THE AUTOMORPHISM GROUP OF THE FREE GROUP
WITH TWO GENERATORS

Bomshik Chang

Let F be the free group generated by a and b, and let F' denote the derived
group [F, F] of F. The main purpose of this note is to prove

THEOREM 1. An automovphism G of F is an innev automovphism if G(a) = a,
G(b) = b (mod F').

As an immediate consequence of Theorem 1, we have

THEOREM 2. Let A and 1 be the automorphism group and the inney automovph-
ism group of F, respectively. Then the group A/1 is isomorphic to the group of two-
by-two matvices with integer coefficients and with determinants +1.

Proof of Theovem 1. It is known [2], [3] that A is generated by the three auto-
morphisms

P:a—b, b— a, Q:a— a1, b— b, U:a— ab, b — b.
Let V be the automorphism V: a — a, b — ba; then we have
(1) PU=VP, PU-1=V"lP
(2) QU =U"1Q (mod I).
(The symbol G, G, denotes the automorphism G, followed by G,. Thus
G, G,: a — G,(G,(a)), b — G,(G,(b)).)
Using the above relations, we may write an automorphism
G =P @Fl gM ... p0k Qfk yk |

where 0y, €1, *-+, 0y, € @are O or 1 and A4, ---, A are integers, as

c=UuM vl .oMiviiw  (modl,

where pug, vy, -, K, vj are integers and W is a word in P and Q.
Let

R:a—a™, b—Db™} S:a—Db, b —al T:a—b"l, b— ba.
We have

(3) $? =R,
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(4) T3 =R (mod 1),
(5) U= ST (mod I) ,
(6) V = ST? (mod I),
(7) PQ =S,

(8) R? = the identity of A,

and, for any He A,
9 RH = HR (mod I).

Using (5) and (6), we may write the word uHlyYl. . yMivYiin U and V as a
word in S and T (mod I), and applying (3), (4), (8) and (9), we have

G=s17P1g7P2... gTPig2RY1w  (mod 1),

where a3, a,,y] are O or 1 and B], B2, ***, Bi are 1 or 2. Using (7), we can reduce

the word W in P and Q to the form SOZ?’R')/ZP‘SQ8 , where a3, vy,,0,& areOor 1
and (6, £) # (1, 1). Finally, we obtain,

G=s 1PlgrP2.. . grfig¥4RY PP QF  (mod ).

We consider the automorphism of F/F' induced by G. Note that if G,, G, are
automorphisms of F such that >

i j h, k
Gp:a—albley, b—alb ldy,
i, j hy k
Gp:a— a ijzcz, b— a b Zdz,
where c,, d,, c,, d, € F', then
i j ha k
G;Gy:a— a3b’3cs, b— a b >ds,

. j'3 ii _ i]. j]_ i2 j2
Where C3, d3 € F ? and (h3 k3) - (hl kl) (h2 kz) )

Suppose G is an automorphism of ¥ such that G: a — ac, b — bd, with ¢, de F',
that is, the automorphism of F/F' induced by G is the identity automorphism; then

sa1 tB1 stBZ--- stBi sa4 r'ypéq8 =e,

where

o (23) (21 e (B2 ve(28) an (B2 o= (3D)

By comparing the determinants of both sides, we have 6 = € = 0. We recall a well-
known theorem [1, p. 261]: the unimodular group is the free product of the cyclic
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group {s} of order 2 and the cyclic group {t} of order 3. This theorem shows that
B

s¥1 tB1 stBZ-" st isa4 cannot be r or e unless it is a trivial word, that is, unless
i=0and a,+a, isOor 2. If ,+a,=0,then y=0; and if @, + @, = 2, then y = 1.

Thus we have shown that
G = identity (mod I),

or G is an inner automorphism.
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