SUBRINGS OF SIMPLE ALGEBRAS

R. S. Pierce

This paper is essentially an appendix to the work [1] of R. A. Beaumont and the author. Its purpose is to clarify the concept introduced there of the smallest field of definition for a subring of a simple rational algebra. However, the main results can be formulated for subrings of quite general algebras, and the proofs do not depend on the developments in [1]. We are indebted to the referee for this observation and for substantial simplification of the paper generally.

Let Λ be an integral domain, and suppose that Q is the quotient field of Λ . Throughout the paper, S is to be a finite-dimensional Q-algebra containing the subring A such that A is a Λ -module and QA = S. Let C be the center of A. A field F is called a *field of definition* of A if $\Lambda \subset F \subset C$ and there exist an F-basis a_1, \dots, a_k of S in A and a nonzero element $\lambda \in \Lambda$ such that

(1)
$$\lambda A \subset (A \cap F)a_1 + \cdots + (A \cap F)a_k.$$

It is routine to show that this property does not depend on the choice of a_1, \dots, a_k . In case Λ is the ring of integers, the last condition is equivalent to this, that the group $(A \cap F)a_1 + \dots + (A \cap F)a_k$ is of finite index in A. If also A contains the identity 1 of S, then $F \subset C$ is a field of definition of A if and only if A is a finitely generated $A \cap F$ -module.

For any Λ -submodule B of a Q-space T, define

(2)
$$QE(B) = \left\{ h \in Hom_Q(T, T) \mid \lambda h(B) \subset B \text{ for some } \lambda \neq 0 \text{ in } \Lambda \right\} .$$

If B satisfies QB = T and $h \in Hom_{\Lambda}(B, B)$, then h can be extended to T by defining $h(t) = \lambda^{-1}h(\lambda t)$, where $\lambda \neq 0$ in Λ is such that $\lambda t \in B$. Thus, $Hom_{\Lambda}(B, B)$ can be identified with $E(B) = \{h \in Hom_{Q}(T, T) \mid h(B) \subset B\}$. Consequently, by (2), $Q \bigotimes_{\Lambda} Hom_{\Lambda}(B, B)$ can be identified with Q(E(B)) = QE(B). In particular, QE(B) does not depend on the manner in which B is imbedded in T.

If F is any field between Q and C, then $\operatorname{Hom}_F(S,S)$ can be identified with the subring of $\operatorname{Hom}_Q(S,S)$ consisting of all Q-endomorphisms which commute with multiplication by elements of F. Henceforth this identification will be made.

LEMMA 1. The field F is a field of definition of A if and only if $\Lambda \subset F \subset C$ and $\operatorname{Hom}_F(S,S) \subset \operatorname{QE}(A)$.

Proof. Let a_1, \dots, a_k be an F-basis of S in A. Put

$$B = (A \cap F)a_1 + \cdots + (A \cap F)a_k.$$

Assume that F is a field of definition of A, and let $\lambda \neq 0$ in Λ be such that $\lambda A \subset B \subset A$. Let $h \in \operatorname{Hom}_F(S, S)$. Since QA = S, there exists $\mu \neq 0$ in Λ such that $\mu h(a_i) \in A$ for $i = 1, \dots, k$. Then

Received March 16, 1960.

This work was supported by the National Science Foundation through Grant NSF-G11098.

$$\mu \lambda h(A) \subset \mu h(B) = (A \cap F)\mu h(a_1) + \cdots + (A \cap F)\mu h(a_k) \subset A$$
.

Thus, $h \in QE(A)$. Conversely, suppose that $\Lambda \subset F \subset C$ and $Hom_F(S, S) \subset QE(A)$. Define $p_i \colon S \to F \subset S$ by $p_i(\Sigma f_i a_i) = f_i$. Then $p_i \in Hom_F(S, S) \subset QE(A)$, so that there exists $\lambda \neq 0$ satisfying $\lambda p_i(A) \subset A$ for $i = 1, \dots, k$. Thus, if $a \in A$, then $\lambda a = (\lambda p_1(a))a_1 + \dots + (\lambda p_k(a))a_k \in B$. Hence, F is a field of definition of A.

The next lemma—a slight generalization of part of the Jacobson-Bourbaki Theorem (see [2, p. 159])—was suggested by the referee.

LEMMA 2. Let S_R and S_L be the subrings of $Hom_Q(S,S)$ respectively consisting of right and left multiplications by elements of S. If E is a subring of $Hom_Q(S,S)$ containing S_R and S_L , then there is a field F between Q and C such that $E = Hom_F(S,S)$.

Proof. Since S is a simple algebra and S_R , $S_L \subset E$, it follows that S is an irreducible E-module. Moreover, the elements of the centralizer of E in $\operatorname{Hom}_Q(S,S)$ commute with the elements of S_R and S_L . Hence this centralizer is a subfield F of C. By the Density Theorem [2, p. 28] and the finite-dimensionality of S over Q, $E = \operatorname{Hom}_F(S,S)$.

THEOREM. Let Λ be an integral domain with quotient field Q. Suppose that S is a finite-dimensional simple Q-algebra and that A is a Λ -subalgebra of S such that QA = S. Let C be the center of S. Then there exists a smallest field of definition F of A between Λ and C, and this field satisfies

$$QE(A) = Hom_F(S, S)$$
.

