since p(7) is of degree at most r,.
p(7) = 0. Then, by (4.16) we have £-1(T) (-iT)* F(T71) = F(7). Also, it follows directly
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from the definition (1.7) of F(r; r, v) that F(S7) = €27i® F(7), so that, by a previous
remark, F(7) is a modular form of dimension r.

We consider therefore the homogeneous linear system

I
(4.17) a_jp(m; r,v)=0 (n=1,-, [r/2]+ 1)

i=1

of [r/2] + 1 equations in the p unknowns a_1, *--, a_. This of course has
¢ - ([r/2] + 1) linearly independent solutions (a_q, ---, a_u). Hence we may state

THEOREM (4.18). Let u be an integer gveater than [vr/2] + 1. If we define
F(r) by (4.15) with (a_y, >+, a_y) chosen to satisfy (4.17), then F(7) is a modular
form of dimension r. The principal part of F(7) at io is

e—zm(v“-a)r .. -27@i(v,-a)T -

a_u ‘+a_1e

V. THE GROUPS G(+V2) AND G(V3)
1. In this section we prove Theorem (1.11). The proof of Lemma (4.1) can be
modified to derive
LEMMA (5.1). Let 1= 2 or 1= 3, and let am2(r, v, 1) be defined as in (1.12).
Then
e-1(T) (v - @f/241/4 exp[47(v - @)1/2 (m + @)1/2]
{21 (m + a>r/2+3/4

a’m,z(r’ V) 1) ~

Now when 1= 2 or 1= 3, cm(l) defined by (4.2) is the same as am,1(r, v, 1) defined
in (1.12). Thus, Lemmas (4.1) and (5.1) together show that the Fourier coefficients
am(r, v, 1) of Fy(7; r, v), defined by (1.12), satisfy

e (T (v - oz)"'/ZH/4 exp[4n(v - cz)‘l/2 (m + a)1/2] .

(5.2) am(r; v, 1) ~ _\/‘ﬂ(m + a)r/2+3/4

Thus the series defining Fi(7; r, v) converges absolutely for 37 > 0, so that
Fy(r; r, v) is regular in that half-plane.

Let

[~e]

fl(T) = E am,l(r7 v, 1) eZWi(m-*-a)T/\/T,

m=0
fZ(T) = e—ZTTi(V—(Y)T/\/T + E A 2(1" v, ]_) eZ7Ti(m+a)T/ﬁ
m=0 ’ ’

so that Fi(7; r, v) = 4(7) + £2(7). We apply the argument used in the case of the
modular group to derive (4.10), use Lemma (3.3), with 1 =2 or 1= 3, and obtain
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K K
£1() = lim 27 2 s‘i(Mk/ﬁ ) e 2mi(v-0)m'/k
K—o k=1 | m| = ’
k=0(modl) {m,k)=1
(5.3)

. r 2mi(y - o) 2ri(v - o
% [-i(kr/ VT - m)] {exp [k(kT/w/T - m)] o p! (k(kT/\/_ - m)) } :

Notice that there are'no terms with m = 0, since k=0 (mod 1) and (m, k) = 1. We
can again apply essentially the same argument to f,(7), this time using Lemma (3.5),
to obtain

27 (v-a) r

f,(7) = e"zni(v'a)T/ﬁ+ £~ 1(T) (-ir)* {e Vit .3 1 (27i(v - a)) P}

Vir
K K
(5.4) + lim X > et g, De2m-om/k a0 )T
K—o k=1 | m|=1 k"l—‘ﬁ)
k#0(mod1l) m=0(mod1l)
(m,k)=1

[ 2ri(v - @) ] 2 27i(v - @)
X 4 exp k(VIkT - p' k(f1kT - m) ’

The term for k = 1 and m = 0 has been written separately

2. Now put
SK’i(T)
K K 2T
-——(v-a)m' 27i(v - @)
_ -1 k i B r
= Ei |m%:18 (Mk/ﬁ,_m)e (-i(k7/V1 - m)) exp[k(kT/J——_ m)]
k=0(mod1)
(m,k)=1

Again letting -k'= (mm'+ 1)/k, we find, as before, that

Sk,1(7)
K K « T
- R r . -k!' -m'T
) 1?1 rn2=1 © 1(Mk/‘[f"m) (-10kr/VT - m)” exp [27[1(1/ - ) k7/V1 - m ]
k=0(modl) (m,k)=1
(5.5)

K K , '

+ X T e (Mg ) (CikT/VI+ m)T exp [Zﬂi(u -yt m T/"T].

