SOME SETS OF SUMS AND DIFFERENCES
F. Bagemihl

Denote by R the set of real numbers. If XC R and Y C R, let
s(X,Y) ={x+y:xeX,ye Y},
dX,Y) = {x-y:xeX,ye Yu{y-x1xe X,ye Y},

and set s(X, X) = s(X), d(X, X) = d(X).

It is known and easy to prove that s(X, Y)=d(X,Y¥)=R if R-X and R-Y are
both of Lebesgue measure zero or both of first Baire category; in particular,
s(X) = d(X) = R if R - X is of measure zero or of first category (for an exposition
of results of this kind, see [2] and [3]). Suppose that R - X is of measure zero and
R - Y is of first category; we shall show that it is possible to have

s(X,Y) = d(X, Y) # R.

Let A be the set of algebraic numbers, L the set of Liouville numbers, and S,
T, U the sets of S-, T-, U- numbers, respectively, in Mahler’s classification of
transcendental numbers (see {4]). No two of the sets A, S, T, U have any elements
in common, and L. C U,

LEMMA. L is a vesidual subset of R.

Proof. For every natural number n, define E, to be the set of numbers £ such
that, for all integers p and q with q > 1,

p 1
-Els .
l : ql—— q”
If I is any open interval, it contains a rational number p/q (where p and q are inte-
gers and q > 1), and the intersection of I with the interval (pg-! - q @, pq-1+ g™
contains no point of E,. This means that E, is nowhere dense, so that if all the ra-

tional numbers as well as the elements of on.;=1 E, are removed from R, a residual

set remains. If £ belongs to this residual set, then £ is irrational, and, for every
natural number n, there are integers p 'and q with q > 1, such that

P 1
-5 <&

which implies that ¢ is a Liouville number.

Mabhler has proved that R - S is of measure zero, so that, in a metricdl sense,
most numbers are S-numbers. The lemma shows, however, that, in a topological
sense, most numbers are Liouville numbers. If T should prove to be nonempty, it
is nevertheless small in comparison with S and U in the sense that it is both of
first category and measure zero. According to the results cited in the second
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paragraph above, s(X) = d(X) = R if X =S (actually, if X is that subset of S for which
the “type” 9 satisfies the condition 1 < 8 < 2; see [4, p. 86]) or X = L. (Mahler as-
cribes to Erdds the recognition of the fact (of which there is a simple direct proof by
means of decimals) that every real number is the sum of two Liouville numbers).

THEOREM. Theve exist seis X C R and Y C R such that R - X is of measure
zevo, R - Y is of first category, and R - s(X,Y) and R - d(X, Y) arve equal and
everywhere dense.

Proof., Let X=8 and Y=U. Then ACR-s(X,Y) and AC R - d(X, Y); for if
xe€X,yeY, a€ A and + X+ y = a, then the numbers x and y are algebraically de-
pendent, and they must therefore belong either both to S or both to U [4, p. 69], which
contradicts our assumption. Furthermore, since -y e U if ye U and -xe S if x€ S,
s(X, Y) = d(X, Y).

Remark. It follows from [1] that, if E is any enumerable subset of R, there exist
sets XC R and Y Cc R such that R - X is of measure zero, R - Y is of first category,
s(X, YY) CR-E,and d(X, Y)CR - E.
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