ON SOME METRIC PROPERTIES OF POLYNOMIALS WITH REAL ZEROS

Ch. Pommerenke

1. Let $f(z) = \prod_{\nu=1}^{n} (z - x_{\nu})$ be a polynomial of degree n with real zeros x_{ν} , and let E be the set $|f(z)| \le 1$. The real axis is denoted by X. A circle (semicircle) that has a segment of X as diameter will be called an orthogonal circle (semicircle).

LEMMA. Let L be an orthogonal semicircle over the real points a_1 and a_2 . If $z_0 \in E \cap L$ and $\Im z_0 > 0$, then either the arc $a_1 z_0$ or the arc $z_0 a_2$ of L is contained in E.

Proof. (I owe the idea of this argument to [1, p. 139].) If $x_1 = \cdots = x_n = 0$, the lemma is trivially true. Therefore we can assume that not all of these equations hold. We may take $a_1 = -\rho$, $a_2 = \rho$. Then we have L: $z = \rho e^{i\theta}$ ($0 \le \theta \le \pi$). Consider the function

$$G(\theta) = \log \left| f(\rho e^{i\theta}) \right| = \frac{1}{2} \sum_{\nu=1}^{n} \log \left(\rho^2 - 2\rho x_{\nu} \cos \theta + x_{\nu}^2 \right)$$

for $0 < \theta < \pi$. Its derivative is

$$G'(\theta) = \rho \left(\sin \theta\right) H(\theta), \quad \text{where } H(\theta) = \sum_{\nu=1}^{n} \frac{x_{\nu}}{\rho^2 - 2\rho x_{\nu} \cos \theta + x_{\nu}^2}.$$

Differentiating $H(\theta)$, we obtain

$$H'(\theta) = \sum_{\nu=1}^{n} \frac{-\rho x_{\nu}^{2} \sin \theta}{(\rho^{2} - 2\rho x_{\nu} \cos \theta + x_{\nu}^{2})^{2}} < 0$$

for $0 < \theta < \pi$. Hence $G'(\theta) = \rho (\sin \theta) H(\theta)$ has at most one zero σ in $0 < \theta < \pi$. The relation

$$G''(\sigma) = \rho(\cos \sigma)H(\sigma) + \rho(\sin \sigma)H'(\sigma) = \rho(\sin \sigma)H'(\sigma) < 0$$

shows that $G(\theta)$ has a maximum in σ . Therefore the function $G(\theta)$ does not assume a minimum in $0 < \theta < \pi$. Put $z = \rho e^{i\theta}$. We have to consider three cases:

- 1. G(0) > 0. Since the function $G(\theta)$ has no minimum in $0 < \theta < \pi$, the inequality $G(\theta_0) \le 0$ implies that $G(\theta) \le 0$ for $\theta_0 \le \theta \le \pi$. Therefore the arc $a_1 z_0$ of L belongs to E.
- 2. $G(\pi) > 0$. We can show in a similar way that the arc $z_0 a_2$ of L is contained in E.
- 3. $G(0) \leq 0$, $G(\pi) \leq 0$. If neither $a_1 z_0$ nor $z_0 a_2$ were contained in E, there would be two values θ_1 and θ_2 such that $0 < \theta_1 < \theta_0 < \theta_2 < \pi$ and $G(\theta_1) > 0$,

Received July 7, 1959.

 $G(\theta_2) > 0$. On the other hand we have $G(\theta_0) \le 0$. Therefore the function $G(\theta)$ would have a minimum in $\theta_1 < \theta < \theta_2$.

THEOREM 1. Let $f(z) = \Pi(z - x_{\nu})$ $(x_{\nu} \ real)$ and $E: |f(z)| \leq 1$. Then for every z_0 in E there exists an orthogonal circle K such that $z_0 \in K$ and $K \subset E$. Hence the set E is the union of orthogonal circles.

Proof. Let $z_0 = x_0 + iy_0$. For $-\infty < a < x_0$, let L(a) denote the orthogonal semicircle through a and through z_0 , and let $D_1(a)$ and $D_2(a)$ denote the (left and right) bounded closed regions determined by arcs of L(a) and by segments of the real axis and of the line $x = x_0$. If E contains a point z_1 , it contains the entire segment $[z_1, \overline{z}_1]$. Also, $D_1(a)$ and $D_2(a)$ vary monotonically with a, and since E does not contain $D_1(a)$ for large negative values of a, there exists a value a_1 such that $E \supset D_1(a_1)$ and $E \not\supset D_1(a)$ if $a < a_1$. Similarly, there exists a value a_2 such that $E \supset D_2(a_2)$ and $E \not\supset D_2(a)$ if $a > a_2$. Now $a_2 \ge a_1$; for otherwise our lemma would be false for $a = (a_1 + a_2)/2$. Therefore $D_2(a_2) \supset \overline{D_2(a_1)}$ and $E \supset D_1(a_1) \cup D_2(a_1)$, and the theorem is proved.