k=1 m=1 ’

k7/Vvi+ m

k=0(modl) {m,k)=1
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Let
SK’Z(T)
; IZ{; 1 -Eﬂ—i(l/-a)m' 27i(v - o)
= e M e (-i(kT - m/VD) exp| —— |,
k=1 |m|=1 1, V1 [k(w/—kT m)]
k#0(mod1) m=0(modl)
(m,k)=1
and again
SK’Z(T)

K K . '
> X et (e - mAT) exp 2 - o) =]
k=1 m=1 k,-2V1 V1kT - m

k#0(mod1) m=0(mod1) !
(m,k)=1
(5.6) g K
Y E e M m ) (-i(k7T + m/V1)) T exp [Zwi(v -a)- k'+ \/Tm'"r] .
k=1 k,—lﬁ VikT + m
k#0(mod 1) m=0(mod1)
(m,k)=1
Now

£~ M(T) (-i7)* Sy , (T7)

K K
= -1 -1 Vik'T+m'
= 5;)1 mZ=)1 e (Me (M_lf_,_ Y(-iT)* ( ( —T7 - m)) exp[zm(u oz)—-——————_k fmv‘]
k=0(modl) (m,k)=1 V1
(5.7)
K K
-1(T)e-1 -V1k'T-m'
+ iji nzi g 1(T)e (M—k—,m)( -ir)" ( (J_T7+m>) exp[zm(v a)—k+ﬁm'r :|
1=0(mod 1) (m,k)=1 V1

But Mk/\/_i, o T= M-m,-k/ﬂ and Mk/\/_l,m'T = Mm’ N SO that, by (1.3),

e D) oMy ) (A0 (<27 - m) )r = e UMy i) (i mr - /YD)
and

e D) e My, ) (-0 ((JETr 4 m)) T = e My, gy (i - kD)
Also, by (1.2),

e (M_py, _x/yD (-i(- m7 - kKAVD)T = 71 (M, 1 /D) (-ilmT + k/VI)T,
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so that (5.7) becomes

& "(T) (-i7)¥ Sy 4(T7)

i
K K

_ -1 y T () oD m'+ V1k'r
= iji 121 £ (Mm,k/ﬁ)( i(m7 + k/V1))" exp [Zm(u a)———————ﬁmT . jl
k=0(mod1) (m,k)=1
(5.8)
K K 1 _J/1k!
+ iji n:LZ1 1(Mm k/‘/-)( -i(mTt - k/V1)" exp [2111(1/ - a)v__r-n'r————z].

k=0(mod1) (m,k)=1

Interchanging the roles of m and k, noticing that (m, k) =1 and m =0 (mod 1) im-
ply k # 0 (mod 1), and comparing the result with (5.6), we find that

(5.9) £"1(T) (-ir)" Sk 4(T7) = Sk ,(7).
It follows directly that
(5.10) ™1 (T) (-in)™ Sy ,(T7) = Sy 4(7)..

Finally, (5.3), (5.4), (5.9), (5.10), and the fact that Fy(r; r, v) = £4(7) + f,(1) together
imply )

g ~YT) (-iT)* F(T7; r,v) - Fy(75 1, V)

K K Zﬂl _a) 2,”.
e T ) i(v - a)
- 2 Eme { 0t 5, )ter - E ! 1 )

k=0(mod1) (m,k)=1

- 2 -
- oMM, gy (il mr - KAD)T Eop‘(k 7w a)r) }

(mT + k/VI)
(5.11)
K 2771 ( )m'
+ lim 2 b v-o
K—ew k=1 |m|<x
k#0(mod1) m=0(mod1l)

(m,k)=1

ey e rr 1 ¢ 27i(v - @) P
X {S (M, /D) (10T - /YD) pzjop! (k(ﬁkr-m)

<

-1 27y - )7
et (M, /g7 40 (il mr/ V1 - k)" E p'(k(m7+rk))}

where we have also made use of (1.3) and the fact/ that £%T) = 1 (the term for k=1
and m = 0 has now been absorbed into the second double sum). The right-hand side
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of (5.11) is a polynomial in 7 of degree at most r, which we denote by pi(7; r, v),
and the proof of Theorem (1.11) is complete.

We can now proceed as in Section IV to construct forms for the groups G(v2) and
G(V3), by making use of Theorem (1.11). That is, we fix @ and r and form a linear
combination of the Fj(t; r, v) (with different v) in such a way that the resulting
linear combination of polynomials arising from Theorem (1.11) vanishes identically.
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