THE AUTOMORPHISM GROUP OF THE FREE GROUP WITH TWO GENERATORS

Bomshik Chang

Let F be the free group generated by a and b, and let F' denote the derived group [F, F] of F. The main purpose of this note is to prove

THEOREM 1. An automorphism G of F is an inner automorphism if $G(a) \equiv a$, $G(b) \equiv b \pmod{F'}$.

As an immediate consequence of Theorem 1, we have

THEOREM 2. Let A and I be the automorphism group and the inner automorphism group of F, respectively. Then the group A/I is isomorphic to the group of two-by-two matrices with integer coefficients and with determinants ± 1 .

Proof of Theorem 1. It is known [2], [3] that A is generated by the three automorphisms

P:
$$a \rightarrow b$$
, $b \rightarrow a$, Q: $a \rightarrow a^{-1}$, $b \rightarrow b$, U: $a \rightarrow ab$, $b \rightarrow b$.

Let V be the automorphism V: $a \rightarrow a$, $b \rightarrow ba$; then we have

(1)
$$PU = VP, PU^{-1} = V^{-1}P,$$

(2)
$$QU \equiv U^{-1}Q \pmod{I}.$$

(The symbol $G_1 G_2$ denotes the automorphism G_1 followed by G_2 . Thus

$$G_1 G_2: a \to G_2(G_1(a)), b \to G_2(G_1(b)).$$

Using the above relations, we may write an automorphism

$$G = P^{\delta_1} Q^{\epsilon_1} U^{\lambda_1} \cdots p^{\delta_k} Q^{\epsilon_k} U^{\lambda_k}.$$

where $\delta_1, \epsilon_1, \cdots, \delta_k, \epsilon_k$ are 0 or 1 and $\lambda_1, \cdots, \lambda_k$ are integers, as

$$G \equiv U^{\mu_1} V^{\nu_1} \cdots U^{\mu_j} V^{\nu_j} W \pmod{I},$$

where μ_1 , ν_1 , ..., μ_j , ν_j are integers and W is a word in P and Q.

Let

R:
$$a \rightarrow a^{-1}$$
, $b \rightarrow b^{-1}$, S: $a \rightarrow b$, $b \rightarrow a^{-1}$, T: $a \rightarrow b^{-1}$, $b \rightarrow ba$.

We have

$$S^2 = R,$$

Received November 25, 1959.

This research was done while the author was a fellow of the Summer Research Institute of the Canadian Mathematical Congress during the summer of 1959.

80 BOMSHIK CHANG

(4)
$$T^3 \equiv R \pmod{I},$$

$$U \equiv ST \pmod{I},$$

(6)
$$V \equiv ST^2 \pmod{I},$$

(7)
$$PQ = S,$$

(8)
$$R^2 = \text{the identity of } A$$
,

and, for any $H \in A$,

(9)
$$RH \equiv HR \pmod{I}.$$

Using (5) and (6), we may write the word $U^{\mu_1}V^{\nu_1}\cdots U^{\mu_j}V^{\nu_j}$ in U and V as a word in S and T (mod I), and applying (3), (4), (8) and (9), we have

$$G \equiv S^{\alpha_1} T^{\beta_1} S T^{\beta_2} \cdots S T^{\beta_i} S^{\alpha_2} R^{\gamma_1} W \qquad (\text{mod } I)$$

where α_1 , α_2 , γ_1 are 0 or 1 and β_1 , β_2 , ..., β_i are 1 or 2. Using (7), we can reduce the word W in P and Q to the form $S^{\alpha_3}R^{\gamma_2}P^{\delta}Q^{\xi}$, where α_3 , γ_2 , δ , ϵ are 0 or 1 and $(\delta, \epsilon) \neq (1, 1)$. Finally, we obtain,

$$G \equiv S^{\alpha_1} T^{\beta_1} ST^{\beta_2} \cdots ST^{\beta_i} S^{\alpha_4} R^{\gamma} P^{\delta} Q^{\varepsilon} \qquad (\text{mod } I).$$

We consider the automorphism of F/F' induced by G. Note that if G_1 , G_2 are automorphisms of F such that

G₁:
$$a \to a^{i_1}b^{j_1}c_1$$
, $b \to a^{h_1}b^{k_1}d_1$,
G₂: $a \to a^{i_2}b^{j_2}c_2$, $b \to a^{h_2}b^{k_2}d_2$,

where c_1 , d_1 , c_2 , $d_2 \in F'$, then

$$G_1 G_2$$
: $a \rightarrow a^{i_3} b^{j_3} c_3$, $b \rightarrow a^{h_3} b^{k_3} d_3$,

where
$$c_3$$
, $d_3 \in F'$, and $\begin{pmatrix} i_3 & j_3 \\ h_3 & k_3 \end{pmatrix} = \begin{pmatrix} i_1 & j_1 \\ h_1 & k_1 \end{pmatrix} \begin{pmatrix} i_2 & j_2 \\ h_2 & k_2 \end{pmatrix}$.

Suppose G is an automorphism of F such that G: $a \to ac$, $b \to bd$, with c, $d \in F'$, that is, the automorphism of F/F' induced by G is the identity automorphism; then

$$s^{\alpha_1} t^{\beta_1} s t^{\beta_2} \cdots s t^{\beta_i} s^{\alpha_4} r^{\gamma} p^{\delta} q^{\varepsilon} = e$$

where

$$\mathbf{s} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathbf{t} = \begin{pmatrix} 0 & -1 \\ \mathbf{1} & 1 \end{pmatrix}, \quad \mathbf{r} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \mathbf{p} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mathbf{q} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{e} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

By comparing the determinants of both sides, we have $\delta = \epsilon = 0$. We recall a well-known theorem [1, p. 261]: the unimodular group is the free product of the cyclic

group $\{s\}$ of order 2 and the cyclic group $\{t\}$ of order 3. This theorem shows that $s^{\alpha_1}t^{\beta_1}st^{\beta_2}\cdots st^{\beta_i}s^{\alpha_4}$ cannot be r or e unless it is a trivial word, that is, unless i=0 and $\alpha_1+\alpha_4$ is 0 or 2. If $\alpha_1+\alpha_4=0$, then $\gamma=0$; and if $\alpha_1+\alpha_4=2$, then $\gamma=1$.

Thus we have shown that

 $G \equiv identity \pmod{I}$,

or G is an inner automorphism.

REFERENCES

- 1. A. G. Kurosh, *The theory of groups*, Vol. II (English translation by K. A. Hirsch, Chelsea, New York, 1955).
- 2. B. Neuman, Die Automorphismengruppe der freien Gruppen, Math. Ann. 107 (1933), 367-386.
- 3. J. Nielsen, Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924), 169-209.

The University of British Columbia