ON POLYHEDRA IN SPACES OF CONSTANT CURVATURE

Herbert Knothe

An elementary procedure for proving the formula
(1) F=a+B8+y -,

where F is the area of a geodesic triangle on the unit sphere and where «, 3, ¥ are
the angles, leads to analogous relations for polyhedra in spaces of constant positive
curvature of an even number of dimensions. We shall here confine ourselves to the
case of the four-dimensional spherical space @, of curvature +1.

1. PENTAHEDRA

We shall first derive an analogue to (1) which expresses the volume of a penta-
hedron in terms of the solid angles at its vertices and the angles formed by the
lateral surfaces.

The five lateral surfaces are tetrahedra in three-dimensional spaces of curva-
ture +1. Each of these spaces divides &, into two congruent semispaces which
shall be denoted by 1, 1; 2, 2; 3, 3; 4, 4; 5, 5, corresponding to the five lateral sur-
faces S, S,, S;, S,, S;. The set of the 1nter10r points of the pentahedron can be as-
sumed to be the intersection of the semispaces 1, 2, 3, 4, 5. Let V be the volume
of the pentahedron, and let (1, 2, 3, 4, 5) be the Volume of the intersection of 1 2,
3, 4, 5. We then have

(2) V={(,2,3,4,5).
It is obvious that this notation immediately furnishes the relations
(3) (1’ 27 3: 49 5) + (1’ 2, 3: 49 _5—) = (1; 2, 37 4)1

where (1, 2, 3, 4) is the intersection of the spaces 1, 2, 3, 4. Taking into account
that

(4) (1’ 2,3, 4, 5) = (Ts E’ —g; Z’ _5—),

we obtain the formulae

(5a) 5V + 2.(1,2,3,4,5) = 2.(1, 2, 3, 4),

(5b) 42.(1,2,3,4,5)+22.(1,2,3,4,5) = 2. (1, 2, 3,5),
— —_ - 2

(5¢) V+2(1,23,45)+23,23,4,5) =3

3

where the summations extend over all possible distributions of the bars among the
numbers 1, 2, 3, 4, 5.
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The formula (5¢) expresses the fact that the sum of the volumes of all the 32
possible intersections of the semispaces 1, 1; ---; 5, 5 equals the volume of S,
The equations (5a), (5b), (5¢) enable us to express V in terms of the volumes of the
intersections of only four semispaces:

2 1 1 —
(6) V=§172+-6-Z(1, 2, 3, 4)-—152(1, 2,3,4).

Let us now discuss the meaning of (1, 2, 3, 4). This expression is closely re-
lated to the solid angle of the pentahedron at that vertex where the lateral surfaces
S,, S,, Ss, S, intersect each other. The intersection of the polar plane &; (three-
dimensional space ©&; of curvature 1) of this vertex with the three-dimensional
planes determined by S,, S,, S;, S, forms a tetrahedron whose volume w; in G; is
the solid angle at that vertex. Since the volume of S; equals 27%, we have

o 4
%) ws = 3—1;;’75(1, 2,3,4), (1,2,3,4)=70;.

Equations (7) give the relation between (1, 2, 3, 4) and the solid angle w.

We shall now deal with the second sum in equation (6). It is evident that
(8) 47,(1,2,3,4)+2.(1,2,3,4=22.(1, 2, 3),

where (1, 2, 3) is the volume of the intersection of the semispaces 1, 2, 3. The
polar space of this intersection is a two-dimensional spherical space. A spherical
triangle is cut out of this space by the planes corresponding to S,, S,, S;. Let wgyy
be its area. We then have

_ Wy 87 _ 27
(9) (1, 23 3) - 4,”. 3 = 3 CU45
or, according to the classical formula (1),
27
(10) (1, 2, 3)=—3—(a12+a13+ Qpg - T,

where o;; denotes the angle included by the lateral surfaces S;, Sy. From equation
(10) we conclude that

2072

(11) 2(1, 2, 3) = 21 Doy - 5.

The combination of equations (6), (7), (8), (11) yields the fundamental equation

(12) Ve=irt+ 20w - I ay,

wl

which expresses the volume of a pentahedron in &, in tevms of the solid angles at
its vertices and the angles between the lateral suvfaces. Equation (12) is the analogue
to the classical formula (1).
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2. CONVEX POLYHEDRA
Formula (12) will now be generalized for convex polyhedra in &, with an arbi-
trary number of lateral surfaces. “Convex” means that the polyhedron is the inter-

section of semispaces as mentioned above. The boundary of the polyhedron consists
then of

(1) convex polyhedra S(3), -, S(3) in three-dimensional spherical spaces;
1 v

(2) convex polygons S(lz), ey S§2) on unit spheres;

(3) great circles S(ll), ceny Sl(cl); and

(4) vertices S(O), “eey S(O).