2. From Theorem 1 we can obtain information about metric properties of the set $|f(z)| \le 1$. We shall need the concept of the capacity (also called the transfinite diameter) of a closed bounded set F. The capacity of F is defined as

$$\operatorname{cap} \mathbf{F} = \lim_{\mathbf{m} \to \infty} \kappa_{\mathbf{m}},$$

where

(1)
$$\kappa_{\mathbf{m}} = \max_{\zeta_1, \dots, \zeta_m \in \mathbf{F}} \prod_{\mu \neq \nu} |\zeta_{\mu} - \zeta_{\nu}|^{1/\mathbf{m}(\mathbf{m}-1)}.$$

It can be proved that the set $|f(z)| \le 1$ has capacity 1. We shall consider a class of sets that includes the set $|f(z)| \le 1$ in the case where all the zeros of f(z) are real.

THEOREM 2. Let E be a closed bounded set that is the union of orthogonal circles and segments of X. Let b be the (minimal) width of E, and d the sum of the diameters of the connected components of E. Then cap E = 1 implies that

$$b^2 + d^2 \le 4d \le 16$$
, $b \le 2$, $b + d \le 2 + 2\sqrt{2}$, $bd \le 3\sqrt{3}$.

The sign of equality can occur in each estimate.

Proof. It is easy to see that $d = meas(X \cap E)$ and that there exists an orthogonal circle K of diameter b that is contained in E. We can take the origin O as the centre of K. Consider first the set

$$F = K \cup (X \cap E)$$
.

Because $F \subset E$, we have cap $F \leq cap E = 1$.

Next we obtain a new set F^* in the following way: The set F consists of K and one or more segments of X; we translate these segments towards the point O until they form (without overlapping) one connected set together with K. Then F^* consists of the orthogonal circle K of diameter D and one or two real segments of total length D and D b. We choose points D and D such that

$$\kappa_{\mathbf{m}}^* = \prod_{\mu \neq \nu} |\mathbf{z}_{\mu}^* - \mathbf{z}_{\nu}^*|^{1/\mathbf{m}(\mathbf{m}-1)}$$

is maximal, and we let z_{ν} denote the point from which z_{ν}^{*} was obtained in the shifting process described above. Then we have $|z_{\mu}^{*} - z_{\nu}^{*}| \leq |z_{\mu} - z_{\nu}|$. Therefore it follows from equation (1) that

$$\kappa_{\mathrm{m}}^* \leq \prod_{\mu \neq \nu} |\mathbf{z}_{\mu} - \mathbf{z}_{\nu}|^{1/\mathrm{m}(\mathrm{m}-1)} \leq \kappa_{\mathrm{m}}.$$

This implies that

$$cap F^* < cap F < 1.$$

Let $-c_1$ and c_2 be the endpoints of the segment $X \cap F^*$, so that $c_1 + c_2 = d$. The orthogonal circle K: $|z| \le b/2$ belongs to F^* . Hence the function

(3)
$$W = z + \frac{1}{4}b^2z^{-1}$$

maps the region exterior to F* conformally onto the plane slit along the segment

S:
$$[-(c_1 + b^2/4c_1), + (c_2 + b^2/4c_2)]$$
.

Since the coefficient of z in the function (3) is one, we have cap $F^* = \text{cap } S$. The capacity of a segment is one fourth of its length, that is,

(4)
$$\operatorname{cap} \mathbf{F}^* = \frac{1}{4} (c_1 + c_2) + \frac{b^2}{16} \left(\frac{1}{c_1} + \frac{1}{c_2} \right) .$$

Using the relations $c_1 + c_2 = d$ and $c_1(d - c_1) \le \frac{1}{4}d^2$, we see from inequality (2) that

$$1 \ge \frac{1}{4}d + \frac{b^2d}{16c_1(d - c_1)} \ge \frac{1}{4}d + \frac{b^2}{4d} = \frac{b^2 + d^2}{4d}$$

holds and therefore $b^2 + d^2 \le 4d$. This inequality implies that $d^2 \le 4d$, $4d \le 16$ and

$$\begin{aligned} b^2 &\leq d(4-d) \leq 4, & b \leq 2, \\ b+d &\leq (4d-d^2)^{1/2} + d \leq 2 + 2\sqrt{2}, \\ bd &\leq (4d-d^2)^{1/2} \ d \leq 3\sqrt{3}. \end{aligned}$$

To prove the last sentence of Theorem 2, let $b^2 + d^2 = 4d$, and let E be the set that consists of the orthogonal circle $|z| \le b/2$ and the two symmetrical segments [-d/2, -b/2] and [b/2, d/2]. Then b and d are the width and diameter of E, and since in this case $E = F^*$, equation (4) implies that cap E = 1. Thus the set E satisfies the hypotheses of Theorem 2, and we have equality in the first estimate. To obtain equality in the four other estimates, we take in turn d = 4, 2, $2 + \sqrt{2}$ and 3.

We note that if the hypothesis on E is replaced by the (essentially weaker) assumption that E is connected, then the last three of our estimates are no longer valid (see [2, p. 225]).

REFERENCES

- 1. P. Erdös, F. Herzog and G. Piranian, Metric properties of polynomials, J. Analyse Math. 6 (1958), p. 125-148.
- 2. Chr. Pommerenke, On some problems by Erdös, Herzog and Piranian, Michigan Math. J. 6 (1959), 221-225.

University of Göttingen