AN ELEMENTARY PROOF OF A FUNDAMENTAL THEOREM
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INTRODUCTION

It is well known that the theory of Banach algebras rests on the Mazur-Gelfand
theorem, which states that every complex normed division algebra is isomorphic to
the complex field itself. This result, which is directly equivalent to the existence of
a spectrum for elements of a normed algebra, was announced by Mazur [5] and
proved by Gelfand [2], who used a generalization of the Liouville theorem to vector-
valued functions. More recently, elementary proofs of the theorem have been given
which avoid complex function theory by an ingenious use of roots of unity [4,7,8].
Another result, fundamental to the theory of Banach algebras and also due to Gelfand
[2] in the general case, is the so-called “spectral radius formula,” which states that
if o(x) is the spectrum of an element x in a Banach algebra with norm Hxl |, then

max |[A| = lim ||xn||1/n.
A0 (%) n -0

The quantity on the left is the spectral radius. Since the formula asserts the exist-
ence of a complex number in the spectrum of x with absolute value equal to lim
Hanl/ n jt can be regarded as a precise statement concerning the existence of a
spectrum. The usual proofs of the spectral radius formula also depend heavily on
complex function theory. We give below an elementary proof which avoids function
theory, and we obtain, incidentally, another elementary proof of the Mazur-Gelfand
theorem. It involves roots of unity in a way similar to the proofs mentioned above;
but the proof is different and is indeed considerably simpler, in spite of the greater
precision of the result.

1. PRELIMINARIES

We assume that % is a complex normed algebra. In other words, % is an alge-
bra over the complex field, and the vector space of % is a normed linear space
whose norm Hxl satisfies the multiplicative condition nyH < ”X” HyH If ¥ is
complete in the norm topology, then it is a Banach algebra. In order to deal with the
case in which there is no identity element, it is convenient to use the “circle opera-
tion” xoy = x+ y - xy, which is associative and has zero as an identity element. An
element x is called quasi-vegular (quasi singular) provided it has (does not have)
an inverse, relative to the circle operation. This inverse, if it exists, is called the
quasi-inverseof x and is denoted by x°. The set Q of all quasi-regular elements
in % is a group under the circle operation. An important and elementary property
of normed algebras is that the mapping x>x©° of Q onto itself is continuous. Arens
[1] gives a proof of the corresponding result for the regular elements in a normed
algebra with an identity. His proof is adapted to the present case and included here
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for the sake of completeness. Let x and x+ h be elements of Q, and set
(x+ h)° = x° + k. Then the problem is to show that if ||h|| is small, then ||k|| is
also small. Since (x+ h)o (x°+ k) = 0 and xo0x°= 0, we obtain

h(1 - x9 = hk + xk - k,

where h(1 - x°) is written in place of h - hx° for convenience, and in spite of the
fact that ¥ may not possess an identity element. An application of this relation,

along with x%o0x = 0, gives (1 - X9 h(l - x9 = hk + x%hk - k. It follows directly

from the norm inequalities that

[l - @+ {lxo[D |[nfl x| < @+ [[x]p=[[n]].

Therefore, if ||h|| <%(1 + ||x°|P-1, then ||k|| < 2(1 + ||x°|)2||n||, and the desired
continuity follows. '

In an algebra with an identity, the spectrum of an element x is defined to consist
of all complex numbers A such that x - A is singular, that is, does not possess an
inverse relative to multiplication. The following definition, due fo Hille [3; p. 458],
applies whether or not there is an identity element. When both definitions apply, the
two spectra are equal, except possibly for the point A = 0 which may belong to the
first without belonging to the second spectrum.

The spectrum o(x) of an element x in the complex algebra I consists of all
nonzevo complex numbers X such that \~*x is quasi-singular, plus the point \ = 0
provided therve does not exist in U a nonzero idempotent e and an element y such
that ex =xe =X and Xy =yx = e.