The number of lateral surfaces, edges, and vertices of an S(3) may be denoted by
f,, k
decompose the polyhedron into elementary pentahedra in the followmg way:

v €y respectively; the number of sides or vertices of an S(Z) by k We now

1. In the interior of the polyhedron we choose an arbitrary point M.
2. In the interior of each S§3) we choose a point M;

3. In the interior of each ng) we choose a point M;.

4. We take two neighboring vertices A and B of ng).

The points M, M Mj, A, B are the vertices of an elementary pentahedron, the vol-
ume of which can be determmed by means of formula (12). In order to find the vol-
ume of the polyhedron, we have to sum over all elementary pentahedra. The sum can
be evaluated as follows: We consider the ten two-dimensional lateral surfaces
(geodesic triangles) of an elementary pentahedron, for instance A, M, Mj, and sum
the expression (12) over all the elementary pentahedra which have this two-dimen-
sional lateral surface in common. Let us first investigate how much the second
term in (12) contributes to the volume of the polyhedron. It is obvious that the sum
of all solid angles at M equals the volume of a three-dimensional spherical space,
that is, 2n2. The sum of the solid angles at M;, however, equals 72, that is, the vol-
ume of a three-dimensional semispace. At M;j the sum of the sohd angles corre-
sponds to that part of the three-dimensional polar plane of M which is cut out by

those spaces S(23), SI(13) which intersect each other in Sg ). The contribution of the
solid angles at M;' is therefore

27
o %i = e,
where «; is the angle (< 7) included by S(3) and S(3) that is, the angle included by
the three-dimensional lateral surfaces whlch 1ntersect each other in S(z)

At the vertices A and B of the polyhedron, the sum of the solid angles of the

elementary pentahedra is identical with the solid angles ¥; of the polyhedron at
these vertices.

Our considerations finally enable us to extend the sum in the second term of
equation (12) over the whole polyhedron, and to express this sum in terms of the
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solid angles yi of the polyhedron at its vertices and the angles ¢; included by the
three-dimensional lateral surfaces:

2 2
(13) Z)wi=21r + T V+1T§Oli+21[/i,
e

where e, f, v are the numbers of vertices and of two-dimensional and three-dimen-
sional surfaces, respectively.

Let us now deal with the third term in formula (12). In order to extend the sum
2 ay . over all elementary pentahedra, we list their 10 two-dimensional lateral sur-
faces, and we list for each of them the contribution made by those pentahedra which
have in common a lateral two-dimensional surface of the same type.

Contribution of the

Type of Lateral Surface Adjacent Pentahedra

M M' M» 2nEfv
v
A B M 720k,
v
A B M" 2ok
f
1
A M'M sz e,
B M' M M
A B M 2rk
n
A M' M 2m 2ikg = 27 2k,
B M" M £ v
A M M ZnZkv
M M" v

Here Z, and Z; mean that the summation extends over all three-dimensional, and
two-dimensional lateral surfaces, respectively. Taking advantage of Euler’s formula

ev+fv‘—kv=2,

we obtain
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(14) Zaik (extended over all pentahedra) = 47 v + 77 Z}kv + 2k + 4:_} o ke .
v
. 472 .
The first term 3 contributes
g’
(15) 5 %?kv.

Combining the expressions (13), (14), and (15), and taking into consideration the
equations

(16) 2k, = 21k,
v f

and

(17) e-k+f-v=0,

we obtain the final result:

(18) V=4T %Z)n_af)(kf_z)-—Z}(n - W),
£

Equation (18) expresses the volume of a polyhedvon in terms of the angles oy in-
cluded by the thvee-dimensional lateval surfaces and the solid angles at the vertices.

It is interesting to make the transition from non-Euclidean to Euclidean space.
From equation (18) we immediately obtain the following formula, valid for any convex
body in four-dimensional Euclidean space:

(19) 0=£§—%+%f2(w—af)(kf-2)—%E(wz-%).

Equations (18) and (19) seem to have far-reaching consequences. Equation (18), for
instance, suggests the conjecture that the volume of a convex body in a four-dimen-
sional non-Euclidean space depends only on the gj) of its boundary.

It is appealing to verify equation (19) for the case where the polyhedron is a cube
in four-dimensional Euclidean space. Here we have

o =127- ke = 4, f=24, e =16, Y =45

and equation (19) becomes an identity.
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