FINITENESS OF CLASS NUMBERS OF REPRESENTATIONS
OF ALGEBRAS OVER FUNCTION FIELDS

D. G. Higman and J. E. McLaughlin

1. THE THEOREM

The purpose of this note is to establish a function-field analogue of Zassenhaus’s
Theorem [4] concerning the finiteness of class numbers of representations of semi-
simple algebras over number fields.

Let o be an integral domain with quotient field k, and let A be a finite-dimen-
sional k-algebra. An os-order in A is defined to be an o -subalgebra o which is
finitely generated as an o -submodule, and such that kD = A, All A-modules con-
sidered will be right unitary A-modules of finite dimension over k. The O -sub-
modules of an A-module V which are finitely generated as o -modules are called
D -rvepresentation submodules. The class number (velative to D) of V is defined to
be the number of nonisomorphic © -representation submodules M of V which gen-
evate V in the sense that kM =V,

If o is a principal ideal domain, D -representation submodules have free o-
module bases, and the definition of class number can be formulated in the obvious
way in terms of matrix representations.

The O -representation submodules M of A generating A are the so-called right
D-ideals of A. Two such pD-ideals M and N are isomorphic if and only if there is
a unit x of A such that XM = N, that is, if and only if M and N are eguivalent D -
ideals (see [4]). Hence, the class number of A relative to D, A being considered
as an A-module, coincides with the »ight ideal class number of A relative to D
which is defined as the number of inequivalent right O -ideals of A. If A is semi-
simple, or more generally, if A is a Frobenius algebra, this is equal to the left

ideal class number of A [ 3], and can be called simply the ideal class number of A
(velative to D).

Artin [1] extended a classical result for number fields by proving that a semi-
simple rational algebra has finite ideal class number relative to any maximal order.
Zassenhaus [4] gave a new proof, establishing the more general result which is case
(1) of the following theorem.

THEOREM. Let o be either ,
(1) the ring of integers in a finite algebraic number field, or

(2) the integral closure of F[X] in a finite extension field k of F(X), where F is
a finite field and X is transcendental over F. Then, if D is an s-ovder in a k-
algebra A, every completely rveducible A-module has finite class number relative
o O. -

In this note we establish the result for case (2). Once it has been shown in Sec~
tion 3 that a division algebra has finite ideal class number, it is possible to apply the
rest of Zassenhaus’s argument with only verbal changes. In Section 4 we give an al-
ternative proof, based on a lemma from [2], of the extension from the case of irre-
ducible A-modules to that of completely reducible A-modules.
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It is to be noted that orders are not assumed to be maximal in the theorem, and
that case (2) implies the existence of nonseparable semi-simple algebras for which
every A-module has finite class number. In fact, finite nonseparable field extensions
of k have this property. Simple examples show that in both cases the class number
of an indecomposable right ideal component of A can be infinite if A is not semi-

simple. For instance, take A to be the F(X)-algebra of matrices U = ()(; 327 ) with
x,y and z in F(X), and let © be the F[X]-order in A consisting of those U with
X,y and z in F[X]. For a given monic polynomial n in F[X], mapping x onto

X ny
( 0 z
sentation modules M, are nonisomorphic for different n.

), defines a representation of © in F[X], and the corresponding D-repre-

2. PRELIMINARY LEMMAS

Since in case (2) of the Theorem, ¢ is finitely generated as an F[X]-module, it
is reasonably clear that we have only to consider the case p = F{X], k = F(X). There-
fore, in the vest of this note, o will denote a domain F[X) where F is the finite field
of q elements and X is lranscendental over F; and k will denote its quotient field
F(X). Then, of course, » is a principal ideal domain with finite residue class rings.
We need the following two lemmas for modules over »o.

LEMMA 1. Let M be an v -submodule of a finitely generated torvsion-free o -
module N such that M C N and rank M = rank N. Let uy, **+, u, and vy, «-, Vn, be
o-module bases of M and N, respectively, with u; = Z c;;Vj, cij€0. Then
N:M =0 :(A), and AN C M, where A = det(c;;).

(Here N:M denotes the group-theoretic index of M in N.) This well-known
lemma is an easy consequence of the structure theory of modules over principal
ideal domains, and it holds for any principal ideal domain ».