Finally, PSlya and Szegd [6; p. 171, solution of Prob. 98] show by an elementary
argument that, if {an} is a sequence of real numbers such that a ,;,<a,, + a, for
all m and n, then lim __ a,/n exists either as a finite number or as -, and,
moreover, the limit is equal to the greatest lower bound of the numbers

an/n n=1,2,3, ).

An application of this result with a, = log ||an shows that lim, _, Hanl/ n always
exists and is equal to the greatest lower bound of the numbers

llx®]|/» (@=1,2,3, ).

2. THE SPECTRAL-RADIUS FORMULA

In the following discussion, the element x is fixed and the value of lim | |xnl Il/ n
is denoted by wv. It is simple to verify that if 9 is a Banach algebra, then the series
- °21 A1 x™ converges absolutely to an element of %, for each scalar A with
l?'l > v. Moreover, a straightforward calculation shows that the sum of this series
is actually a quasi-inverse for A~'x. Thus, for Banach algebras, either o(x) is
vacuous or the spectral radius of x is less than or equal to v. The nonvacuity of
o(x), together with the reverse inequality needed to establish the spectral radius
formula, is given by the following theorem, which is valid for an arbitrary normed

algebra.

THEOREM. Let x be an element of any complex normed algebra A. Then
theve exists a complex number X in the spectvum of x such that lim ||xn||1/ n |A|
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Proof. If 0 ¢ o(x), then by definition there exists a nonzero idempotent e and an
element y in % such that ex = xe = x and xy = yx = e. It follows that e = xy", and
hence that He“l/ng ||xn||1/n||y|| for all n. This implies 1 <v||y||. Therefore
if v =0, then 0 € 0(x), and the desired result is true in this case. Next, assume that
v > 0, and suppose that the theorem is false. Then the function ¢(d) = (A\"1x)° is de-
fined and continuous for [x| > v. Moreover, since A"1x >0 as X >, continuity of
the quasi-inverse implies that (A\"*x)°® > 0 as A >». Therefore ¢ is uniformly con-
tinuous for IAI > y. In the remainder of the discussion, A will always be a complex
number such that |x|> v.

Let w,, *** wn be the nth roots of unity, and for any complex number a write
aj=aw;j (j=1, +--, n). Then the polynomial 1 - A""t" can be factored in the form
1 - A™RER = (1 - A7) - AS2E) -+- (1 - AR2E). Writing this relation in terms of the
circle operation and substituting x for £, we obtain

AR x = (Al'l X) 0(}\}_1 X) Oese O(Afllx) .
It follows that A-nx™ is quasi-regular for each n. Next, set
Rj= —(kj'lx+ Aj'zx2+ e 4 Aj’nﬂxn‘l),

and observe that A x" = (Aj'lx) oR;. Since ABx? and Aj'lx are quasi-regular, this
can be rewritten in the form

() 6(r;) = Rj o (A-2xT°,

Now each term of R; is of the form w3k r-kxk where 1 <k<n-1. Therefore
Z)Rj = 0, and summation of (1) for j = 1, 2, ***, n gives

ln -IlyN} O
(@ 7 I #0y) = Gonxne,

Since ¢ is uniformly continuous, there exists for arbitrary ¢ > 0 a u (independent
of n) such that v < p and ||¢(Vj) - ¢(.U-j)|| < g for j=1, 2, *+, n. Using equation
(2), we obtain at once

(3) || xm)e - (umxDo|| < g,

for all n. On the other hand, since v < p it follows that ™™ x™ >0, and therefore
(1 ™x™)° >0 as n>wo, Therefore (3) implies that ||(» "x™)°]| <& for sufficiently
large n. In other words, (¥ "x™°>0 and hence v""x">0 as n-» . However,
this is impossible, since ||y~ x|| > 1 for all n. Therefore the supposition that
there is no A in o(x) with |A| > v is false, and the proof is complete.
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