Proof. Clearly QE(A) contains S_R and S_L ; therefore, by Lemma 2, there exists a field F between Q and C such that QE(A) = $\operatorname{Hom}_F(S, S)$. By Lemma 1, F is a field of definition of A. Suppose that G is any other field of definition of A. Then $Q \subset G \subset C$ and $\operatorname{Hom}_G(S, S) \subset \operatorname{Hom}_F(S, S)$, by Lemma 1. Thus G, the centralizer of $\operatorname{Hom}_G(S, S)$ (in $\operatorname{Hom}_G(S, S)$), contains the centralizer of $\operatorname{Hom}_F(S, S)$, which is F.

The hypotheses for the following corollaries are uniform: S is a finite-dimensional, simple Q-algebra; A is a Λ -subalgebra of S such that QA = S; F is the smallest field of definition of A; the dimension of S over F is k; 1 is the identity element of S.

COROLLARY 1. The center of QE(A) consists of all scalar multiplications by elements of F. If $1 \in A$, then the center of $\operatorname{Hom}_{\Lambda}(A, A)$ consists of all scalar multiplications by elements of $A \cap F$.

Proof. The first statement follows from the theorem and the fact that F is the center of $\operatorname{Hom}_F(S,S)$. If $1 \in A$, then for any $\alpha \in S$, $\alpha A \subset A$ implies $\alpha \in A$. This proves the last statement.

COROLLARY 2. Suppose that S is a field, F = S, and $1 \in A$. Then A is isomorphic (as a Λ -algebra) to $Hom_{\Lambda}(A, A)$.

Proof. By the Theorem, $QE(A) = Hom_F(F, F) = F$ is commutative. Thus, Corollary 2 follows from Corollary 1.

COROLLARY 3. Suppose that B and C are independent submodules of A such that $\lambda A \subset B + C$ for some $\lambda \neq 0$. Then QB and QC are F-subspaces of S.

Proof. Let p be the projection of S onto QB corresponding to the decomposition $S = QB \oplus QC$. Then $\lambda p(A) = p(\lambda A) \subset p(B+C) = B \subset A$. Thus, $p \in QE(A) = Hom_F(S, S)$. Consequently, QB and QC are F-subspaces of S.

Definition. Let A be a torsion-free Λ -module. Then A is called *strongly inde-composable* if there exists no decomposable submodule B of A for which there is a $\lambda \neq 0$ in Λ such that $\lambda A \subset B$.

COROLLARY 4. Suppose that S is a field. Then F = S if and only if A is strongly indecomposable.

Proof. Let a_1, \dots, a_k be an F-basis of S in A. Then

$$B = (A \cap F)a_1 + \cdots + (A \cap F)a_k$$

satisfies $\lambda A \subset B \subset A$ for some $\lambda \neq 0$. Hence if A is strongly indecomposable, then k = 1 and F = S. The converse follows from Corollary 3.

If G is a field of definition of A and $H \subset G$ is a field of definition of $A \cap G$, then clearly H is also a field of definition of A.

COROLLARY 5. There exists a A-subalgebra C of A such that

- (i) $\lambda A \subset C$ for some $\lambda \neq 0$ in Λ ;
- (ii) $C = B_1 \oplus \cdots \oplus B_k$, where each B_i is a Λ -submodule of C isomorphic to $A \cap F$ and each B_i is strongly indecomposable.

Proof. Let a_1, \dots, a_k be an F-basis of S in A. Suppose $a_u a_v = \Sigma_w f_{uvw} a_w$ $(f_{uvw} \in F)$. Choose $\mu \neq 0$ in Λ so that $\mu f_{uvw} \in A$ for all u, v, w. Let $b_i = \mu a_i$. Then b_1, \dots, b_k is an F-basis of S such that $C = (A \cap F)b_1 + \dots + (A \cap F)b_k$ is a Λ -subalgebra of A. Since F is a field of definition of A, there exists $\lambda \neq 0$ such that $\lambda A \subset C$. By the remark above, F is the smallest field of definition of $A \cap F$. Therefore $A \cap F$ is strongly indecomposable, by Corollary 4.

COROLLARY 6. Suppose that $1 \in A$. Then there exist a Λ -subalgebra E of $\operatorname{Hom}_{\Lambda}(A,A)$ and a $\lambda \neq 0$ in Λ such that

- (i) $\lambda^2 \operatorname{Hom}_{\Lambda}(A, A) \subset E \subset \operatorname{Hom}_{\Lambda}(A, A)$, and
- (ii) E is isomorphic to the ring of all matrices of order k with elements in the ring $\lambda(A \cap F)$.

Proof. Let $C = B_1 \oplus \cdots \oplus B_k$ be as in Corollary 5, so that $\lambda A \subset C \subset A$. Then the ring λ Hom $_{\Lambda}$ (C, C) = Hom $_{\Lambda}$ (C, λC) is mapped isomorphically onto a subring E of Hom $_{\Lambda}$ (A, A) by the correspondence $h \to h^{\lambda}$, where $h^{\lambda}(a) = \lambda^{-1} h(\lambda a)$ for $a \in A$. If $g \in \text{Hom}_{\Lambda}$ (A, A), then $\lambda^2 g(C) \subset \lambda C$ and $(\lambda^2 g)^{\lambda} = \lambda^2 g$. Consequently, E satisfies (i). It is well known that Hom $_{\Lambda}$ (C, C) is isomorphic to the ring of matrices of order k in Hom $_{\Lambda}$ (A \cap F, A \cap F). By Corollary 2 and the remark preceding Corollary 5, Hom $_{\Lambda}$ (A \cap F, A \cap F) is isomorphic to A \cap F. Thus, E satisfies (ii).

REFERENCES

- 1. R. A. Beaumont and R. S. Pierce, *Torsion free rings*, Illinois J. Math. (to appear).
- 2. N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloquium Publication, 37 (1956).

University of Washington