LEMMA 2. Let M be a finitely genevated o -submodule of a vector space V
over k. Then there exist only finitely many o-submodules N of V such that
MC N, rank M=rank N and N:M = u.

Proof. Using the notation of Lemma 1 relative to M and N, we have
N:M=o:(A)=p;

therefore q9¢84 = u. Hence, there are only finitely many A to consider. Moreover,
AM C ANC M, and M:AM is finite as a power of u. Hence, there are only finitely
many modules between M and AM. Since the mapping of u € V onto Au is an auto-
morphism of V, it follows that only finitely many N can exist.

This lemma is the function-field analogue of [4; Lemma 1]. It is valid for any
principal ideal domain o having finite residue class rings, since for any such o, the
number of a in o with 0:(a) = p is finite.

3. THE CASE OF A DIVISION RING

As always, we assume 0 = F[X] and k = F(X). For the proof of the theorem, we
shall first assume that A is a division ring and prove.that A has finite ideal class
number relative to © . Each right D -ideal of A is equivalent to a nonzero right
ideal of D . Let a # 0 be a right ideal of D, and let w), -, wy be a free o ~module
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basis of ©. By Lemma 1, D:a is a power q* of q. Write p=nA+r (0 <r <n).
The number of elements in © of the form Z # w; with tie F[X] and -« <degti<aA
is qA+1)n> git; therefore, there exist two distinct elements of this form which are
congruent modulo a. It follows that a contains a nonzero element @ = 2 s; w;
(-0 < deg 55< ). By Lemmal, D:a D= qde8 N(oz), where N(¢) is the determinant
of the image of @ under the regular representation of . If wjwj = Z ¢ijk Wk, we
have w;a = Z sjw; wj = Z 8; C;jk Wk, and therefore N(a) = det (Z sjc; ). Since the
determinant is a homogeneous function of degree n in the sj, and deg sj < A, we see
that deg N(a) < nr + ¢ < ¢ + ¢, where c is a constant independent of a and a@. Thus
D:a < ghte= (D:4a)q% hence
a~" atD = a:ad =_______D:a£) < qg°€.
Dia

This proves that every right ideal of D is equivalent to a right D-ideal b such that
5> D and 6:D < g% Itisa consequence of Lemma 2 that only finitely many such
§ exist, and therefore A has finite ideal class number.

4, COMPLETION OF THE PROOF

To show that an irreducible A-module has finite class number, we may assume
that A is a full matrix ring over a division ring, and reduce the problem by means
of Zassenhaus’s argument [4; pp. 282-283] to the case of the division ring treated in
Section 3. We omit the details.

The extension from the case of irreducible A-modules to that of completely re-
ducible A-modules can also be carried out by the method of [4]. As an alternative
we note that we may assume that A is semi-simple, and carry out this extension
using

LEMMA 3. Givenrn D -representation modules M and N, the number of inequiva-
lent (D, 9)-exact sequences 0 - N — H — M — 0 is finite.

Pyoof. According to [2], the inequivalent (9, o)-exact sequences
0—-N—-H—-M-—90

1
are in one-to-one correspondence with the elements of Ext(g,n) (M, N). Since A is
semi-simple,

1 1
Ext(y 1) M, NY =H (A; M, N)=0, M =M® k, N=Ng, k.

Since » is a finitely generated o-module, it follows that every element of
Ext(lg 0) (M, N) has a nonzero annihilator in o, Because M and N are finitely
’

generated o-modules, so is Ext(lg’,,) (M, N). Since o has finite residue class rings,
it follows that this group is finite.

Now we prove the finiteness of class numbers of A-modules by induction. If the
A-module V is irreducible, the result follows from the first paragraph of this sec-
tion. Otherwise, V contains an A-submodule X # 0, V. Let H be an D-representa-
tion submodule generating V; then M= HNX is an O-representation submodule
generating X, and H/M is isomorphic with an D-representation submodule generat-
ing V/X. By the induction hypothesis, only finitely many nonisomorphic M’s and N’s
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can occur. Further, the sequence 0 - M — H — H/M — 0 is (D, o)-exact, since »
is a principal ideal domain, H is finitely generated, and H/M is torsion free. It
therefore follows by Lemma 3 that the number of nonisomorphic O-representation
submodules generating V is finite.
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